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S Poterioochromonas sp. S
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Michaelis-Menten
I = Ly *M/(M+K,,) (Eq.2)

I = AP/FA=AP/[(Fs—F,)/(InFyInFy)%Af]
=[(Py=P)H(Pea—Pe) V[(Fo—F1)/(InFy—InF' )< At]

(Eq.1)
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U= tmax (M=Mo) | (M=My+K,,) (Eq.3)
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Fig. 1 Ingestion rates and growth rates of Poterioochromonas sp. 2
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EFFECTS OF ENVIRONMENTAL FACTORS ON THE GROWTH AND INGESTION
CHARACTERISTICS OF CHRYSOPHYCEAN POTERIOOCHROMONAS SP.

GUO Sheng-Juan'? , GAN Nan-Qin' , ZHENG Ling-Ling' and SONG Li-Rong'

(1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan
430072; 2. Graduate School of the Chinese Academy of Sciences, Beijing 100049)

Abstract: A chrysophycean Poterioochromonas sp. with two different flagella, isolated from Microcystis cultures in
2002, can not only photosynthesize with chloroplast, but also efficiently ingest and digest preys, such as Microcystis. In
order to investigate the potential role of Poterioochromonas sp. in cyanobacteria bloom control, experiments were car-
ried out to study its growth and ingestion characteristics under different environmental factors in both autotrophic and
mixotrophic conditions. The results showed that the growth rate of autotrophic Poterioochromonas sp. was significantly
affected by light intensity and temperature except pH. When providing preys, the growth of Poterioochromonas sp. was
accelerated significantly. The growth and ingestion rate of Poterioochromonas sp. increased hyperbolically with prey
concentration, and their relationships could be estimated respectively by the Michaelis-Menten equation and Monod
equation. The correlation between the growth of mixotrophic Poterioochromonas sp. and light intensity was significant,
while there were no relationships between the growth rate and temperature and pH. PH had negative effects on the in-
gestion rate, while the correlations between the ingestion rate and temperature and light intensity were not significant. In
a word, this Poterioochromonas has the ability to grow and graze Microcystis in many culture conditions. The present
study had also shed light on the possibility of utilizing this organism, together with other agents, for the control of Mi-

crocystis bloom.

Key words: Poterioochromonas sp.; Microcystis aeruginosa; Environmental factors; Growth rate; Ingestion rate



