

梁子湖苦草繁殖体的分布及其萌发初步研究

杨永清 于丹 耿显华 李永科

(武汉大学生命科学学院梁子湖野外生态站, 武汉 430072)

摘要: 苦草鳞茎(冬芽)在梁子湖的垂直分布深度与其重量呈显著正相关, 而重量也与鳞茎芽数显著相关($P < 0.05$)。埋藏深度、水分状况和鳞茎本身的大小都显著影响鳞茎的出土能力。去除第一位芽和切碎鳞茎后促进了其余芽的萌发; 上年产生的未萌发的鳞茎在条件适宜的时候也可以很好的萌发, 这些可能成为苦草在鳞茎被牧食后, 维持种群数量的有效对策。沙质底比泥质底更有利于苦草种子的萌发, 但在没有扰动的情况下, 幼苗的定植能力在两种基质中没有显著差异。

关键词: 苦草; 取食; 繁殖策略; 鳞茎

中图分类号: Q948.8 文献标识码: A 文章编号: 1000-3207(2004)04 0396-06

苦草(*Vallisneria spiralis* Linn.)是长江中下游湖泊的常见优势种, 广泛分布于我国南北各省的池塘、沟渠、河流中, 对鱼类、水生无脊椎动物的活动以及水质净化均有重要作用^[1]。苦草的繁殖以无性繁殖为主, 苦草无性繁殖体——鳞茎淀粉含量丰富, 叶子适口性强, 是水禽及其他动物重要的食物资源之一, 处于较高的牧食压力之下^[2]。

近年来有水生态系统控制实验表明, 消费者的牧食作用会对水生植物产生灾难性的影响^[9, 10]。牧食作用能够潜在地改变每个物种的繁殖输出, 意味着将随之改变其种子库, 最终影响未来的植被动态^[7]。总的来说, 牧食作用主要影响生态系统中种子库的补充、植物的生长速率^[3-5]、物种成活率^[6]、群落多样性^[3, 7]和繁殖分配^[6, 8]。与此同时, 研究发现植物也能够采取与动物相似的机制来避免草食动物的牧食^[11, 12]。

过去研究动物对水生植物的取食作用多限于鱼类和节肢动物^[13, 14], 而具有社群性的水禽在越冬迁徙中对植物越冬器官的牧食压力远远超过生长季节里对叶子和枝条的取食^[15]。作者研究了梁子湖(30.1—30.3 N, 114.4—114.6 E.)地区苦草鳞茎的垂直分布规律, 模拟了水禽对苦草鳞茎取食产生的影响及种子萌发的情况, 旨在探索苦草在浅水湖泊

中保持优势地位的机制。

1 材料与方法

1.1 苦草鳞茎的垂直分布特征 2002年12月调查了梁子湖泥土中苦草鳞茎的垂直分布情况。针对梁子湖岸泥质非常松软的情况, 采用了一种研究鳞茎埋藏深度的近似替代方法, 就是假定鳞茎与植株连接的匍匐茎为垂直向下的, 然后测量从根部到鳞茎的匍匐茎长度, 以此作为鳞茎的埋藏深度。在对梁子湖地区鳞茎的确切埋藏深度调查后, 认为该方法在最后对埋藏深度进行分析是适合的。在记录近似埋藏深度后, 将鳞茎洗净, 吸干表面的水分后称得鲜重。收集到的鳞茎根据芽的数目分成几个等级, 表面为黑色的鳞茎认为是去年生的, 并另立一个等级, 随机抽取各等级的鳞茎各30个(仅具一芽者24个), 称其鲜重。

1.2 鳞茎大小、埋藏深度和水分状况对其初期生长的影响 根据收集到鳞茎的鲜重将其分为四个大小等级: A: < 0.25g; B: 0.25—0.50g; C: 0.50—0.75g; D: > 0.75g。每个等级随机选取40个鳞茎, 以高于鳞茎顶端5cm和10cm两个深度用洗净的沙掩埋; 水分状况为饱和(-1—0cm水位)和淹没(水位超过沙面2—3cm)两个处理。每个等级每个处理10个鳞茎。

收稿日期: 2003-05-07; 修订日期: 2004-02-21

基金项目: 国家自然科学基金面上项目(30000022)资助

作者简介: 杨永清(1977—), 男, 硕士, 四川宜宾人

通讯作者: 于丹, E-mail: yudan01@public.wh.hb.cn

实验在温室内进行, 16—28/20—22℃; 光照: L/D: 14h/10h; 800—900lx。每隔2d记录淹没处理的萌发情况, 有叶子长出沙面记为萌发。为避免外部营养吸收对幼苗的影响, 20d后(估计根还没有形成, 而一组处理基本完全萌发时)收获。测量茎的节间长度, 然后分成鳞茎体、茎和叶三部分, 80℃烘干至恒重, 分别记录重量(精确到0.0001g)。

1.3 去除第一位芽和切开芽体对鳞茎萌发的影响

观察选取具有2—3个完好芽(芽长度小于0.5cm不计算在内)的鳞茎, 模拟水禽取食过程中破坏芽(A)和鳞茎体(B)的情况。A: 分两组处理, 每组24个: 一组去除第一位芽, 另一组保持完好, 分别埋藏于泥土中, 加水5cm; B: 将两组鳞茎, 一组24个鳞茎, 保持完整, 另一组16个, 切成块, 每一块上一个芽, 埋于加有5cm水的泥土中, 实验在温室内进行, 20d后统计各芽的萌发情况, 将明显死亡的鳞茎排除。实验条件同1.2。

1.4 比较当年生鳞茎与上年鳞茎的萌发情况

将大于0.75g的鳞茎与黑色(视为上年生)的具有芽的黑芽各25个, 进行萌发实验, 实验条件同1.2。

1.5 不同基质对苦草种子萌发及幼苗成活的影响

将同一果实从中央相邻处各剪取2cm, 分别放于加有沙和泥的杯子中, 加水10cm; 每个处理5个重复。将在自来水中已经萌发的仅具有子叶的苦草幼苗, 用镊子小心夹取50株放到装有沙和泥的杯子里, 每个处理5个重复。两个月后统计萌发和成活数。排除明显死亡的鳞茎, 有3片以上真叶, 根扎入泥土或沙中的植株认为可以成活。实验条件同1.2。

1.6 数据处理

所有的数据应用SPSS(11.0)软件进行统计分析。分析鳞茎重量与其垂直分布规律时采用一元线性回归的方法, 分析芽数目与鳞茎重量的关系时应用一元方差分析(one-way ANOVA), 在分析水分状况和埋藏深度对芽萌发和早期生长的影响时以鳞茎干重为协变量进行二元协方差分析(two-way ANCOVA), 去除第一位芽和剪切鳞茎对芽萌发的影响采用Mann-Whitney, U检验, 种子的萌发和成活率的分析采用t检验。

2 结果

2.1 苦草鳞茎的垂直分布和数量特征

鳞茎的埋藏深度与其大小显著正相关, 回归方程为拟合较好的直线($r^2=0.75$)(图1)。其中除具

有3个芽的鳞茎与上年生的鳞茎重量没有显著差异外, 其余各等级之间差异都非常显著($P<0.05$), 芽数越多, 鳞茎重量越大(图2)。

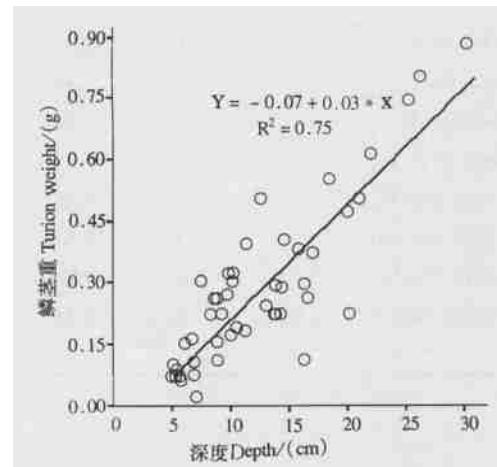


图1 鳞茎重量与其埋藏深度的关系
Fig. 1 The relationship between turion size and burial depth in sediment

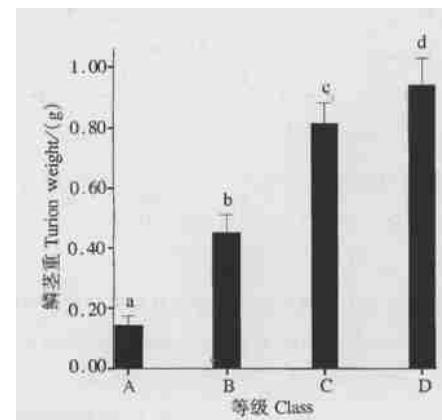


图2 鳞茎各等级间重量比较(小写字母表示成对比较的组间差异)

Fig. 2 Comparison of turion weight at different classes Letters indicate significant differences between classes ($P<0.05$)

A: 1芽组 one bud B: 2芽组 two buds C: 3芽组 three buds D: 黑芽组 black bud

2.2 苦草萌发和初期生长的影响因子分析

鳞茎重量显著影响茎的重量和长度, 对叶的重量没有明显影响; 不同等级的鳞茎间只是茎的重量之间有差异, 而对长度和叶没有影响; 处理对茎重、茎长和叶重都有十分显著的影响, 一旦幼苗出土, 叶子的生物量将受到水分状况的显著影响; 而埋藏深度仅影响茎长, 对茎重和叶重都没有显著作用(表1), 重量、处理和深度3个因子之间没有明显的交互作用。在同为水淹没的情况下, 埋藏深度直接影响着幼苗的出土(图3)。

表 1 埋藏深度、水分状况和鳞茎重量(为协变量)对苦草萌发状况的影响

Tab. 1 Effects of burial depth in sediment, water regime and turion size on germination of *V. Spiralis* turion

	茎重 Stem weight			茎长 Stem length			叶重 Leaf weight		
	d.f	F	P	d.f	F	P	d.f	F	P
协变量 Covariant	1	19.69	< 0.001	1	15.32	< 0.001	1	0.02	0.855
等级 Class(C)	3	3.44	0.019	3	0.65	0.585	3	2.41	0.477
处理 Treatment(T)	1	7.70	0.006	1	7.73	0.006	1	13.26	0.001
深度 depth(D)	1	0.23	0.630	1	96.72	< 0.001	1	1.02	0.316
大小×处理 (C×T)	3	0.85	0.469	3	0.81	0.490	3	1.12	0.350
大小×深度 (C×D)	3	0.52	0.670	3	2.16	0.095	3	—	—
处理×深度 (T×D)	1	0.50	0.481	1	2.05	0.155	1	—	—
大小×处理×深度 (C×T×D)	3	0.41	0.499	3	0.46	0.732	3	—	—
Error		125			125			51	

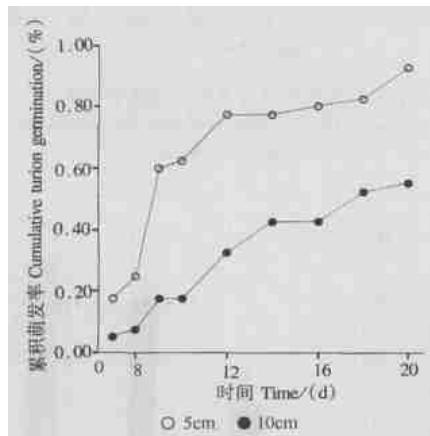


图 3 沉水条件下埋藏深度对苦草鳞茎累积萌发率的影响

Fig. 3 Effect of burial depth in sediment on cumulative turion germination under submergence condition.

2.3 去除顶芽对其余芽萌发的影响

去除第一位芽后, 显著促进了第二位芽($P < 0.0001$)和第三位芽($P < 0.05$)的萌发(表 2), 而完整鳞茎的第一位芽的萌发情况与去除顶芽处理的第二位芽的萌发没有显著的区别, 它们各自产生的子株数目也没有明显差异($P > 0.05$)(表 3)。

2.4 剪切鳞茎芽体对芽萌发的影响

对鳞茎芽体进行剪切处理后, 第一位芽的萌发没有差异($P > 0.05$), 对第二、三位芽及所有的芽萌发情况进行比较发现, 剪切处理明显地促进了萌发($P < 0.0001$), 而两种处理下萌发的芽所产生的子株数目没有明显差异($P > 0.05$)(表 4)。

表 2 去除顶芽对其余芽萌发影响的 Mann Whitney U 检验

Tab. 2 Influence of first bud removal on bud germination of the rest buds evaluated by Mann Whitney U tests

特征 Characteristic	中位数 Median		N	中位数 Median		N	P 值
	完整鳞茎 Intact turions	去顶芽鳞茎 First bud removed turions					
第二位芽 Second bud	2.0	2.0	24	1.0	1.0	22	< 0.001
第三位芽 Third bud	0.0	1.0	4	1.0	1.0	12	0.016

表 3 完整鳞茎的第一位芽和去除顶芽鳞茎的第二位芽的萌发情况比较的 Mann Whitney U 检验

Tab. 3 Comparison of bud germination, ramet number between the first bud of the intact turions and second bud of the top bud removed turions evaluated by Mann Whitney U tests

特征 Characteristic	中位数 Median		N	中位数 Median		N	P 值
	完整鳞茎的第一位芽 First bud of the intact turions	去除顶芽鳞茎的第二位芽 Second bud of the top bud removed turions					
萌发情况 Bud germination	2.0	2.0	24	2.0	2.0	22	0.975
子株数目 Ramat number	1.0	0.0	24	0.0	0.0	22	0.208

表4 剪切鳞茎和完整鳞茎上芽萌发情况比较的Mann-Whitney U检验

Tab. 4 Comparison of bud germination, ramet number between intact turions and separated turion pieces evaluated by Mann-Whitney U tests

特征 Characteristic	中位数 Median		N	中位数 Median		N	P 值 P value
	完整鳞茎 Intact turions	切块 Turion pieces		完整鳞茎 Intact turions	切块 Turion pieces		
第一位芽 first bud	1.0	23		1.0	16		0.781
第二、三位芽 Second and third bud	0.0	37		1.0	48		< 0.001
总芽数 Total buds	1.0	59		1.0	60		< 0.001
子株数目 Ramat number	1.0	34		0.0	56		0.233

2.5 相同重量级别的当年生鳞茎与上年生鳞茎萌发和早期生长情况的比较

运用两个独立样本的 t 检验表明, 两种鳞茎的萌发数 ($t = 1.871, n = 25, P = 0.082$) ; 茎长 ($t = 1.028, n = 22, P = 0.316$) ; 茎重 ($t = -0.330, n = 20, P = 0.748$) 和叶重 ($t = -0.378, n = 20, P = 0.710$) 都没有明显差异。

2.6 不同基质对苦草种子萌发及成活的影响

t 检验的结果显示, 沙质底有利于种子的萌发 ($t = 2.992, n = 10, P = 0.017$), 而成活率在两种基质中无显著差异 ($t = 0.217, n = 10, P = 0.834$) 。

3 讨论

就苦草而言, 光照显著影响其地上生物量及产生鳞茎的数量和大小^[16], 使得其分布仅限于湖泊和河流的沿岸带, 冬季水位的消退增加了鳞茎被牧食的机会。苦草鳞茎的埋藏深度与其重量的回归结果表明, 二者呈明显正相关, 鳞茎重量越大, 其扎入的深度就可能越深, 这与 Rybicki 和 Santamaría 的研究结果是一致的^[17, 18]。埋藏深度越深, 可能更有利于逃避被水禽等动物取食^[18], 而随着埋藏深度的增加, 死亡率和构建代价 (Construction cost) 也会上升, 尤其是埋藏较深时, 遇到冬春季节的雨水带来的泥沙淤积, 其萌发将会受到显著影响, 逃避牧食中所获得的利益会被相应的抵消^[19]。而埋藏过浅, 大的暴雨的冲刷作用又会彻底冲走所有的繁殖体^[17], 且遭受牧食的机会显著增加, Santamaría 等的研究发现, 龙须眼子菜 (*Potamogeton pectinatus*) 的鳞茎由于被水鸟取食导致的损失率随深度成线性递减, 由表面的 100% 降到 22.5 cm 的深度时的 55%。尽管鳞茎的生物量随深度而增加, 但密度的最大值却出现在中等深度, 从而达到在两种压力之间的利弊优化^[18]。

苦草鳞茎是其度过不良环境(越冬)的产物, 许

多根生水生植物都能够产生地下无性繁殖体, 在温带种群中, 这些繁殖体通常能够越冬, 在来年春天萌发生长, 以确保其种群长期存在^[20]。而在冬天不够严寒的情况下, 美洲苦草根本不产生鳞茎^[21]。鳞茎大小直接影响到幼苗出土情况, 鳞茎越重, 才能够产生更长, 更粗壮的茎以伸出土面, 进行光合生长, 同时, 在幼苗的初期生长期会获得相应丰富的资源, 以抵抗各种不利的自然条件。实验表明, 种子形成的幼苗在初期生长期, 在变动环境条件下死亡率很高, 经常达到 90% 以上。因此, 鳞茎重量与埋藏深度的正相关, 表明了在鳞茎生物量资源的高投资, 必然要求得到减少牧食与健壮生长的高收益。埋藏深度直接决定了幼苗出土的可能性, 埋藏越深, 就要求更多的资源投资用于茎的伸长上。大多数地下芽植物中, 储藏器官的大小对植物的生长和开花的质量都有巨大的影响^[22, 23]。鳞茎大小与出苗情况, 生长, 开花和子代鳞茎的产量之间呈显著正相关, 但其确切机理还不清楚^[24]。由于苦草叶子离开水体将会枯死, 因而水分状况决定着幼苗出土后的生长状况; 春季温度的上升促进无性繁殖体的萌发^[24], 而叶片的舒展似乎需要足够的水分诱导, 从而减少了出土后枯死的危险。

苦草叶子和鳞茎都为水禽、鱼类及一些无脊椎动物所喜食, 在野外常常观察到被螺类掏空或掏去大半的鳞茎。另外, 人为活动也在对鳞茎的自然萌发起着越来越多的影响, 例如家养动物的取食。当鳞茎第一位芽及其产生的叶子被牧食(去除)后, 第二三位芽能够迅速补充, 以弥补种群数量的损失, 而在完好的情况下, 第二三位芽的萌发受到明显抑制, 可能是顶端优势作用的结果。鳞茎受到取食而损伤并不影响芽的萌发, 芽未受损伤, 就具有较高的萌发潜力, 而且剪切后的鳞茎萌发和产生子株的数目与完整的鳞茎没有显著差异, 说明鳞茎储藏的养分可

能只影响植株早期的生长, 对其无性繁殖影响不是很大, 而后期的生长更多的取决于基质的营养状况。上年生的鳞茎在适宜的条件下仍然能够萌发, 这些鳞茎在当年不能萌发的原因可能由于埋藏过深或者是形成时间较晚, 但这些当年不能萌发的芽对于种群恢复具有重要的补充作用, 而且使种群能够躲避年度灾害的威胁。

虽然苦草的繁殖以无性繁殖为主, 但 Dost 和 Laporte 的研究表明: 美洲苦草在只有 58—72% 的子株开花, 且雄花有一半是不育的情况下, 其有性繁殖输出却高达 5.6—12.5%^[25], 因而加强苦草有性繁殖生态学的研究也具有重要的意义。已进行的实验表明, 苦草种子具有很高的萌发率和成活率, 而且沙质底有利于萌发, 可能是因为泥土中含有病原微生物或者存在萌发抑制物质的结果, 这一点与鳞茎不同。在没有扰动的情况下, 种子萌发的幼苗在两种基质中的定植能力没有显著的差异, 但泥土中的幼苗明显生长较快。由于种子产生的幼苗体积小, 轻微的扰动会使其连根拔起, 漂浮在水中无法获得足够的养分而死亡, 另一方面, 容易遭到各种牧食者(如鱼类和螺类)的取食, 所以进行野外分布调查与模拟实验有很大的困难, 在解决了这些问题之后, 对苦草的种子的分布与定植研究将会是本实验的有效补充。

参考文献:

[1] Poe T P, Hatcher C O, Brown C L, et al. Comparison of species composition and richness of fish assemblages in altered and unaltered littoral habitats [J]. *J. Freshwater Ecol.*, 1986, **3**: 525—536

[2] Korschgen C E, Green W L, Kenow K P. Effects of irradiance on growth and winter bud production by *Vallisneria americana* and consequences to its abundance and distribution [J]. *Aquat Bot.*, 1997, **58**: 1—9

[3] Blanch S J, Brock M A. Effects of grazing and depth on two wetland plant species [J]. *Aust. J. Mar. Freshw. Res.*, 1994, **45**: 1387—1394

[4] Søndergaard M, Bruun L, Lauridsen T, et al. The impact of grazing waterfowl on submerged macrophytes—in situ experiments in a shallow eutrophic lake [J]. *Aquat. Bot.*, 1996, **53**: 73—84

[5] Zimmeman R C, Kohrs D G, Alberte R S. Top down impact through a bottom up mechanism—the effect of limpet grazing on growth productivity and carbon allocation of *Zostera marina* L. (Eelgrass) [J]. *Oecologia*, 1996, **107**: 560—567

[6] Mulder C P H, Ruess R W. Relationships between size, biomass allocation, reproduction, and survival in *Triglochin palustris*: implications for the effects of goose herbivory [J]. *Can. J. Bot.*, 1997, **76**: 2164—2176

[7] Hulme P E. Herbivory, plant regeneration, and species coexistence [J]. *J. Ecol.*, 1996, **84**: 609—615

[8] Ehrlen J. Demography of the perennial herb *Lathyrus vernus*. Part 1. Herbivory and individual performance [J]. *J. Ecol.*, 1995, **83**: 287—295

[9] Brett M T, Goldman C R. Consumer versus resource control in freshwater pelagic food webs [J]. *Science*, 1997, **275**: 384—386

[10] Pace M L, Cole J J, Carpenter S R, et al. Trophic cascades revealed in diverse ecosystems [J]. *Trends Ecol Evol.*, 1999, **14**: 483—488

[11] Mulder C P H, Ruess R W. Effects of herbivory on arrowgrass: interactions between geese, neighboring plants, and abiotic factors [J]. *Ecological Monographs*, 1998, **68**: 275—293

[12] Levine J M. Complex interactions in a streamside plant community [J]. *Ecology*, 2000, **81**: 3431—3444

[13] Crivelli A J. The destruction of aquatic vegetation by carp [J]. *Hydrobiologia*, 1983, **106**: 37—41

[14] Sih A, Crowley P, McPeek M, et al. Predation, competition, and prey communities: a review of field experiments [J]. *Ann Rev Ecol Syst.*, 1985, **16**: 269—311

[15] Idestam Almquist J. Waterfowl herbivory on *Potamogeton pectinatus* in the Baltic Sea [J]. *Oikos*, 1998, **81**: 323—328

[16] Barko J W, Smart R M, McFarland D G. Interactive effects of environmental conditions on the growth of submersed aquatic macrophytes [J]. *Aquat Bot.*, 1991, **41**: 41—65

[17] Rybicki Nancy B, Carter Virginia. Effect of sediment depth and sediment type on the survival of *Vallisneria americana* Michx growth from tubers [J]. *Aquat Bot.*, 1986, **24**: 233—240

[18] Santamaría L, Rodríguez Gironés A. Hiding from swans: optimal burial depth of sago pondweed tubers foraged by Bewick's swans [J]. *J. Ecol.*, 2002, **90**: 303—315

[19] Nolet B, Langevoord O, Bevan R M, et al. Spatial variation in tuber depletion by swans explained by differences in net intake rate [J]. *Ecology*, 2001, **82**: 1655—1667

[20] Spencer D F, Gregory G K, John D M, et al. Emergence of vegetative propagules of *Potamogeton nodosus*, *Potamogeton pectinatus*, *Vallisneria americana*, and *Hydrilla verticillata* based on accumulated degree days [J]. *Aquat Bot.*, 2000, **67**: 237—249

[21] Blanch S J, Ganf G G, Walker K F. Growth and recruitment in *Vallisneria americana* as related to average irradiance in the water column [J]. *Aquat Bot.*, 1998, **61**: 181—205

[22] De Hertogh, A A, Le Nard M. The Physiology of flower bulbs [M]. Amsterdam: Elsevier, 1993

[23] Han S S, Halevy A H, Sachs R M, et al. Flowering and corm yield of brodiaea in response to temperature, photoperiod, corm size, and planting depth [J]. *Horticul. Sci.*, 1991, **11**(1): 19—22

[24] Watada A A, Luria G, Borochov A. Aconitum: effects of environmental conditions and tuber size on growth, flowering and tuber production [J]. *Scientia Horticulturae*, 1999, **81**: 135—147

[25] Dost J L, Laporte G. Population sex ratios, population mixtures and fecundity in a clonal dioecious macrophyte, *Vallisneria americana* [J]. *J. Ecol.*, 1991, **79**: 477—489

PRELIMINARY STUDY ON PROPAGULUM DISTRIBUTION CHARACTERISTIC AND GERMINATION OF *VALLISNERIA SPIRALIS* L. IN LIANGZI LAKE

YANG Yong-Qing, YU Dan, GENG Xiar-Hua and LI Yong-Ke

(Fidd Ecological Station of Liangzi Lake, School of Life Science, Wuhan University, Wuhan 430072)

Abstract: *Vallisneria spiralis* L. is a common species of submersed macrophytes in Changjiang River Basin. Its stands offer habitats and substrates for fish and many invertebrates at lake and river underlayers. The vegetative propagulum of *V. spiralis*, which is turion, contain large amount of starch. Its leaves are also palatable to waterfowl and other herbivores. Thus, its population is always undergoing relative high pressure of grazing. Recent studies have shown that herbivory can greatly reduce production of aquatic plant systems and potential reproduction output of each plant species. This means, eventually, their seed bank dynamics and successive vegetation patterns can be considerably changed. However, studies also shown that plants can avoid herbivory in a certain degree by some escaping strategies. As plant herbivory interactions are essential in aquatic systems, how *V. spiralis* maintain its dominated role in Liangzi Lake is an interesting question. Our study focused on the primary distribution aspects of propagulum of *V. spiralis*, involving in turion and seed; in Liangzi Lake, and potential differences in germination performance of the diversely distributed propagulum. We aimed at simulating influences of waterfowl herbivory on the propagulum distribution and the germination of *V. spiralis*, and exploring the domination mechanism of *V. spiralis* in Liangzi Lake.

Firstly, we investigated the vertical distribution pattern of *V. spiralis* turions in silt of Liangzi Lake in December, 2002. An approximate method was used for alternative measurements of turion burial depth. The stolon length was thought to be an appropriate index of the burial depth, since most of the stolons between turions and stalks extended straight downwards in the soft clay. 46 random sampling was carried out. After the burial depth was recorded, turion fresh weight were measured immediately. A relationship was analyzed between the turion size and the burial depth. In germination experiment, we collected the *V. spiralis* turions and classified them according to the turion size (A: < 0.25g; B: 0.25—0.50g; C: 0.50—0.75g; D: > 0.75g). Then they were buried for germination under a cross treatment of two water level (~0 and ~3cm) and two sand depth (5 and 10cm). The germination experiment was carried out in 10 replicates. Two-way ANCOVA was performed to evaluate the germination and growth of the seedlings. We simulated the influences of waterfowl herbivory on the turions by comparing the germination differences between intact turions and cut turions. The germination differences at 20 days was compared by using nonparameter data analyses. Another experiment was carried to compare the germination of the new turions (which is formed in this year) to that of the old turions (which is formed not in this year). There was also an experiment about influences of substrate type on germination of the seeds of *V. spiralis*.

Results were mainly as following: Average turion weight of *V. spiralis* in Liangzi Lake increased with the increasing of depth from 2cm to 30cm in the sediment. Turion weight also correlated positively with bud number of the turion ($P < 0.05$). Sediment depth, overlying water regime and turion weight has a pronounced impact on germination of buds. The grazing damage of turions was simulated by removing first bud and separating turion into pieces containing one bud. Results showed these removing and separating promoted the germination of the rest buds. Turions produced in last year and in this year had the same potential germination capacity, these may be helpful for *V. spiralis* to sustain its population size and dominance under the graze pressure during winter. Seed germination in sand is much higher than that in silt, but its survive rate did not differ significantly between the two substrates under undisturbed condition. Our results exhibits that there is an resource trade-off exists among reproductive strategy of *V. spiralis*.

Key words: *Vallisneria spiralis* L; Graze; Reproductive strategy; Turion