

DOI: 10.3724/SP.J.1035.2010.00101

## 光照和氮素对喜旱莲子草形态特征和生物量分配的影响

姜立志 王东 刘树楠 潘睿 沈芬 周洁

(华中师范大学生命科学学院, 武汉 430079)

**摘要:** 研究了两个光照梯度和3个土壤氮素水平交互作用对喜旱莲子草(*Alternanthera philoxeroides* (Mart.) Griseb.)形态特征和生物量分配的影响。结果表明, 全光照促进喜旱莲子草总生物量的积累, 但在遮荫条件下, 喜旱莲子草可以通过增加株高、光合叶面积和改变生物量分配来适应弱光生境。土壤中氮素含量对喜旱莲子草生长有明显影响, 总生物量、株高、叶面积、茎生物量比和叶生物量比等随土壤氮素水平增加而增加。光照和氮素的交互作用对总生物量、根生物量比、茎生物量比和叶生物量比也有显著影响。随着氮素水平的增高, 遮荫和高光照处理下喜旱莲子草的叶面积、总生物量和叶生物量比之间的差异减小, 而株高和根生物量比之间的差异增大。此外, 光照强度对茎生物量比的影响具有明显的氮素浓度依赖性, 低氮条件下, 茎生物量比在高光照处理下显著高于遮荫处理, 而在中氮条件下, 遮荫处理却显著高于高光照处理, 且在高氮处理下其差异进一步加大。这些结果表明喜旱莲子草在高氮素环境下能够通过形态可塑性和生物量分配模式的改变来适应弱光环境所带来的不利影响。研究结果不但可为研究喜旱莲子草对异质生境的入侵机制提供资料, 也可为进一步研究喜旱莲子草的入侵和扩散与农业等生态系统中土壤氮素残留的关系提供参考。

**关键词:** 氮素; 光照强度; 表型可塑性; 喜旱莲子草; 入侵植物

中图分类号: Q948.11 文献标识码: A 文章编号: 1000-3207(2010)01-0101-07

光照和氮素水平的异质性是生境异质性的具体体现之一, 也是植物群落在小尺度上多样性变化的重要影响因素。虽然多数乡土植物对光照和氮素水平的波动具有一定的耐受能力, 但气候变化和人类活动等因素导致的微生境条件的变化对植物生长、发育和繁殖的影响可能是相当巨大的, 进而引起植物群落结构和功能的改变, 其重要的体现就是近年来植物外来种在我国的入侵和扩散愈演愈烈。

有研究表明, 光照和土壤氮素影响植物外来种的入侵、定植和扩散过程<sup>[1, 2]</sup>。无论其导致原因为何, 光照和氮素的变化都深刻地影响着外来种和本地种之间的资源竞争<sup>[3]</sup>。入侵植物可通过多种生长策略如表型可塑性变化来促进自身的入侵能力<sup>[4-6]</sup>。例如, 随光照强度的增加, 入侵植物株高或叶面积发

生改变, 或株高降低或叶面积增加<sup>[7, 8]</sup>; 而土壤中氮素水平的改变也会影响入侵植物的生长和生物量分配对策<sup>[9-11]</sup>, 在一定范围内, 随氮素水平的增加, 入侵植物表现为株高增加, 根冠比减小<sup>[12]</sup>。如 *Microstegium vimineum* 在不同光照和养分条件下其竞争力增强, 有利于其扩散<sup>[4, 13]</sup>; *Sapium sebiferum* 对不同环境的可塑性变化也促进了其入侵<sup>[14]</sup>等。近年来, 许多研究试图揭示入侵植物与异质资源生境之间的关系, 其中环境因子的交互作用对外来植物的影响越来越受关注<sup>[15-18]</sup>。

喜旱莲子草(*Alternanthera philoxeroides* (Mart.) Griseb.)为苋科莲子草属植物, 原产南美, 是目前我国入侵杂草中危害最严重的种类之一<sup>[19, 20]</sup>。喜旱莲子草的适应能力强, 在陆生、水生、湿生等多种生境中都能生长<sup>[21, 22]</sup>。前人的研究主要集中在土壤水

收稿日期: 2009-04-20, 修订日期: 2009-11-12

基金项目: 教育部科学技术研究重点项目(105110); 华中师范大学科学技术研究基金(2008A21)资助

作者简介: 姜立志(1983—), 女, 汉族, 河北鹿泉人; 硕士; 研究方向为生物多样性。E-mail: jlzz\_229@yahoo.cn

通讯作者: 王东, E-mail: dongwang.cn@gmail.com

分、养分或光照等单因素对其表型可塑性的影响等方面<sup>[20, 23—25]</sup>。本文模拟自然条件下光照和氮素水平的异质生境, 研究光照和土壤氮素对喜旱莲子草形态特征和生物量分配的影响, 以期进一步揭示该外来植物对异质生境的入侵机制。

## 1 材料与方法

### 1.1 实验材料

实验材料均取自华中师范大学南湖校区生物园内同质条件下培养的喜旱莲子草克隆植株。2008年6月中旬选取平均株高约10 cm、茎直径基本一致的克隆植株健康幼苗分别移栽到规格为12 cm×9 cm×10 cm(口内径×底内径×高)的塑料花盆中, 每盆一株, 栽培基质由等体积的湖底泥(总氮2.2 mg/g,

根据底泥干重获得)与河沙混匀而成。

### 1.2 实验方法

待全部幼苗生长一周后, 于2008年6月20日进行实验处理。实验设计为2个光照强度和3个氮素水平的交互作用处理, 共计6个处理。其中2个光照处理为低光照(相对光强为16.5%, 用黑色中性尼龙网遮荫实现, 只改变光强, 不改变光质)和高光照(相对光强为100%, 不遮荫); 3个氮素处理为每千克土壤干重分别每次添加氮素含量为: 低氮(没有添加N)、中氮(添加173 mg N)和高氮(添加346 mg N)3个水平, 施肥间隔时间为14 d。氮素和光照强度交互处理的详细说明(表1)。每个处理4盆, 5次重复, 即每个处理有20盆。每3天转动盆子以避免边缘效应。隔天浇水, 保持湿生环境。

表1 试验设计  
Tab. 1 The experimental design

| 光照强度 Light intensity                                 | 氮素水平 Soil nitrogen levels                        |                                                      |                                                   |
|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|---------------------------------------------------|
|                                                      | 低 Low                                            | 中 Midterm                                            | 高 High                                            |
| 低(16.5% 相对光强)<br>Low(16.5% relative light intensity) | 低光低氮<br>Low light intensity × low soil nitrogen  | 低光中氮<br>Low light intensity × midterm soil nitrogen  | 低光高氮<br>Low light intensity × high soil nitrogen  |
| 高(100% 相对光强)<br>High (100% relative light intensity) | 高光低氮<br>High light intensity × low soil nitrogen | 高光中氮<br>High light intensity × midterm soil nitrogen | 高光高氮<br>High light intensity × high soil nitrogen |

### 1.3 参数测定

生长90 d后收获, 测量株高和总生物量; 用LI-3100 C型面积仪测叶面积。将根、茎、叶分开, 置于80 °C的烘箱中烘烤48 h后, 称重。计算下列参数: 根冠比(Root/Shoot, R/S)= 地下生物量/地上生物量; 根生物量比(Root mass ratio, RMR)= 根重/植株总重; 茎生物量比(Stem mass ratio, SMR)= 茎重/植株总重; 叶生物量比(Leaf mass ratio, LMR)= 叶重/植株总重。

实验数据运用SPSS 13.0统计软件处理, 通过单因子方差分析(One-way ANOVA)或双因子方差分析(Two-way ANOVA)检验差异的显著性; 如果差异显著, 再利用Turkey's检验确定平均值之间的差异性。

## 2 结 果

### 2.1 光照与氮素对喜旱莲子草形态特征及总生物量的影响

光照强度和氮素水平对喜旱莲子草的株高、叶面积和总生物量都有显著影响, 但其交互作用的影响未达到显著水平(表2)。在相同的氮素水平下, 遮

荫处理下株高和叶面积均显著高于高光照处理(表2、图1)。另一方面, 无论是低光还是高光处理, 株高和叶面积均随土壤氮素水平的增加而增加。多重比较的结果显示: 高光照×低氮素处理下的株高最低(29.30 cm), 低光照×高氮素处理下的株高最高(48.18 cm), 其中, 低光照×低氮素处理下的株高(34.66 cm)与高光照×中氮素处理下的株高(35.28 cm)无显著差异( $P > 0.05$ ), 低光照×中氮素处理下的株高(39.51 cm)与高光照×高氮素处理下的株高(39.85 cm)无显著差异( $P > 0.05$ )。同样, 高光照×低氮素处理下的总叶面积最小( $93.1 \text{ cm}^2$ ), 低光照×高氮素处理下的总叶面积最大( $238.4 \text{ cm}^2$ ); 其中, 低光照×低氮素处理下的总叶面积( $139.3 \text{ cm}^2$ )与高光照×中氮素处理下的总叶面积( $127.6 \text{ cm}^2$ )差异不显著( $P > 0.05$ ); 低光照×中氮素处理下的叶面积( $198.8 \text{ cm}^2$ )与高光照×高氮素处理下的叶面积( $173.5 \text{ cm}^2$ )差异也不显著( $P > 0.05$ )。

光照强度和氮素水平对喜旱莲子草总生物量的积累均有显著影响。在相同的氮素水平下, 遮荫处理总生物量则显著低于高光照处理(表2、图1)。

随着氮素梯度的增加,无论是遮光处理还是高光照处理,总生物量均呈上升的趋势。高光照×高氮素处理下,总生物量最大(7.75 g);低光照×低氮素处理下,总生物量最小(2.89 g)。其中,高光照×中氮素处理下的总生物量(6.85 g)与低光照×高氮素

处理下的总生物量(6.64 g)差异不显著( $P > 0.05$ )。此外,光照强度和氮素水平之间存在一定的交互作用( $P < 0.1$ ),使低光照×高氮素条件下总生物量与高光照×高氮素之间的差异显著缩小(表2、图1)。

表 2 光照和氮素水平及其交互作用对喜旱莲子草形态特征和生物量分配影响的  $F$  值和显著性分析

Tab. 2  $F$ -values and significance levels for factorial ANOVAs of the effect of the independent variables light intensity (L), nitrogen (N) and their combination (L × N) on morphological traits and biomass allocation in *A. philoxeroides*. ( $F$ -values)

| 处理<br>Treatments | 株高<br>Height         | 叶面积<br>Leaf area      | 总生物量<br>Total biomass | 根冠比<br>Root/shoot     | 根生物量比<br>Root mass ratio | 叶生物量比<br>Leaf mass ratio | 茎生物量比<br>Stem mass ratio |
|------------------|----------------------|-----------------------|-----------------------|-----------------------|--------------------------|--------------------------|--------------------------|
| L                | 6.353 <sup>*</sup>   | 27.043 <sup>***</sup> | 27.159 <sup>***</sup> | 71.801 <sup>***</sup> | 139.868 <sup>***</sup>   | 487.513 <sup>***</sup>   | 1.898 <sup>ns</sup>      |
| N                | 8.626 <sup>***</sup> | 14.035 <sup>***</sup> | 17.346 <sup>***</sup> | 42.033 <sup>***</sup> | 76.038 <sup>***</sup>    | 11.827 <sup>***</sup>    | 46.430 <sup>***</sup>    |
| L × N            | 0.266 <sup>ns</sup>  | 0.648 <sup>ns</sup>   | 2.481 <sup>+</sup>    | 0.379 <sup>ns</sup>   | 4.061 <sup>*</sup>       | 18.827 <sup>***</sup>    | 13.743 <sup>***</sup>    |

注: +, \*, \*\*, \*\*\* 分别表示处理效应差异水平为  $P < 0.1$ ,  $P < 0.05$ ,  $P < 0.01$ ,  $P < 0.001$

Note: +, \*, \*\*, \*\*\* indicate significant difference between treatments at  $P < 0.1$ ,  $P < 0.05$ ,  $P < 0.01$ ,  $P < 0.001$ , respectively

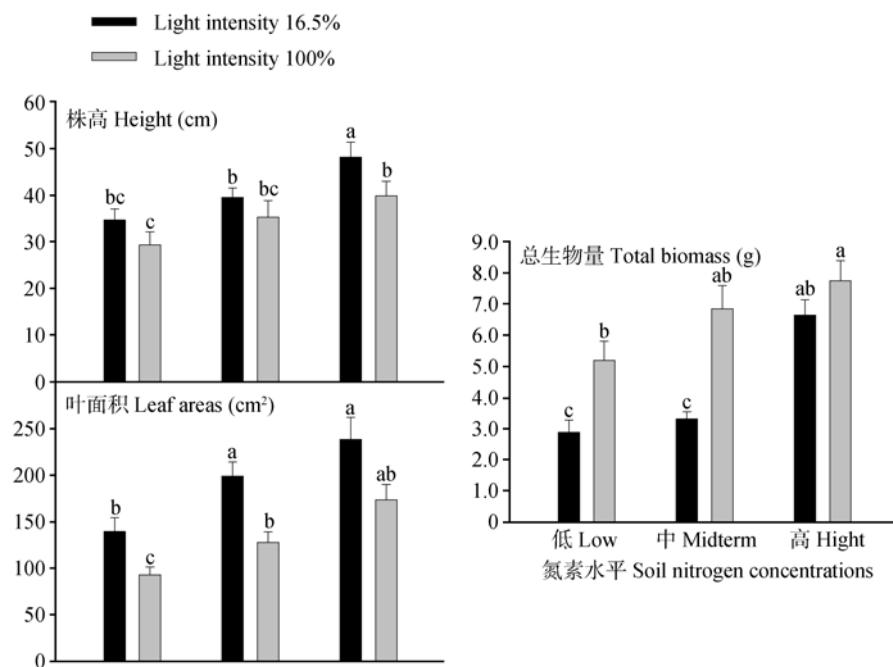



图 1 不同光照和氮素处理对喜旱莲子草株高、叶面积和总生物量的影响(平均值 ± 标准误)

Fig. 1 The height, leaf area and total biomass of *A. philoxeroides* grown at three different levels of N additions and two light levels (Mean ± SE)

不同小写字母表示不同处理下差异显著

Bars with different letters are significantly different at  $P < 0.05$

## 2.2 光照与氮素对喜旱莲子草生物量分配的影响

喜旱莲子草的根冠比( $R/S$ )和根生物量比( $RMR$ )随土壤氮素水平的增加呈不同程度的降低(表2、图2)。在相同的氮素水平下,高光照处理下的根冠比( $R/S$ )和根生物量比( $RMR$ )均高于遮光处理下的根冠比( $R/S$ )和根生物量比( $RMR$ ),且差异显著( $P <$

$0.05$ )。在高光照×低氮素处理下,根冠比( $R/S$ )和根生物量比( $RMR$ )最高,分别为0.99和0.49;低光照×高氮素处理下的根冠比( $R/S$ )和根生物量比( $RMR$ )最低,分别为0.31和0.23。其中,低光照×低氮素处理下的根冠比( $R/S$ )(0.71)与高光照×中氮素处理下的根冠比(0.65)差异不显著( $P > 0.05$ );同样,低光

照  $\times$  低氮素处理下的根生物量比( $R/S$ ) (0.41)与高光照  $\times$  中氮素处理下的根生物量比(0.39)差异也不显著( $P > 0.05$ )。光照和氮素的交互作用对根生物量比的影响达到显著水平, 导致低氮素条件下光照效应显著减小(表 2、图 2)。

喜旱莲子草的叶生物量比( $LMR$ )表现出与根冠比( $R/S$ )、根生物量比( $RMR$ )明显不同的变化规律(图 2)。在相同的氮素营养水平下, 遮荫处理下的叶生物量比( $LMR$ )明显高于高光照条件下的叶生物量比( $LMR$ )( $P < 0.05$ ), 并维持在较高的水平上(图 2)。其中, 在遮荫条件下, 低氮素处理与中氮素处理下的叶生物量比( $LMR$ )差异不显著( $P > 0.05$ ), 但均显著高于高氮素处理下的叶生物量比( $LMR$ )( $P < 0.05$ )。在高光照条件下, 中氮素处理与高氮素处理下的叶

生物量比( $LMR$ )差异不显著( $P > 0.05$ ), 但均显著高于低氮素处理下的叶生物量比( $LMR$ )( $P < 0.05$ )。光照和氮素水平的交互作用对叶生物量比的影响显著, 随着氮素水平的增加, 光照效应逐渐减小(表 2、图 2)。

在遮荫条件下, 随氮素水平的增高, 茎生物量比( $SMR$ )显著增大( $P < 0.05$ )。在高光照条件下, 中氮素处理与高氮素处理下的茎生物量比( $SMR$ )差异不显著( $P > 0.05$ ), 但明显高于低氮素处理下的茎生物量比( $SMR$ )( $P < 0.05$ )。光照和氮素水平对茎生物量比的互作效应极其显著, 光照效应具有明显的氮素水平依赖性, 低氮条件下, 高光照处理的茎生物量比显著高于遮荫处理, 而在中氮素条件下, 遮荫处理下的茎生物量比则显著高于高光照处理, 且高氮处理下其差异进一步加大(表 2、图 2)。

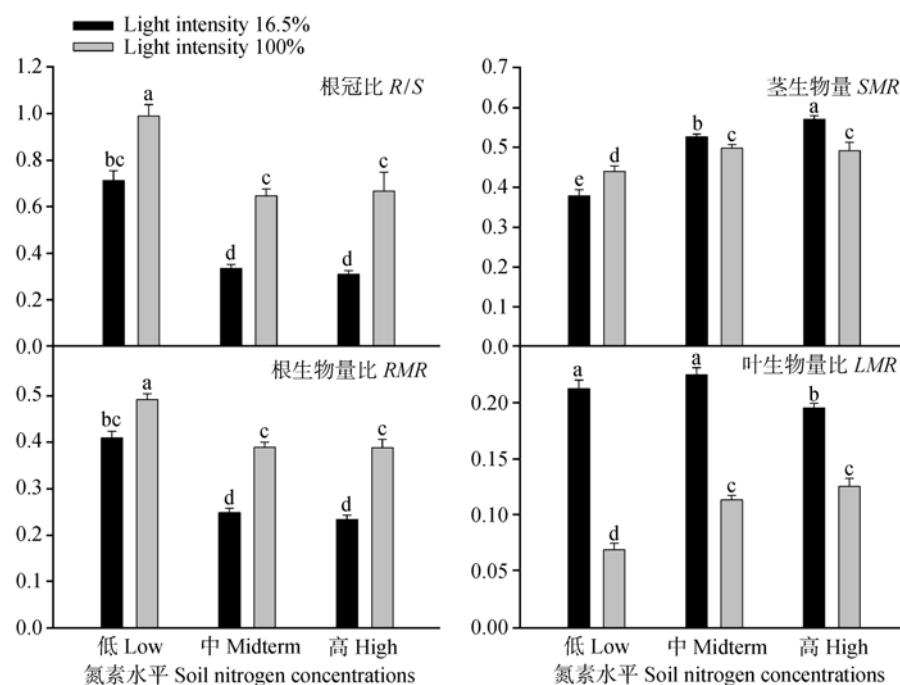



图 2 不同光照和氮素水平下喜旱莲子草的根冠比( $R/S$ ), 根生物量比( $RMR$ ), 茎生物量比( $SMR$ )和叶生物量比( $LMR$ )(平均值  $\pm$  标准误)  
Fig. 2 Root/Shoot, Root mass ratio, Stem mass ratio and Leaf mass ratio of *A. philoxeroides* grown at three different levels of N additions and two light levels (Mean  $\pm$  SE)

不同小写字母表示不同处理下差异显著

Bars with different letters are significantly different at  $P < 0.05$

### 3 讨 论

#### 3.1 形态学特征对光照和土壤氮素的可塑性响应

喜旱莲子草株高、叶面积、总生物量等形态特征对光强变化和土壤氮素水平都表现出较高的表型可塑性。在遮荫条件下, 株高和叶面积均显著高于

高光照处理, 而生物量的积累却显著降低。这表明在遮荫条件下, 喜旱莲子草是通过增加株高向高空发展, 拓展叶片光合作用的面积, 以截获更多的光能, 来摆脱和补偿低光强的不利影响。本研究结果与前人对入侵植物紫茎泽兰(*Eupatorium Adenophorum* Spreng)和兰花菊三七(*Cyuura* sp.)的研究结果<sup>[7]</sup>

一致, 即株高随光强的升高而降低; 但与对加拿大一枝黄花(*Solidago decurrens* Lour.)的研究结果即其株高、叶面积等随光强的升高而升高<sup>[8]</sup>相反, 表明不同外来物种对光强变化的响应存在物种差异性。然而, 本研究与前人结论即喜旱莲子草的株高是随着光强的增加而增加<sup>[23]</sup>不同, 这可能与实验条件中土壤养分的差异有关系。

另一方面, 土壤中氮素的适量添加可以提高生态系统中植物可利用氮素的水平, 有利于植物的生长发育<sup>[9]</sup>。本研究表明, 喜旱莲子草的株高、叶面积和总生物量均随土壤氮素水平的增加而增加。在低氮素和中氮素处理下, 遮荫对喜旱莲子草的叶面积和总生物量的积累有显著的负效应, 但在高氮素处理下, 遮荫条件下的叶面积和总生物量与高光照处理下的叶面积和总生物量之间的差异并不显著。这说明土壤中氮素水平的升高对弱光照引起的喜旱莲子草的光资源捕获能力下降有补偿作用, 从而利于提高其资源竞争能力, 这与 Claridge 和 Franklin (2002) 对入侵种 *Microstegium vimineum* 的研究结论一致<sup>[13]</sup>。其原因可能在于养分的增加降低了入侵种对养分的竞争强度, 从而使资源分配转向对水分、光照等其他限制因子的竞争<sup>[13, 24]</sup>。

### 3.2 生物量分配对光照和土壤氮素的可塑性响应

外来植物对光因子的响应不但表现在表型可塑性的方向和程度方面, 也表现在生物量分配对策方面<sup>[13, 26]</sup>。本实验表明, 低氮素水平下, 喜旱莲子草植株根冠比和根生物量比增大, 茎生物量比减少, 喜旱莲子草将向地上部分投资的生物量转移到地下部分, 增加了根生物量的投资, 这将有助于增加喜旱莲子草根系对氮素的吸收, 从而减少缺氮对其生长的限制作用; 高氮素水平下, 氮素不再是植物生长的限制因子, 植株将更多的生物量投入到地上部分。

植物可以通过改变地上部分(茎或叶)和地下部分(根)光合产物的分配, 来提高自身的竞争能力<sup>[26]</sup>。本研究也表明, 在相同的氮素水平下, 与高光照相比, 遮荫条件下喜旱莲子草的根冠比和根生物量比显著降低; 而茎生物量比和叶生物量比却呈不同程度的升高。这就说明在相同氮素条件下的不同光强处理, 喜旱莲子草的生物量分配对策有所不同。在遮荫处理下, 喜旱莲子草减少对地下部分(根)生物量的投资, 增加对地上部分(茎)生物量的投资以便

迅速摆脱弱光环境; 同时增加对叶生物量的投资, 从而更大限度地增加光合作用面积, 提高对光能的捕获利用<sup>[7, 27]</sup>。

### 3.3 光照强度和氮素水平对喜旱莲子草入侵能力的影响

喜旱莲子草为喜光植物, 偏好高光和土壤养分充足的生境<sup>[25]</sup>。本研究表明, 在相同氮素水平下, 光照处理下的喜旱莲子草总生物量远高于遮光处理下的总生物量。同时, 总生物量、株高、叶面积、茎生物量比、叶生物量比均随土壤氮素水平的增加而增加。

有研究表明, 喜旱莲子草在不同的异质生境下也表现出不同的适应能力<sup>[25]</sup>。本研究表明高光照处理有利于喜旱莲子草生长和总生物量的积累; 遮荫弱光条件下, 喜旱莲子草可通过增加株高和扩大光合叶面积来适应遮荫的环境, 其中, 以叶面积的变化最为显著。在生物量的分配上, 光照强度和土壤氮素水平之间存在显著的交互作用, 随着氮素水平的增加, 喜旱莲子草增加对地上部分生物量的分配来适应遮荫生境。在低氮条件下, 其对茎生物量的分配在高光处理中明显高于弱光环境, 然而, 在中氮条件下, 这种分配模式发生了逆转, 茎生物量的分配在弱光环境中显著高于高光环境, 且这种差异在高氮水平下进一步增大。这表明土壤中氮素营养添加对喜旱莲子草生长的可塑性和种群的拓展是有利的。

本研究表明, 喜旱莲子草在高光照 × 低氮素处理下的株高和叶面积显著低于低光照 × 低氮素下的株高和叶面积, 但随着氮素的添加, 高光照 × 中氮素处理下的株高和叶面积与低光照 × 低氮素下的差异不显著; 同样, 低光照 × 中氮素处理下的株高和叶面积与高光照 × 高氮素处理下的差异也不显著。在生物量分配上, 遮光和高光照处理下的总生物量和叶生物量比之间的差异随着氮素梯度的添加而逐步减小。这说明光照和氮素对喜旱莲子草表型可塑性变化的影响具有明显的互补作用, 而且氮素营养丰富的异质生境适宜于喜旱莲子草生长和扩散。

入侵物种可以通过自身的调节机制对不同环境因子做出反应<sup>[28]</sup>, 在多样的生境条件下, 这种策略对入侵植物获得更多的营养和光能以适应更加多样化的生境十分重要。本研究表明, 喜旱莲子草可以

通过改变其形态和生物量分配等策略来摆脱资源限制的影响, 同时通过资源补偿效应增强该入侵种的入侵能力。另外, 氮素营养丰富的异质生境适宜于喜旱莲子草生长和扩散, 说明农业等生态系统中的土壤氮素残留很有可能与喜旱莲子草的入侵和迅速扩散有关, 其关系值得做进一步研究。

### 参考文献:

- [1] Silvia E I, Kenneth L H, Patricia M S. Effects of simultaneous changes in light, nutrients, and herbivory levels, on the structure and function of a subtropical turtlegrass meadow [J]. *Journal of Experimental Marine Biology and Ecology*, 2004, **301**: 193—224
- [2] Li H J, Ni L Y, Cao T, et al. Responses of *Vallisneria natans* to reduced light availability and nutrient enrichment [J]. *Acta Hydrobiologica Sinica*. 2008, **32**(2): 225—230 [黎慧娟, 倪乐意, 曹特, 等. 弱光照和富营养对苦草生长的影响. 水生生物学报, 2008, **32**(2): 225—230]
- [3] Gurevitch J, Howard T G, Ashton I W, et al. Effects of experimental manipulation of light and nutrients on establishment of seedlings of native and invasive woody species in Long Island, NY forests [J]. *Biological Invasions*. 2008, **10**: 821—831
- [4] Schroeder M S, Janos D P. Phosphorus and intraspecific density alter plant responses to *Arbuscular mycorrhizas* [J]. *Plant and Soil*, 2004, **264**: 335—348
- [5] Daehler C C. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration [J]. *Annual Review of Ecology, Evolution, and Systematics*, 2003, **34**: 183—211
- [6] Callaway R M, Aschehoug E T. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion [J]. *Science*, 2000, **290**: 521—523
- [7] Wang J F, Feng Y L. The effect of light intensity on biomass allocation, leaf morphology and relative growth rate of two invasive plants [J]. *Acta Phytoecologica Sinica*, 2004, **28**(6): 781—786 [王俊峰, 冯玉龙. 光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响. 植物生态学报, 2004, **28**(6): 781—786]
- [8] Sun X F, He J Q, Huang X D, et al. Growth characters and chlorophyll fluorescence of Goldenrod (*Solidago canadensis*) in different light intensities [J]. *Acta Botanica Boreali-Occidentalis Sinica*, 2008, **28**(4): 752—758 [孙晓方, 何家庆, 黄训端, 等. 不同光强对加拿大一枝黄花生长和叶绿素荧光的影响. 西北植物学报, 2008, **28**(4): 752—758]
- [9] Maron J L, Connors P G. A native nitrogen-fixing shrub facilitates weed invasion [J]. *Oecologia*, 1996, **105**: 302—312
- [10] Van Hezewijk B H, De Clerck-Floate R A, Moyer J R. Effect of nitrogen on the preference and performance of a biological control agent for an invasive plant [J]. *Biological Control*, 2008, **46**: 332—340
- [11] Matthew L B. Effects of increased soil nitrogen on the dominance of alien plants in the Mojave Desert [J]. *Journal of Applied Ecology*, 2003, **40**: 344—353
- [12] Meziane D, Shipley B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply [J]. *Functional Ecology*, 1999, **13**: 611—622
- [13] Claridge K, Franklin S B. Compensation and plasticity in an invasive plant species [J]. *Biological Invasions*, 2002, **4**: 339—347
- [14] Rogers W E, Siemann E. Effects of simulated herbivory and resource availability on native and invasive exotic tree seedlings [J]. *Basic Applied Ecology*, 2002, **3**: 297—307
- [15] Zhang D Y, Jiang X H. Interactive effects of habitat productivity and herbivore pressure on the evolution of anti-herbivore defense in invasive plant populations [J]. *Journal of Theoretical Biology*, 2006, **242**: 935—940
- [16] Raphael K D, Jason M T, Neil J G, et al. Interactive effects of habitat modification and species invasion on native species decline [J]. *Trends in Ecology and Evolution*, 2007, **22**(9): 489—496
- [17] Doyle R, Grodowitz M, Smart M, et al. Separate and interactive effects of competition and herbivory on the growth, expansion, and tuber formation of *Hydrilla verticillata* [J]. *Biological Control*, 2007, **41**: 327—338
- [18] Auja M S, Thind H S, Buttar G S. Fruit yield and water use efficiency of eggplant (*Solanum melongena* L.) as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation [J]. *Scientia Horticulturae*, 2007, **112**: 142—148
- [19] Barreto R, Charudattan R, Pomella A, et al. Biological control of neotropical aquatic weeds with flugi [J]. *Crop Protection*, 2000, **19**: 697—703
- [20] Shen R L, Guan B H, Cai Y, et al. High sediment phosphorus concentration enhanced invasiveness of *Alternanthera philoxeroides* [J]. *Acta Phytoecologica Sinica*, 2007, **31**(4): 665—672 [申瑞玲, 关保华, 蔡颖, 等. 底泥高磷浓度提高了喜旱莲子草的入侵性. 植物生态学报, 2007, **31**(4): 665—672]
- [21] Li Z Y, Xie Y. Invasive Alien Species in China [M]. Beijing: Forestry Publishing Company of China. 2002, 103 [李振宇, 解焱. 中国外来入侵种. 北京: 中国林业出版社. 2002, 103]
- [22] Sainty G, McCorkelle G, Julien M. Control and spread of alligator weed *Alternanthera philoxeroides* (Mart.) Griseb. in Australia: lessons for other regions [J]. *Wetlands Ecology and Management*, 1998, **5**: 195—201
- [23] Xu K Y, Ye W H, Li G M, et al. Phenotypic plasticity in response to light intensity in invasive species *Alternanthera philoxeroides* [J]. *Journal of Wuhan Botanical Research*, 2005, **23**(6): 560—563 [许凯扬, 叶万辉, 李国民, 等. 入

侵种喜旱莲子草对光照强度的表型可塑性反应. 武汉植物学研究, 2005, **23**(6): 560—563]

[24] Jia X, Yang X Z, Pan X Y, et al. Vegetative propagation characteristics of *Alternanthera philoxeroides* in response to disturbances [J]. *Biodiversity Science*, 2008, **16**(3): 229—235 [贾昕, 杨兴中, 潘晓云, 等. 喜旱莲子草营养繁殖对干扰的响应. 生物多样性, 2008, **16**(3): 229—235]

[25] Pan X Y, Geng Y P, Alejandro SOSA, et al. Invasive *Alternanthera philoxeroides*: biology, ecology and Management [J]. *Acta Phytotaxonomica Sinica*, 2007, **45**(6): 884—900 [潘晓云, 耿宇鹏, Alejandro SOSA, 等. 入侵植物喜旱莲子草—生物学、生态学及管理. 植物生态学报, 2007, **45**(6): 884—900]

[26] Sultan S E. Phenotypic plasticity for fitness components in *Polygonum* species of contrasting ecological breadth [J]. *Ecology*, 2001, **82**: 328—343

[27] Fownes J H, Harrington R A. Seedling response to gaps: separating effects of light and nitrogen [J]. *Forest Ecology and Management*, 2004, **203**: 297—310

[28] Sakai A K, Allendorf F W, Holt J S, et al. The population biology of invasive species [J]. *Annual Review of Ecology and Systematics*, 2001, **32**: 305—332

## EFFECT OF LIGHT AND NITROGEN ON MORPHOLOGICAL TRAITS AND BIOMASS ALLOCATION OF AN INVASIVE WEED *ALTERNANTHERA PHILOXEROIDES*(MART.) GRISEB.

JIANG Li-Zhi, WANG Dong, LIU Shu-Nan, PAN Rui, SHEN Fen and ZHOU Jie

(School of Life Sciences, Huazhong Normal University, Wuhan 430079)

**Abstract:** Most invasive plants experience highly variable environments during their invasion, spread and establishment, and therefore, it is crucial to understand the factors controlling the success of invasive species. However, few studies have evaluated the interactive effect of both light intensity and soil nitrogen levels on functional response in phenotypic plasticity of invasive plants. The present study examined the main effects of light intensity and soil nitrogen level and their interactions on morphological traits and biomass allocation performance of an alligator weed *Alternanthera philoxeroides*, a widespread invasive plant in China, by outdoor experiments. Approximately identical size of ramets from one genotype of population were planted separately in plastic pots with combined compost and sand, and grown under the combination of two light intensities (full sunlight and 16.5% of full sunlight) and three soil nitrogen levels (low, midterm and high) treatments. The result indicated that full sunlight enhanced the production accumulation of *A. philoxeroides* and the plant could allocate more resources to leaf and above-ground stem and less to below-ground root under shade as a response to low light condition. Soil nitrogen level also had a significant effect on plant growth, showing an increase of total biomass, plant height, total leaf area, stem biomass ratio and leaf biomass ratio with the increasing soil nitrogen concentration. Additionally, there was a significant light  $\times$  nitrogen interaction on total biomass, root biomass ratio, leaf biomass ratio and stem biomass ratio. Differences in leaf area, total biomass and leaf biomass ratio between two light intensities reduced with the increasing soil nitrogen concentration, whereas, those in plant height and leaf biomass ratio showed an opposite trend. In addition, the light effect on stem biomass ratio depended on nitrogen concentration greatly. Under low nitrogen condition, stem biomass ratio was significantly higher in full sunlight treatment compared with that in shade. But it was significantly lower under middle nitrogen condition, and the tendency became even more obvious under high nitrogen condition. Our data further implied that the negative effect caused by shade on plant growth of *A. philoxeroides* could be altered by phenotypic plasticity in morphology and biomass allocation performance in a response to high nitrogen concentration, which in turn adapts the plant to low light condition. This suggested that the great success of *A. philoxeroides* over a variety of heterogeneous habitats is probably due to both a high degree of phenotypic plasticity of individuals and compensation of one resource for another. Our study also confirmed the importance of nitrogen in affecting the establishment of invasive *A. philoxeroides* populations, and therefore, control of *A. philoxeroides* may be aided by nutrient management.

**Key words:** Light intensity; Nitrogen; Phenotypic plasticity; *Alternanthera philoxeroides*; Invasive plant