

黄颡鱼鳃部寄生单殖吸虫和鲺类的空间分布特点

姚卫建

(中国科学院水生生物研究所, 武汉 430072)

摘要: 研究了黄颡鱼 *Pelteobagrus fulvidraco* (Richardson) 鳃部的寄生单殖吸虫 (Monogeneans) 和鲺类 (Copepods) 的空间分布特点。寄生于黄颡鱼鳃部的单殖吸虫和鲺类在两侧鳃上的感染强度及其差异表明, 两种寄生虫对于鳃片的左右位置没有明显的选择性; 在黄颡鱼四鳃间的分布存在极显著的差异 ($P < 0.05$, $P < 0.01$); 在鳃片的各区均存在选择性; 对鳃丝的各分段也均有极显著的选择性。

关键词: 单殖吸虫; 鲺类; 黄颡鱼; 空间分布

中图分类号: S941.52 文献标识码: A 文章编号: 1000-3207(2003)06-0635-04

空间分布是寄生虫生态研究的一个重要方面, 通过研究空间分布, 分析小生境的特征, 可以了解寄生虫对环境条件的需求、理化特征及其对宿主造成危害的特点等。国外的学者在这方面已作了不少工作^[1-7], 国内在这方面的研究仅见于颜培辉和 Nie^[8,9]。本文研究了黄颡鱼 *Pelteobagrus fulvidraco* (Richardson) 鳃部的寄生单殖吸虫和鲺类的空间分布特点。

1 材料与方法

黄颡鱼购自武昌区水果湖市场。

测量鱼体全长与体长并作记录。剪下鳃片(力求完整)。在解剖镜下检查每一片鳃。鳃片的序号由外侧向内依次为鳃1、鳃2、鳃3和鳃4。每片鳃被等分成三区: 腹区 (Ventral)、中区 (Median) 和背区 (Dorsal); 每根鳃丝又被分成三段: 远段 (Distal)、中段 (Median) 和近段 (Proximal), 这样每片鳃实际上被分成了9个区域。用解剖针或眼科手术刀拨开每一条鳃丝仔细检查是否有寄生虫附着在上面, 记录每鳃每个区域中每种寄生虫的数目。由于寄生黄颡鱼的三种单殖吸虫: 即黄颡四锚虫 (*Bychawskyella pseudobagri* Achmerow, 1952)、黄颡伪锚盘虫 (*Pseudancylodiscoides gigi* Yamaguti, 1963) 和月斧伪锚盘虫 (*P. strelkowi* Gussev, 1985) 的大小很接近, 须

收集所有虫体封片后, 在显微镜下才能鉴定, 根据后吸器和交配器的差异可以很容易地将这三种单殖吸虫区分开来, 因此该三种虫的空间分布数据没有分开, 合计为单殖吸虫 (Monogeneans)。寄生于黄颡鱼的鲺类有固着鲺 (*Ergasilus anchorayus* Mark, 1946) 和长三指鲺 (*Parergasilus longidigitus* Yin, 1954) 两种, 亦不进行区分, 合计为鲺类 (Copepods)。

两对成组数据之间的差异采用 Wilcoxon 成对数据检验; 多对成组数据之间的差异采用 one-way ANOVA 检验。

2 结果

寄生于黄颡鱼鳃部的单殖吸虫和鲺类在两侧鳃上的感染强度及其差异见表1, 结果表明两类寄生虫对于鳃片的左右位置没有明显的选择性。寄生于黄颡鱼的鲺类存在极显著的鳃片选择性 ($P < 0.01$, 表2), 并且也以第二片鳃和第三片鳃上的寄生比例较高, 均接近30%, 第一片鳃占24.06%, 只有第四片鳃上的寄生量显著的小于其他鳃片, 仅为16.38%。

单殖吸虫在黄颡鱼四鳃间的分布存在极显著的差异 ($P < 0.05$, 表2)。第1—3片鳃上寄生的单殖吸虫数量差异不明显 ($P < 0.05$, 表3), 占总数量的30%左右, 但三者均极显著地高于第四片鳃 ($P < 0.01$), 第四片鳃仅占13.74%。

收稿日期: 2002-10-10; 修订日期: 2002-12-10

基金项目: 中国科学院知识创新工程方向性项目 (KSCX2-1-04)、淡水生态与生物技术国家重点实验室基金 (990306) 资助

作者简介: 姚卫建 (1959—), 男, 浙江省诸暨市人; 高级工程师; 主要从事鱼类寄生虫分类和寄生虫生态方面的研究。本文呈蒙聂品博士提供宝贵意见, 夏晓勤博士帮助数据整理, 特此致谢

表 1 寄生于黄颡鱼鳃部的单殖吸虫和鳀类在两侧鳃上的感染强度及其差异的 Wilcoxon 检验

Tab. 1 The abundance of Monogeneans and Copepods on both sides of gill arches of *P. fulvidraco* and the abundance difference between left side and right side of gill.

寄生虫 Parasites	左鳃 Left gill	右鳃 Right gill	P 值 P value
单殖吸虫 Monogeneans	6. 34	6. 87	0. 548
鳀类 Copepods	3. 026	3. 316	0. 296

表 2 寄生于黄颡鱼鳃部的单殖吸虫和鳀类在四片鳃上的感染强度及其差异的 one way ANOVA 检验

Tab. 2 The abundance of Monogeneans and Copepods on each of four gill arches of *P. fulvidraco* and the abundance difference among gill arches.

寄生虫	感染率	鳃 1	鳃 2	鳃 3	鳃 4	P 值
Parasites	Prevalence	Gill 1	Gill 2	Gill 3	Gill 4	P value
单殖吸虫 Monogeneans	67. 11%	3. 789	4. 066	3. 539	1. 816	0. 000
鳀类 Copepods	67. 11%	1. 526	1. 895	1. 882	1. 039	0. 000

单殖吸虫和鳀类在黄颡鱼鳃片的各区均存在选择性(表 4)。单殖吸虫的分布数量在鳃片的三个分区之间的差异均达极显著的水平($P < 0.01$, 表 5), 中区寄生量最多, 超过 52%, 其次为背区, 约为

30%, 腹区寄生量最少, 仅占 16.43%。鳀类亦以中区寄生量最多, 约占 50%, 极显著地高于另外两区。背区和腹区的寄生数量较为接近, 没有显著差异($P = 0.125$)。

表 3 单殖吸虫和鳀类在黄颡鱼各鳃之间寄生数量差异的 Wilcoxon 检验

Tab. 3 The abundances difference of Monogeneans and Copepods between each two of four gill arches of *P. fulvidraco*.

寄生虫	鳃 1 鳃 2	鳃 1 鳃 3	鳃 1 鳃 4	鳃 2 鳃 3	鳃 2 鳃 4	鳃 3 鳃 4
Parasites	Gill 1 Gill 2	Gill 1 Gill 3	Gill 1 Gill 4	Gill 2 Gill 3	Gill 2 Gill 4	Gill 3 Gill 4
单殖吸虫 Monogeneans	0. 731	0. 346	0. 001	0. 134	0. 001	0. 003
鳀类 Copepods	0. 083	0. 156	0. 041	0. 478	0. 000	0. 000

表 4 寄生于黄颡鱼鳃部的单殖吸虫和鳀类在鳃片上三个分区上的感染强度及其差异的 one way ANOVA 检验

Tab. 4 The abundances of Monogeneans and Copepods on each region of gill arch of *P. fulvidraco* and the abundance difference among the three regions.

寄生虫 Parasites	腹区 Ventral	中区 Median	背区 Dorsal	P 值 P value
单殖吸虫 Monogeneans	2. 171	6. 95	4. 092	0. 000
鳀类 Copepods	1. 763	3. 145	1. 434	0. 000

表 5 寄生于黄颡鱼鳃部的单殖吸虫和鳀类在鳃片上三个分区上的寄生量差异的 Wilcoxon 检验

Tab. 5 The abundances difference of Monogeneans and Copepods between each two of three regions of gill arch of *P. fulvidraco*.

寄生虫 Parasites	腹区-中区 Ventral-Median	腹区-背区 Ventral-Dorsal	中区-背区 Median-Dorsal
单殖吸虫 Monogeneans	0. 000	0. 000	0. 000
鳀类 Copepods	0. 000	0. 125	0. 000

单殖吸虫和鳀类对鳃丝的各分段均有极显著的选择性(表 6)。单殖吸虫除在鳃丝远段和中段的分布数量无显著不同外, 这两段的单殖吸虫数目均显著地比近段多(表 7)。远段和中段单殖吸虫均占总

寄生量的 40% 以上, 近段仅寄生了 8.67% 的单殖吸虫。而鳀类在近段寄生最多, 占总数的 50% 以上, 中段次之, 约为 40%, 远段的寄生量很少。各段的寄生数量的差异均达显著或极显著的水平。

表 6 寄生于黄颡鱼鳃部的单殖吸虫和鲺类在鳃丝各段上的感染强度及其差异的 one way ANOVA 检验

Tab. 6 The abundances of Monogeneans and Copepods on each segment of gill filaments of *P. fulvidraco* and the abundance difference among the three segments

寄生虫 Parasites	远段 Distal	中段 Median	近段 Proximal	P 值 P value
单殖吸虫 Monogeneans	5. 47	6. 59	1. 145	0. 000
鲺类 Copepods	0. 474	2. 474	3. 395	0. 000

表 7 寄生于黄颡鱼鳃部的单殖吸虫和鲺类在鳃丝三个分段之间的寄生量差异的 Wilcoxon 检验

Tab. 7 The abundances difference of Monogeneans and Copepods between each two of three segments of gill filaments of *P. fulvidraco*.

寄生虫 Parasites	远段 Distal	中段 Median	远段 Distal	近段 Proximal	中段 Median	近段 Proximal
单殖吸虫 Monogeneans	0. 099			0. 000		0. 000
鲺类 Copepods	0. 000			0. 000		0. 027

3 讨论

鱼类鳃部寄生虫群落的空间分布特征一方面表现为感染强度在不同的全鳃上及同一全鳃的不同区域的差异性,另一方面也表现在各种寄生虫在鳃上的特定分布及其季节动态。

在多数情况下,寄生虫对于宿主鳃片的左右位置没有选择性,寄生于黄颡鱼鳃部的单殖吸虫和鲺类亦是如此,因此两侧鳃所处的生态环境很接近之故。这与 Buchman 对在鳗鲡鳃部的伪指环虫的研究结果不同^[10],Buchman 注意到伪指环虫在两侧鳃上的寄生数量的差异,但他对此没有作出解释。

实验结果还表明,单殖吸虫和鲺类在黄颡鱼鳃片的各区均存在选择性。单殖吸虫的分布数量在鳃片的三个分区之间的差异均达极显著的水平,中区寄生量最多,超过 52%,其次为背区,约为 30%,腹区寄生量最少,仅占 16. 43%。鲺类亦以中区寄生量最多,约占 50%,极显著地高于另外两区。背区和腹区的寄生数量较为接近。由此看来,两者之间并无明显的竞争发生,这可能是它们的丰盛度均较低之故,毕竟密度是竞争发生的重要因素^[10]。造成感染强度在鳃上不同位置分布有差异的原因,可能是因为各全鳃的面积及同一全鳃上下不同区域的面积均有不同;同时,由于各鳃片位置排列的原因,受水流、氧气等外界因素的影响也不同。另外,鳃和鳃片各区内的生理因素,如血管的分布,营养含量,免疫能力等,是否对寄生虫寄生造成影响有待进一步研究。

单殖吸虫和鲺类的寄生位点有明显的分离,但单殖吸虫和鲺类均不止一种,每个类群内的种间关系仍有待于进一步的研究。

参考文献:

- [1] Wiles N. The occurrence of *Diplozoon paradoxum* Nordmann, 1832 (Trematoda: Monogenea) in certain waters of northern England and its distribution on the gills of certain Cyprinidae. [J]. *Parasitology*, 1968, **58**: 61—70
- [2] Ame C, Halton D W. Observations on the occurrence of *Diclidophora merlangi* (Trematoda: Monogenea) on the gills of whiting, *Gadus merlangus*. [J]. *Journal of Fish Biology*, 1972, **4**: 27—32
- [3] Wootten R. Spatial distribution of *Dactylogyrus anaphothorium* on the gills of ruffe *Gymnocephalus cernua* and its relation to the relative amounts of water passing over the parts of the gills. [J]. *Journal of Helminthology*, 1974, **48**: 167—174
- [4] Ramasamy P, Ramalingam K, Hanna R E B. et al. Microhabitats of gill parasites (Monogenea and Copepoda) of teleosts (Scomberoides spp.) [J]. *International Journal for Parasitology*, 1985, **15** (4) : 385—394
- [5] Buchmann K. Spatial distribution of *Pseudodactylogyrus anguillae* and *P. bini* (Monogenea) on the gills of the european eel, *Anguilla anguilla* [J]. *Journal of Fish Biology*, 1988, **32**: 801—802
- [6] Dzka E, Szymanski S. Co occurrence and distribution of Monogenea of the genus *Dactylogyrus* on gills of the bream *Abramis brama* L [J]. *Acta Parasitologica Polonica*, 1989, **34** (1) : 1—14
- [7] Koskivaara M, Valtonen E T, Vuori K M. Microhabitat distribution and coexistence of *Dactylogyrus* species (Monogenea) on the gills of roach. [J] *Parasitology*, 1992, **104**: 273—281
- [8] Yan Ph. Ecological studies on Monogenans parasitizing the gill of *Acanthopagrus latus* [C]. Proceedings of Symposium in memory of the 10 years foundation of the Chinese Parasitological Society, Chinese Zoological Society. Beijing: Science press. 1995, 98—102 [颜培辉. 池养黄鳍鲷单殖吸虫生态研究 II, 群落的空间特征及种间关系. 中国动物学会寄生虫专业学会成立十周年纪念论文集. 北京: 科学技术出版社. 1995, 98—102]
- [9] Pin N. Co occurrence and microhabitat of *Acanthopagrus latus* [C]. Proceedings of Symposium in memory of the 10 years foundation of the Chinese Parasitological Society, Chinese Zoological Society. Beijing: Science press. 1995, 98—102 [颜培辉. 池养黄鳍鲷单殖吸虫生态研究 II, 群落的空间特征及种间关系. 中国动物学会寄生虫专业学会成立十周年纪念论文集. 北京: 科学技术出版社. 1995, 98—102]
- [10] Rohde K. Intra and interspecific interactions in low density populations in resource rich habitats [J]. *Oikos*, 1991, **60** (1) : 91—104

SPATIAL DISTRIBUTION OF MONOGENEANS AND COPEPODA ON GILLS OF BULLHEAD CATFISH *PELTEOBAGRUS FULVIDRACO*

YAO Wei Jian

(Institute of Hydrobiology, The Chinese Academy of Sciences Wuhan 430027)

Abstract: The microhabitats of two groups of parasites, i. e. monogeneans and copepods, on gills of the bullhead catfish *Pelteobagrus fulvidraco* (Richardson) were studied in this paper. The gill arches were numbered 1 to 4 from outside to inner side, and each arch was divided into three regions, i. e. ventral, middle and dorsal. Each gill filament was divided into three segments: distal, middle and proximal. The difference in abundance between the right gill arch and the left was compared using Wilcoxon matched pairs test and no significant difference was found for monogeneans and copepods, respectively. The abundance on 4 different gill arches, 3 different gill regions and 3 different gill filament segments was analyzed by using a one-way ANOVA. The number of the two groups of parasites on the fourth gill arch were both significantly lower than on the other three. The abundance on the middle region of the gill arch was significantly higher than on the ventral and the dorsal for the two groups of parasites. The abundance of monogeneans on the proximal segment of the gill filament was significantly lower than on the distal and the middle. However, the abundance of copepods on the distal was significantly higher than on the middle and the proximal. The analysis of the distribution of the two groups of parasites in different regions showed that the abundance of the two groups of parasites on the middle was the highest in the three regions, suggesting that there was no apparent competition in this habitat. Furthermore, the possible causes of the difference of abundance in different regions were discussed.

Key words: Monogeneans; Copepods; *Pelteobagrus fulvidraco*; Spatial distribution