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Fig 1 Extracellular CA activiies of S. @wst@um grown at

pHS. 2+ low N(a), pH8 7+ bw N(b) and pHS. 7+ high N(¢)
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Fig 2 Changes of extracelluar CA activities during acclimation of S. cata
wm cells grown at tH8 2+ bw N to pH8. 7+ bw N or (H8 7+ high N
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RESPONSE OF PHOTOSYNTHESIS OF THE BLOOM FORMING MARINE DIATOM
SKEIETONEMA COSTATUM TO CHANGES IN pH AND INORGANIC NITROGEN
CONCENTRATIONS IN SEAWATER

CHEN Xiong Wen"*and GAO Kurr Shan®
(1. Institwte " Hydrobiology, Chinese Acadeny ¢ Sciences, Wuhan — 430072;
2 Marine Biology Institute, Shantow University, Shantou 515003
3 Deartment  Biolegy, Hubei Normd University, Huangshi  435002)

Abstract: The bloont forming marine distom Skeletonema costatum (Greville) Cleve ( strain No. 2042) was cultured under different
levels of pH and inorganic nitrogen( N) a 20°C and 210 Hmolm™ %™ '( 12: 12/L: D) and its extracellular carbonic anhy drase( CA)
and photosynthetic O, evolution were investigated in order to see its physiological response to changes in pH under high N( 300
Pmol/ L) and low N(10Hmol/L) levels during S. costatum bloom. The extracellular CA adivity was assayed by the potent iameteri-
cal method, and the photosynthetic O, evolution was detemined by a Clark-type Oxygen Eledrode. When pH in seawater rose fram
8. 2 t0 8. 7, the extracellular CA activity was induced and photosynthetic CO, affinty(1/K,,) increased, and, a pHS8. 7, the extra
cellular CA activity and photosynthetic CO, affinity a the high N level were 2-times and 80% higher than those a the low N lev-
el, respectively. The dla specific light- saturated photosynthetic rates( P5,) were no significant differences under different pH and N
levels, but the celt specific light saturated photosynthetic rates( Py,) was 100% higher at the high N level than a the low N level;
By contrast, the cellspecific dark respiratory rates ( Rj) were insignificant differences among the different pH and N levels, but
the chla specific dark respiratory rates ( Rj) were Ffold higher at the low N level than at the high N level. The apparent photosyrr
thetic efficiencies (a) were not significantly different for the alga grown among the different pH and N levels. The cellular chla
content was Ffold higher at high-IN grown cells than a low-N-grown cells, but it was not affected by the pH changes. It was corr
cluded that the alga increased the ad ivities of extracellular CA and photosynthetic CO, affinity wih the rise of pH in seawater (or
the decrease of CO, in seawater) , but their activites were higher at high N level than at low N level, suggesting that, during occur
rance of the bloom, S. costatum could develop the inorganic carbon concentration mechanism (CCM) to elevate the dficiency of
inowganic carbon utilization, and to maintain the photosynthetic activiy under low CO2 condition. The repleted N was benefited to
improve the efficiency of CCM and then enhance the capacity of photosynthetic CO- fixation under low CO>( high pH) condition.

Key words: Skeletonema costatum; Bloom; Extracellular carbonic anhydrase; Photosynthetic CO, affinity; Photosy nthesis



