一种快速提取分析微囊藻毒素的方法

雷腊梅 甘南琴 宋立荣(中国科学院水生生物研究所, 武汉 430072)

摘要: 以五种群体和单细胞微囊藻及自然微囊藻水华为材料, 在沸水浴中经不同时间处理, 过滤后直接进行 HPLG-UV 检测, 发现 12min 的沸水浴处理就足以达到抽提目的。研究中发现, 去离子水比蒸馏水是更有效的抽提溶剂。传统的甲醇抽提结果与沸水浴处理的相对误差主要在0.2%—16.59%之间。结果还显示, 群体微囊藻需要比单细胞微囊藻抽提更长时间。本研究提供了一种经过改进的高效、廉价和快速的微囊藻毒素抽提分析方法。

关键词: 微囊藻; 微囊藻毒素; 沸水浴; HPLC

中图分类号: X173 文献标识码: A 文章编号: 1000 3207(2003) 05 0468 004

水体环境富营养化引起的蓝藻水华问题在我国已日趋严重,淡水湖泊如滇池、太湖和巢湖,每年夏秋季都会爆发高浓度的蓝藻水华[1-2],对水体生态系统和人类健康带来直接或潜在的严重危害。在我国大多数水体中发生的蓝藻水华,其优势种类主要是微囊藻,它产生一种被称为微囊藻毒素的环状七肽毒素,研究表明,长期饮用含有微囊藻毒素的水可诱发肝癌,直肠癌^{3]},轻者可使人产生腹泻和皮肤过敏等症状^[4],微囊藻毒素对人类健康的威胁已引起世界范围学者的广泛关注。最新发现表明,除了微囊藻毒素可对人类健康造成威胁外,微囊藻本身可在人的鼻腔内寄生,造成鼻孢疹^[5],这是迄今为止发现的由蓝藻引起的第一类人类疾病。

微囊藻毒素是一种细胞内毒素,绝大多数情况下只有在细胞裂解后才释放到水体中。因而,建立可靠、敏感、快速的分析微囊藻毒素的方法显得极为必要。在抽提微囊藻毒素方面,已产生了几种溶剂系统^[6],如5%的乙酸,正丁醇甲醇水和甲醇,其中以甲醇系统应用的最多。在藻样的处理上,一般认为冷冻干燥的藻粉是较好的微囊藻毒素提取材料,但冷冻干燥器价格昂贵,因而新鲜藻样也被广泛的作为提取材料。不管采用何种溶剂系统,一般都需经过下列步骤:

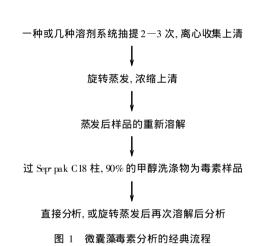


Fig. 1 Conventional procedure for microcystin analysis

整个抽提过程至少需要 1—2d, 每次同时处理的样品数不可太多, Sep pak 柱价格昂贵且都是一次性使用, 这使抽提系统在处理大量样品时显得工作量庞大, 过程繁琐且耗费大。 Metcalf. [7] 首次将沸水浴应用于微囊藻毒素的提取和分析, 得到的结果与甲醇抽提的结果接近, 预示了这种方法的应用前景。但该方法未能涉及不同形态特征藻种的毒素的提取效果。本文分别以实验室培养的单细胞和群体微囊藻及自然界蓝藻水华为材料, 比较不同时间处理下各个样品毒素的变化, 探讨群体胶鞘的存在与否对毒素抽提的影响, 改进后的沸水浴方法可应用于微

收稿日期: 2002 09 20; 修订日期: 2002 12-05

基金项目: 国家高技术研究发展计划(2001AA641030); 中国科学院生物科学与生物技术特别支持项目(STZ-01-31); 中国科学院知识创新工程重要方向项目(ISCX2-SQW-106)资助

作者简介: 雷腊梅(1974一), 女, 湖北省赤壁市人; 博士; 主要从事藻类分子生物学研究

通讯作者: lrsong@ ihb. ac. cn

囊藻毒素的快速抽提分析, 尤其适用于处理大量样品及野外样品。

1 材料和方法

- **1.1** 微囊藻的培养 所采用的藻种编号及来源(表 1)。藻细胞的培养采用 MA 培养基^[8],静止,温度 28° C,光源为冷白荧光灯,光照强度 60lx。
- 1.2 不同时间处理对微囊藻毒素的提取的影响 将培养的藻细胞 7000r/ min, 10min 离心收集起来, 用去 离子水洗涤 2 次后, 重新悬浮于去离子水, 等份取出 5 份后, 一份烘干计算干重, 另四份分别在沸水浴中处理
- 6, 12, 20, 30min, 取出后的样品于冰上冷却, 12, 000r/ min 离心 10min, 上清过 0. 45 l/m 的水相柱后直接进行 HPLC: UV 检测。
- 1.3 甲醇对毒素的提取 用标准的甲醇抽提方法 提取微囊藻毒素,方法参照文献[9],同样进行 HPLC: UV 分析。

2 结果

2.1 藻种的选择

选用的藻种主要分离于富营养化水体中发生的 蓝藻水华,来源和形态如下:

表 1 微囊藻藻株来源和形态特征

Tab. 1 Strains of Microcystis and field bloom sample

种名 Strains	来源 Source	形态 Morphology	
Microcystis. aeruginosa DCA	滇池	群体 Colony	
M. aeruginosa DCS	滇池	单细胞 Single cell	
M. aeruginosa WU	五大二池	群体 Colony	
M. aeruginosa PCC7806	法国	单细胞 Single cell	
M. viridis DC2	滇池	群体 Colony	
Microcysti bloom sample	中科院水生所实验基地关桥	群体 Colony	

天然水体中发生的微囊藻水华几乎都是群体微囊藻,将其中的单个群体分离纯化,转入实验室培养后,许多微囊藻最终都解聚成为单细胞,表1中的DCS就是群体微囊藻解聚后的产物,在本实验室分离到的群体微囊藻中,以五大二池分离到的藻株形态保持得最久(约三年),与它同时分离的其他藻株都丧失了群体形态而成为单细胞, Microcystis Viridis DC2已开始由群体向单细胞转化,培养液到培养后期出现浑浊, DCA自分离后(约两年)一直维持着一种疏散的群体形态,培养液非常清澈。即使还保留着群体形态的微囊藻,也只是胶鞘包裹着的团体,失去了自然水体中用于分类鉴别种类的群体形态。目前群体微囊藻解聚成单细胞的原因还不明了。

2.2 标准方法和沸水浴法抽提效率比较分析

将不同微囊藻细胞分别在沸水浴中处理 6, 12, 20, 30min,与微囊藻毒素(MC) 标样(日本 Kanto Regents)相比较,计算MC-RR, MC-yR 和MC-rR 的毒素总量,结果表明沸水浴可成功地抽提微囊藻毒素到胞外组分中,而 12min 左右的沸水浴即可以达到很好的抽提结果,更长的时间并没有导致毒素水平显著增加或降低(图 2)。以 12min 的抽提浓度与标准的甲醇抽提法比较,发现两种方法的相对误差基

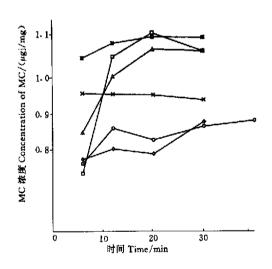


图 2 不同时间沸水浴处理对微囊藻毒素抽提的比较

Fig. 2 Comparison of boiling water bath extraction of microcystins treated with different times

Microcystis aeruginos a WU(\square); M. aeruginos a DCS(\times); M. aeruginos a 7806(\star); M. viridis DC2(\bigcirc); Mr arocystis bloom sample (\Diamond)

本在1% 一10% 之间(表 2), 总的来看, 甲醇抽提的 总毒素水平还略低于沸水浴, 这可能是甲醇抽提需 要多步转移而导致样品的损失, 因而也造成部分毒 素的损失。微囊藻的群体胶鞘对沸水浴抽提形成了一定的障碍,单细胞的 M. aeruginosa DCS 和 7806在6min 时即可达到较高的毒素水平,而群体微囊藻 M. aeruginosa DCA 和WU 在 12min 时毒素水平明显

提高(图 2), 这可能是酸性多糖胶鞘缓冲了细胞的破裂, 因而需要较长时间的处理。破裂后的细胞溶液应该在冰上冷却, 这样可减少溶液的粘性, 离心时才能较完全的将细胞碎片沉淀下来, 减少过滤阻力。

表 2 甲醇抽提法和沸水浴法抽提效率比较

Tab. 2 Comparison of methanol extraction and boiling water bath extraction

	Microcy stis. aer uginosa DCA	M. aerug inosa DCS	M. aerug inosa WU	M. aeruginos a PCC 7806	M. sp.
甲醇抽提	0 905	0. 9825	0. 94	0. 905	0. 858
沸水浴抽提	1	0. 954	1. 05	1. 085	0.866
相对误差	9. 5%	2. 98%	10.5%	16. 59%	0 2%

3 讨论

多年以来, 人们一直致力于建立敏感的微囊藻 毒素检测方法,如生物毒性实验[6],碱性磷酸酶抑制 性实验^[10-11], ELISA^[12-14], HPLC 分析^[6], 毛细管电 泳[14] 及近年发展起来的产毒基因全细胞分子鉴定 法[15] 等一系列方法, 其中由于 HPLC 既可定性也可 定量而应用最为广泛。近年来,随着我国蓝藻水华 的频繁发生,长期定时的对某一水体进行各种指标 的监测成为必要,其中微囊藻胞内毒素的水平就是 一个必不可少的指标。目前我国主要采用的方法就 是进行甲醇抽提后,用 HPLC-UV 进行分析,这种传 统的方法需投入大量人力采集样品, 然后以每个样 品至少70元的成本进行繁琐的抽提,整个抽提过程 一般需要接触大量的甲醇、长期频繁的接触会危害 人的健康。将沸水浴用于微囊藻毒素的抽提,只需 少量样品(如果样品浓度高, 2mL 就足够), 抽提溶剂 是完全无害的去离子水,多个样品的抽提可同时完 成. 整个抽提-HPLC 分析过程可在 1d 内完成. 因而 省时省力: 同时, 由于沸水浴的样品在抽提、离心和 过滤后, 直接进行 HPLC 检测, 不用过价格昂贵的 Sep pakC18 柱, 使每个样品的抽提成本维持在 20 元 左右,如采用国产的过滤器,成本还可降低。

不同时间对微囊藻毒素的抽提中,大部分微囊藻在 6min 的抽提就可以达到效果,但有的也需要更长时间。图 2 可说明两个问题:一是不同的微囊藻有不同的最佳抽提时间;二是微囊藻毒素在沸水中有一定的时间稳定性,因而针对不同微囊藻,20min的抽提既不怕降解,又保证了抽提效果。

本研究对 Metcalf^[6] 的方法进行了合理的改变,即上柱前样品都经过 0. 45以 膜过滤,这样既可减少样品的杂质,也可保护分析柱,使 HPLC 分析过程中

的基线更加稳定。研究中发现,用去离子水比用蒸馏水作为抽提溶剂更为有效,在去离子水中,微囊藻群体变得小而松散,因而可使破细胞效率提高,这是因为去离子水洗掉了胶鞘上的反相离子,使带上同种离子的胶鞘因斥力而易于解离。结果显示,本研究为微囊藻毒素的抽提分析提供了一种简便易行,高效廉价的方法,具有实际的应用前景。

参考文献:

- [1] He Z R. Seven microcystins from Microcystis water bloom in Lake Dalai, [J]. China. J. Enir. Sa., 1997, 9(1):113—119
- [2] Wu Weinang The study on the major algal in lake Dianchi[J]. Yurnan Environmental Science, 1997, 16(2): 26—29. [吴为梁. 滇池水体中主要藻种毒素研究[J]. 云南环境科学, 1997, 16(2): 26—29]
- [3] Tang Z. Y., Wu M. C Xia S. S. Prmary liver cancer [M], Bei jing: China Academic Publishers and Springer Verlag, 1989, 30-37
- [4] Codd G A. Cyanobacterial toxins: occurrence, properties and signifr cance [J]. Water Sci. Technol., 1995, 32: 149-156
- [5] Ahluwalia K B Culture of the organism that causes thinosporidiosis[J]. J. Laryngol. Ocol., 1999, 113(6): 523-528
- [6] Jussi M Chromatography of microcystins [J]. Analytica. Chimica. Acta., 1997, 352 277—298
- [7] Metcalf J S, Codd G Microwave oven and boiling waterbath extraction of hepatotoxins from cyanobacterial cells [J]. FEMS Microbiol. Lett., 2000, 184: 241—246
- [8] Nishizawa K, Chihara M. Methods in Algological Studies. Kyoritsu [M]. Tokyo, 1979, 294—305
- [9] Song L R, Lei L M, He Z R, et al. The growth and physiologic characteristics of blue *Microcystis*. *Aeruginosa* and green microcystis and the analysis of microcystins from water lboom in lake Dianchi. *Acta Hydrobiologica Sinica*, 1999, 23(3): 402—408. [宋立荣, 雷腊梅,何振荣,等. 滇池水华蓝藻铜锈微囊藻和绿色微囊藻的生长生理特性及毒素分析[J]. 水生生物学报, 1999, 23(3): 402—408]
- [10] Honkanan R E, Codispoti B A, Tse K, et al. Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases[J]. *Toxicon*, 1994, 32(3): 339—350

- [11] Ward C J, Beattie K A, Lee E Y C, et al. Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria: comparisons with high performance liquid duromatographic analysis for microcystins [J]. FEMS Microbiol. Lett. 1997, 153: 465—473
- [12] Chu F S, Huang X, Wei R D, et al Production and characterization of antibodies against microcystins [J]. Appl. Envir. Microbiol., 1989, 55: 1928—1933
- [13] Chu F S, Huang X, Wei R D. Enzyme linked immunosorbent assay

- for microcystins in blue green algal blooms[J]. J. Assoc. Qf. Arr dyt. Chem., 1990, 73: 451—456
- [14] Onyewuenyi N, Hawkins P. Separation of toxic peptide(microcystins) in capillary electrophoresis, with the aid of organic mobile phase modifiers [J]. J. Chromatogr., 1995, 749:271—277
- [15] Hui Pan, Lirong Song, Yonding Liu and Thomas Borner. Detection of Hepatotoxic Microcystis Strains by PCR with Intact Cells from both Culture and Environmental Samples [J]. Archiv Microbiology, 2002, 178:421—427

A RAPID EXTRACTING AND ANALYZING METHOD FOR MICROCYSTIN

LEI Let Mei, GAN Narr Qin and SONG Lir Rong

(Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072)

Abstract: Microcystins are a group of natural toxins known to be produced by certain types of freshwater blue green algae and which have been shown to be liver toxins and tumour promoters, and pose a health hazard for humans, domestic animals and wildlife. The traditional methods for toxin extraction include 5% acetic acid, 75% methanol, 100% methanol, 70% acetonitrile and so on. The extracting solution using traditional methods should be firstly pass through a sep pak cartridge, then was rinsed with water and 25% methanol in water, and then microcystins were eluted with 90% methanol water, which is very overelaborate and expensive.

In this paper, a new rapid method for toxin extraction was provided based on boiling-water bath, and this method were used to extract cultures of five strains of colonial or single celled *Microcystis* and one natural water bloom sample. With different times dealing in boiling-water bath, and through 0.45½m membrane, it was detected directly by HPLC-UV, and it was found that twelve minutes boiling-water bath was enough for microcystin extraction. Comparing with the traditional extraction methods, the comparative error of boiling-water bath extraction method was from 0.2% to 16.59%. The results illustrated that more time was needed for extracting toxins from colonial *Microcystis* than from single celled one. This study provides an efficient, cheap and quick extracting method for microcystin, which reveals a comprehensive and applied prospect.

Key words: Microcystis; Microcystin; Boiling-water bath; HPLC