

DOI: 10.3724/SP.J.1035.2010.00943

镰刀菌对鱼类致病性和组织病理研究

可小丽^{1,2} 汪建国¹ 苑晶³ 龚小宁¹

(1. 中国科学院水生生物研究所, 武汉 430072; 2. 中国科学院研究生院, 北京 100049;
3. 江汉大学生命科学学院, 武汉 430056)

摘要: 研究采用4种不同的人工感染方式, 对模式鱼种金鱼实施镰刀菌(*Fusarium* spp.) FF08人工感染, 以期探讨镰刀菌在不同感染方式下对鱼体的致病强度, 同时通过石蜡切片和HE染色进一步研究了其对鱼体组织病理性损伤机制。结果表明: 腹腔、肌肉和创伤感染均对金鱼有很强的致死性, 15d内死亡率分别达到100%、93%和100%, 鱼体均出现与自然发病相同的发病症状。病理分析表明镰刀菌FF08感染可引起鱼体肌肉组织、肝、肾、肠道均出现较严重的损坏。主要表现为肌纤维细胞变性、坏死、溶解, 大量炎细胞浸润, 并有菌丝侵入肌肉组织; 肝细胞水肿、充血、出血、血管发生血栓, 并且镰刀菌分生孢子侵入组织, 有强烈的细胞炎性反应; 肾脏充血、出血、部分组织坏死崩解; 肠道堵塞、肠系膜脱落等病理症状。研究将为鱼类镰刀菌病的侵染机制及防治奠定理论基础。

关键词: 镰刀菌(*Fusarium*); 人工感染; HE染色; 致病性; 组织病理

中图分类号: S941.43 文献标识码: A 文章编号: 1000-3207(2010)05-0943-06

镰刀菌(*Fusarium*)隶属菌物界, 真菌门, 半知菌亚门。其生态适应性强、种类多、分布广泛。它们既可在动植物活体上营寄生生活, 又可在其残骸上营腐生生活。本属的主要意义在于它们曾经和现在一直作为植物的致病菌, 导致植物多种疾病的世代蔓延, 而且其中很多种在一定条件下可产生真菌毒素, 对人及动植物的健康造成很大危害^[1-3]。近三十年来, 发现镰刀菌对鱼、虾等水产养殖动物的危害也日益严峻, 养殖的鱼、虾可因感染镰刀菌而发生暴发性死亡。国内外关于虾类镰刀菌病的病原及发病机理开展了较多的研究^[4-10], 但关于镰刀菌感染鱼类的报道较少。1989年Hatai, *et al.*^[11]首次从患病海鲷肾脏中分离到尖孢镰刀霉病原, 1996年黄文芳等^[12]从加州鲈体表病灶组织处分离到镰刀状镰刀菌病原。两篇报道均研究了镰刀菌感染鱼体后的体表症状和部分组织病理变化, 但关于镰刀菌感染鱼体的致病强度及全面的病理组织变化仍不清楚。本

文采用4种不同的人工感染方式, 对模式鱼种金鱼实施镰刀菌FF08人工感染, 研究了镰刀菌在不同感染方式下对鱼体的致病性。另外, 通过石蜡切片和HE染色进一步研究了镰刀菌FF08对鱼体各组织器官的病理变化, 探讨了其对鱼体各器官、组织的病理性损伤机制, 以期探寻镰刀菌引起鱼体死亡的途径, 为鱼类镰刀菌病的侵染机制及防治奠定理论基础。

1 材料与方法

1.1 实验鱼

实验金鱼于2009年2月24日购于武汉珞狮北路花鸟市场。所购金鱼均为无病史无创伤的健康鱼体。买回即进行高锰酸钾消毒处理, 实验室条件下暂养15d, 每天早晚各投喂一次金鱼专用商业饲料, 两天换一次水。感染实验期间喂养方法不变。

1.2 镰刀菌孢子液的制备

FF08镰刀菌菌种分离于金鲫鱼, 并初步通过分

收稿日期: 2009-08-04; 修订日期: 2010-05-23

基金项目: 973计划项目(2009CB118700); 国家科技支撑计划项目(2007BAD37B03); 湖北省科技攻关计划(2007AA203A01); 中国科学院水生生物研究所领域探索项目资助

作者简介: 可小丽(1981—), 女, 湖北黄冈人; 博士研究生; 主要从事鱼病学研究。E-mail: xiaolike1105@yahoo.com.cn

通讯作者: 汪建国, 研究员; E-mail: wangjg@ihb.ac.cn

子和形态鉴定为尖孢镰刀霉(*Fusarium oxysporum*)。将镰刀菌菌种 FF08 接种于玉米培养基(CMA), 25℃培养 10d, 用 0.68% 无菌生理盐水和 0.05% Tween 80 混合液洗下孢子, 接着用尼龙布(孔径 11 μm)过滤, 制成孢子悬液, 并用血球计数板调节孢子浓度。

1.3 鱼体感染实验

将暂养 15d 的健康金鱼(体长 5—6 cm)平均分为 8 组, 每组 15 条, 按组分别放入 4 个水箱(水箱体积 30 L, 水温 24—25℃)。

肌肉注射感染: 每条鱼背部多点注射 200 μL 浓度为 4.4×10^8 个/mL 孢子悬液, 对照组每条鱼背部多点注射 200 μL 0.68% 无菌生理盐水和 0.05% Tween 80 混合液。

腹腔注射感染: 每条鱼腹腔注射 200 μL 浓度为 4.4×10^8 个/mL 孢子悬液, 对照组每条鱼腹腔注射 200 μL 0.68% 无菌生理盐水和 0.05% Tween 80 混合液。

创伤感染: 将试验鱼体体表刮伤, 然后将其置于孢子浓度为 4.4×10^8 个/mL 水体中; 对照组体表刮伤的鱼体置于曝气自来水中。

浸泡感染: 将体表无损伤的鱼体置于孢子浓度为 4.4×10^8 个/mL 水箱中, 对照组实验鱼置于曝气自来水中。

试验前后, 饲养条件不变。每天观察金鱼活动情况, 记录死亡情况。发现病鱼, 立即拍照并接种病灶病原进行鉴定。对于濒死鱼体及注射 4 周后仍然存活的鱼体, 解剖拍照, 取新鲜组织(肌肉、肝、肾、肠)修剪后固定于布氏固定液中, 为下步病理切片做准备。

1.4 病理组织观察

石蜡组织切片的制作 肝、肾、肠组织固定 24—48h 后分别经过梯度酒精脱水→二甲苯透明→石蜡浸透包埋→切片→粘片→烘片。肌肉组织固定 24—48h 后, 需事先放入 10% EDTA 脱钙剂内脱钙 30 d, 后续处理步骤同上。

HE (Hematoxylin and Eosin)染色及组织病理学观察 简化步骤: 二甲苯脱蜡→梯度酒精水化→苏木精染色→酸酒精分色→伊红复染→梯度酒精脱水→二甲苯透明→加拿大树胶封片→观察拍照。

2 结 果

2.1 镰刀菌菌落及显微观察

菌落特征 在 CMA 培养基上 25℃ 培养 10d

后菌落棉絮状, 铺满平皿, 菌落正面白色, 背面淡紫色(图 1a、b)。

显微特征 产孢细胞为简单平梗, 瓶梗较短, 多在 22 μm 以下; 小分生孢子椭圆形, 大分生孢子镰刀形, 有 3—5 个分隔(图 1c、d), 厚壁孢子很少。

2.2 致病性

感染第 3 天, 肌肉注射组实验鱼背部开始出现白色的霉菌, 类似水霉, 有的形成病灶, 重新接种鉴定, 结果为注射病原尖孢镰刀菌; 腹腔注射的鱼体, 头腹部、背鳍、背部、尾部的表皮和肛周的表皮开始充血发炎, 随着病情的发展, 鱼体腹腔有溃烂穿孔现象。肝部充血, 部分弥散状; 肠充血, 弥散状; 肾充血, 肿大, 有的呈弥散状; 镜鉴腹腔体液发现大量镰刀霉分生孢子, 并且濒死鱼体均表现有白鳃症状。创伤感染组实验鱼体, 皮肤溃烂, 有的长出大量菌丝, 类似水霉, 镜鉴发现有大量细菌, 原生动物和镰刀霉菌丝和分生孢子。浸泡感染和各对照组鱼体均正常, 无上述发病症状, 各组实验鱼死亡情况(表 1)。肌肉注射感染, 第 3 天开始发病, 第 7 天开始死亡, 到第 15 天死亡总数为 14 尾, 死亡率为 93%; 腹腔注射感染, 鱼体第 3 天开始发病, 是第 7 天开始死亡, 到第 15 天死亡总数为 15 尾, 死亡率为 100%; 创伤感染组鱼体第 9 天开始死鱼, 到第 14 天死亡率为 100%。浸泡实验组和各对照组均未见金鱼死亡。

2.3 组织病理变化

正常鱼体组织切片(图 2a—e)。肌肉注射和创伤感染组金鱼初期病理变化类似, 主要表现为表皮肌纤维坏死, 腹腔感染组初期病理变化主要表现为循环系统障碍。但实验中后期各发病组鱼体肌肉、肝、肾、肠均呈现不同程度的病变。病灶处肌纤维坏死、溶解, 大量炎细胞浸润(图 3a), 肝细胞间质水肿, 血管发生血栓, 并可发现镰刀菌分生孢子入侵组织(图 3b), 肝肾细胞均发生不同程度的坏死, 细胞边界模糊, 细胞核溶解(图 3c、d), 大量炎细胞浸润; 肠壁发炎, 肠系膜脱落坏死引起肠道堵塞, 炎细胞浸润(图 3e、f)。

3 讨 论

本研究通过腹腔及肌肉注射镰刀菌孢子悬液, 短时间内鱼体死亡率均在 90% 以上, 表明镰刀菌 FF08 对金鱼有很强的致死性。在不同的感染方式中,

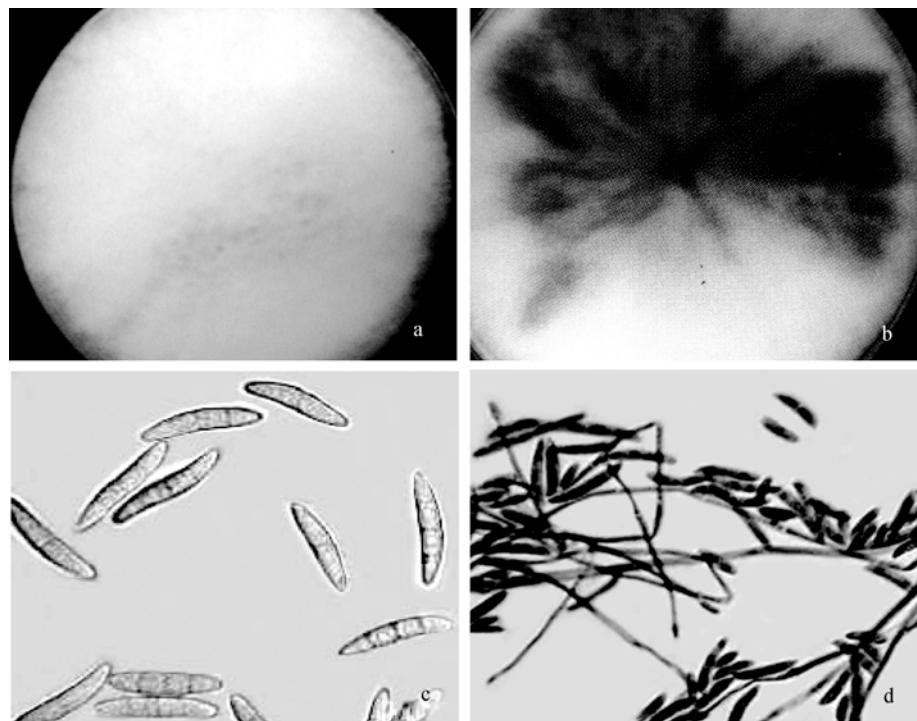


图1 镰刀霉菌落和显微观察

Fig. 1 *Fusarium* colony and microexaminationa. 镰刀霉菌落正面; b. 镰刀霉菌落反面; c. 镰刀霉分生孢子($\times 400$); d. 分生孢子在菌丝上的生长情况a. The frontal view of *Fusarium* colony; b. The dorsal view of *Fusarium* colony; c. The conidiophore of *Fusarium* ($\times 400$); d. Growth state of conidiophore on the hypha表1 人工感染实验金鱼死亡情况
Tab. 1 Mortality of artificially-infected goldfish

感染方式 Infected method	n	死亡鱼数 Dead number (ind.)						死亡总数 Total dead No. (ind.)	死亡率 Mortality rate (%)
		7d	9d	11d	12d	13d	14d		
肌肉注射 Intramuscular injection	15	2	3	2	3	2	1	14	93
对照 Control	15	—	—	—	—	—	—	—	—
腹腔注射 Intraperitoneal injection	15	2	4	2	2	2	3	—	15
对照 Control	15	—	—	—	—	—	—	—	—
创伤感染 Wound infection	15	—	3	4	2	5	1	—	100
对照 Control	15	—	—	—	—	—	—	—	—
浸泡感染 Bath infection	15	—	—	—	—	—	—	—	—
对照 Control	15	—	—	—	—	—	—	—	—

腹腔注射感染组金鱼发病最快且症状较其他严重, 死亡率也高。肌肉注射感染和创伤感染亦有较高的死亡率, 从表1可知, 前期肌肉注射鱼体出现死亡较创伤感染组快, 但是后期创伤感染鱼体死亡较前者迅速。综合镜鉴分析, 原因可能是创伤感染组鱼

体创面较肌肉注射组大, 导致后期细菌、寄生虫并发症的可能性及强度较高, 从而后期死亡加快。另外, 浸泡感染组鱼体完全无发病症状, 说明镰刀霉不能侵染体表完好的健康鱼体, 此结果与黄文芳等^[12]报道一致。综上分析可知镰刀霉只有进入鱼体表皮,

才可能表现出很高的致病性, 所以镰刀菌感染鱼体应该与不良的养殖环境或鱼体受伤有一定关系。

腹腔感染镰刀菌试验组的金鱼表现为身体各处严重充血, 说明其很可能在短时间内能够引起鱼体血液循环不畅。肌肉组织大量炎细胞浸润, 变性坏死, 崩解; 肠系膜发炎, 脱落, 变性坏死; 肝、肾组织充血, 出血, 并伴随血管发生血栓, 孢子侵入。对照组金鱼的肌肉及内脏组织则没有此现象, 说明镰刀菌孢子很可能是随着血液循环侵入鱼体各器官, 导致其血管充血, 出血, 血栓, 进而引起周边组织

坏死。镰刀菌大量繁殖使病变加剧, 最终鱼体呼吸困难至死亡。此推论也解释了濒临死亡的实验鱼体表现为白鳃症状的原因。

此外, Arsenault^[13]证实了茄类镰刀菌代谢产物萘茜色素有爪哇镰刀菌素(Javanicin)和氧爪哇菌素(Fusarubin)的存在, 两者对植物细胞具有很强的毒性, Claydon, *et al.*^[14]在另一个茄类镰刀菌菌株的代谢产物中分离到爪哇镰刀菌素、氧爪哇镰刀菌素、脱水氧爪哇菌素(Anhydrofusarubin)、5-丁基吡啶-2-甲酸(Fusaric acid)4 种化合物对昆虫具有很强的毒

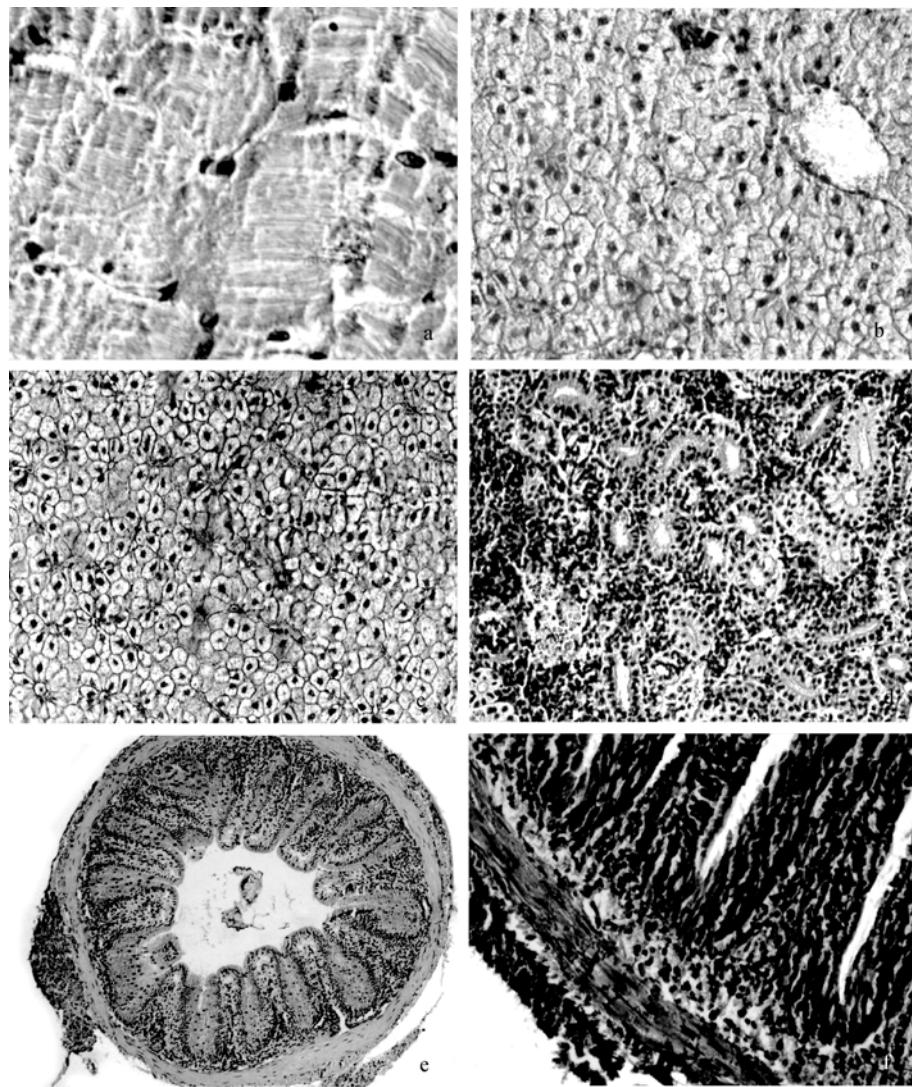


图 2 对照鱼体组织切片图

Fig. 2 Tissue section of control fish

a. 正常的肌肉细胞(纵切)($\times 200$); b. 正常的肝组织, 没有孢子侵入($\times 400$); c. 正常的肝细胞核和细胞质($\times 400$); d. 正常的肾组织, 肾小管, 小球等轮廓清晰($\times 200$); e. 正常的肠横切片($\times 200$); f. 正常的肠绒毛膜($\times 400$)
 a. Normal cell of musculature ($\times 200$); b. Normal liver cell, no conidiophore invasion ($\times 400$); c. Normal nucleolus and cytoplasm of hepatic tissue ($\times 400$); d. Normal nephridial tissue, showing a clear outline of renal glomerulus and renal tubule ($\times 200$); e. Normal intestinal tract (transversely) ($\times 200$); f. Normal state of mesentery ($\times 400$)

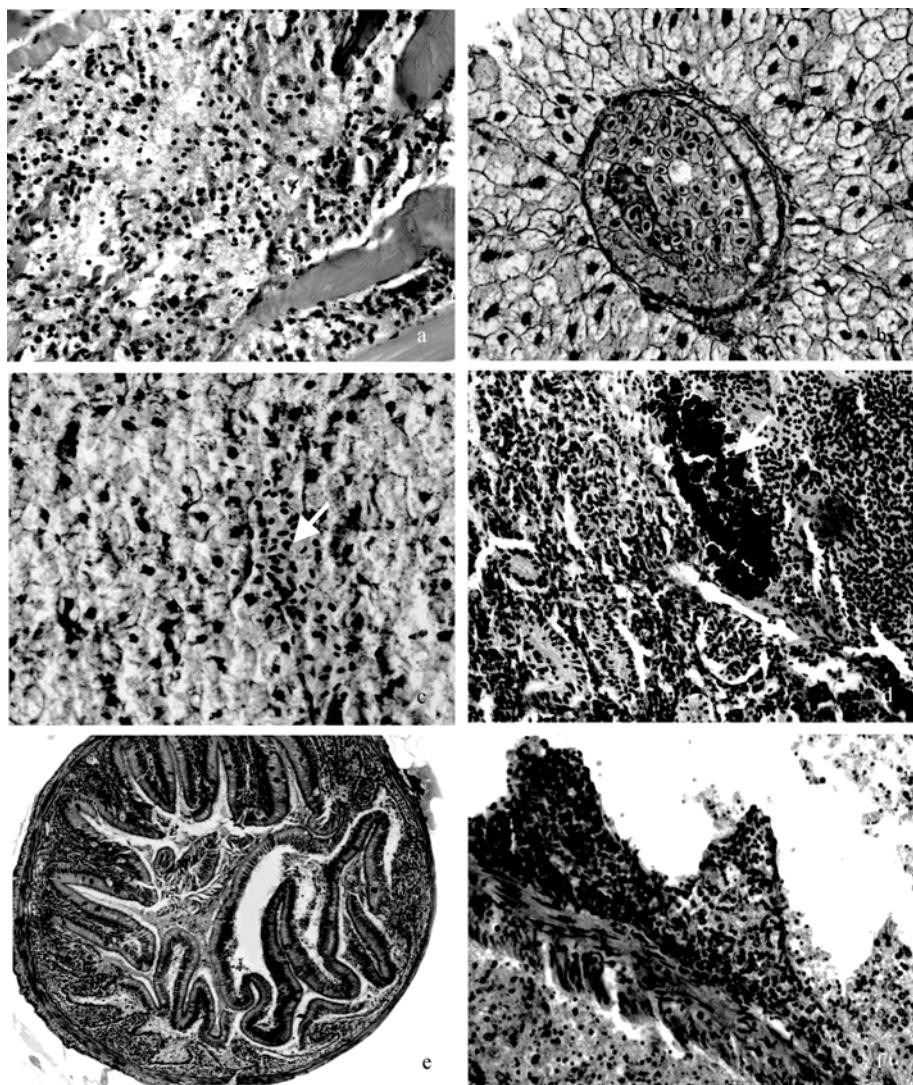


图3 感染镰刀菌的鱼体组织切片图

Fig. 3 Tissue section of artificially-infected fish

a. 肌肉细胞变性坏死, 大量炎细胞浸润($\times 200$); b. 肝细胞水肿, 血管发生血栓, 并有孢子侵入血管($\times 400$); c. 肝组织细胞核溶解, 孢子侵入组织(\uparrow)($\times 400$); d. 肾组织变性坏死, 大量炎细胞侵入($\times 200$); e. 肠道堵塞, 肠壁发炎, 肠系膜脱落; f. 肠系膜脱落、肠壁变性坏死($\times 400$)

a. Muscle cells necrosis, large amount of inflammatory cells invasion ($\times 200$); b. Hepatic cells showing edema, vas showing thrombus and invaded by conidiophore; c. Karyolysis of hepatic tissue and conidiophore invade($\times 400$); d. Nephridial tissue denaturizing and necrosis, large amount of inflammatory cells invasion ($\times 200$); e. Intestinal tract jamming, intestinal wall inflaming and part of mesentery falling off; f. Mesentery falling off and intestinal wall denaturizing and necrosis($\times 400$)

性。那么鱼体组织降解有可能是组织自身缺氧所致, 也有可能是镰刀菌本身释放的酶及毒素所引起的, 或者两者协同作用。因此, 本实验中鱼体肌肉和内脏组织的病变是否与镰刀菌的代谢产物毒性有关, 有待进一步研究。

参考文献:

[1] Chen S P, Yu X H, Situ Y K, et al. Fungal infection [M]. Liaoning: Liaoning Science and Technology Press. 2000, 353—358 [陈世平, 于玺华, 司徒永康, 等. 真菌感染学.

辽宁: 辽宁科学技术出版社. 2000, 353—358]

[2] Wang R L. Medical mycology [M]. Beijing: People Health Press. 2005, 419—432 [王瑞礼. 医学真菌学. 北京: 人民卫生出版社. 2005, 419—432]

[3] Wang Z X. The mycology for veterinary [M]. Shanxi: Northwest Agriculture & Forestry University Press. 2005, 180—264 [王昭贤. 兽医真菌学. 陕西: 西北农林科技大学出版社. 2005, 180—264]

[4] Lightner D V, Fontaine C T. A mycosis of the American lobster, *Homarus americanus*, caused by *Fusarium* sp. [J]. *Journal of Invertebrate Pathology*, 1975, 25(2): 239—245

[5] Colomi A. Fusariosis in the shrimp *Penaeus semisulcatus*

cultured in Israel [J]. *Mycopathologia*, 1989, **108**(2): 145—147

[6] Hassan S, Alain V, Pierre T, et al. Pathogenic and toxic effects of *Fusarium oxysporum* (Schlecht.) on survival and osmoregulatory capacity of *Penaeus japonicus* (Bate) [J]. *Aquaculture*, 1999, **178**(3-4): 209—224

[7] Wu Y L, Chen B. The Cytological pathology of fusaridiosis in prawn from China [J]. *Donghai Marine Science*, 1992, **10**(4): 21—26 [吴友吕, 陈波. 中国对虾镰刀菌病的细胞病理研究. 东海海洋, 1992, 10(4): 21—26]

[8] Zhan W B, Meng Q X, Yu K K. Study on pathogen of the fusaridiosis in prawn from China [J]. *Journal of Ocean University of Qingdao*, 1993, **23**(2): 91—100 [战文斌, 孟庆显, 俞开康. 中国对虾镰刀菌病病原体的研究. 青岛海洋大学学报, 1993, 23(2): 91—100]

[9] Zhan W B, Meng Q X, Yu K K. Studies on the symptoms and histopathology of *Fusarium* disease of penaid prawn, *Penaeus chinensis* [J]. *Journal of Ocean University of Qingdao*, 1993, **23**(3): 125—130 [战文斌, 孟庆显, 俞开康. 中国对虾镰刀菌病的症状和病理组织学研究. 青岛海洋大学学报, 1993, 23(3): 125—130]

[10] Khoa L V, Hatai K, Aoki T. *Fusarium incarnatum* isolated from black tiger shrimp, *Penaeus monodon* Fabricius, with black gill disease cultured in Vietnam [J]. *Journal of Fish Diseases*, 2004, **27**(9): 507—515

[11] Hatai K, Sabrouh S K, Norihiro K, et al. *Fusarium oxysporum* in Red Sea Bream (*Pagrus* sp.) [J]. *Journal of Wildlife Diseases*, 1986, **22**(4): 570—571

[12] Huang W F, Chen H, Hu Z H, et al. Studies of fish *Fusarium* 1. Studies on the *Fusarium fusariooides* isolated from *micropterus salmoides* [J]. *Acta Hydrobiologica Sinica*, 1999, **20**(4): 345—352 [黄文芳, 陈红, 胡朝晖, 等. 鱼类镰刀菌的研究 I 从大口黑鲈病灶上分离的镰状镰刀菌的研究. 水生生物学报, 1999, 20(4): 345—352]

[13] Arsenault G P. The structure of bostrycoidin, α , β -aza-authraquinone from *Fusarium solani* D₂ purple [J]. *Tetrahedron Letters*, 1965, **6**(45): 4033—4037

[14] Claydon N, Grove J F, Pople M. Insecticidal secondary metabolic products from the entomogenous fungus *Fusarium solani* [J]. *Journal of Invertebrate Pathology*, 1977, **30**: 216—223

STUDIES ON THE PATHOGENICITY AND HISTOPATHOLOGY OF *FUSARIUM* IN FISH

KE Xiao-Li^{1,2}, WANG Jian-Guo¹, YUAN Jing³ and GONG Xiao-Ning¹

(1. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072; 2. The Graduate University of the Chinese Academy of Sciences, Beijing 100049; 3. School of Life Science, Jianghan University, Wuhan 430056)

Abstract: Infections caused by *Fusarium* have increased in recent years in freshwater fish. However, few reports to date have described the pathogenicity and histopathology concerning *Fusarium*-infection in fish. We have isolated a *Fusarium* species from *Carassius auratus* and have identified it as *Fusarium oxysporum*. In this paper, four kinds of different infection methods had been used to artificially infect the model fish species-goldfish with *Fusarium oxysporum* strain FF08, the intention of which was to explore the *Fusarium* pathogenicity in fish under different infection modes. At the same time, paraffin section and HE staining were also applied to study the pathological mechanism in the artificial infected fish. The results showed that intraperitoneal injection, intramuscular injection and wound infection could cause high mortality in the goldfish and the mortality were up to 100%, 93% and 100% in 15d respectively. However, there were no fish die in bath infection group. These results suggested *Fusarium* infection in fish maybe associated with some primary pathogenic factor, for example wound or bad living environment. *Fusarium* could cause high pathogenicity only when they had the chance to invade the epidermis.

Infected fish have shown the common clinical symptoms as naturally. HE staining revealed that *Fusarium* FF08 is harmful to fish muscle tissue, liver, kidney and intestinal canal. Muscle fiber cells showed degeneration and necrosis, with a large number of inflammatory cell infiltration, and there also found invasive hyphae. Liver cell was edema. Congestion and vascular thrombosis were occurred. Conidiophores could intrude into blood vessel. In addition, hepatic tissue had a strong inflammatory response. Kidney tissue was hyperemia and part of it was necrosis collapse. The mesentery was desquamated. We speculated if broad hypha penetrated the mucous membrane and invade ground substance, blood vessel may be the important target organ. The focal necrosis would extend around the blood vessel. When their hypha had made incursions into the vessel, they could cause thrombus and result in infarction. These necrotic tissues were very appropriate to the mass propagation of the *Fusarium*, which accelerated the *Fusarium* infection. The infected fish maybe consequently died from dyspnoea.

Key words: *Fusarium*; Artificial infection; HE staining; Pathogenicity; Histopathology