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ANALYSIS OF UP-REGULATED GENES IN CAENORHABDITIS ELEGANS TREATED
WITH FORMALIN

CHEN Xing-Tao"? and WANG Gui-Tang'

(1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan
430072; 2. Graduate School of the Chinese Academy of Sciences, Beijing 100049)

Abstract: Caenorhabditis elegans, as a good model organism, has been used in the study of resistant mechanism against
anthelmintics. On the other hand, formalin has been widely used in prevention and cure of fish parasites. However,
many parasites generate resistance to formalin because of long term application. In the present study, techniques of
suppression subtractive hybridization and dot blot hybridization were applied to analyze the gene expression alteration
in C. elegans after formalin stimulation. C. elegans was serially cultivated in medium containing 800ppm formalin for
one month. The worms growing in medium containing formalin was served as experimental group while those growing
in normal medium as control group. Total RNA was extracted; mRNA was purified and reversely transcribed into cDNA.
Forward suppression subtractive hybridization was used to deduct the cDNA contained in the control group out of the
experimental group to enrich differential expression genes. Then, dot blot hybridization was used to further screen the
up-regulation genes after formalin stimulation. The control cDNA and subtractive cDNA libraries were employed as
probes, respectively, to hybridize with PCR product of the subtractive clones. It was found that 161 out of 676 gene
clones showed evident expression discrepancy, and then they were sequenced after dot blot hybridization. BLAST
analyses indicated the following genes up-regulated: (1) apoptosis related genes, encoding mitochondrial respiratory
chain related proteins, protein SGT-1 containing TPR motif, heat shock proteins, oxidative stress related proteins, en-
docytosis related proteins, DNA duplication and reparation related proteins and other important apoptosis related pro-
teins; (2) genes encoding important transcription regulation factor and signal transduction related proteins, for example,
transcriptional activation factor FosB/c-Fos, G protein, cyclin B, Ca-binding protein, and nucleosome assembly protein
NAP-1; (3) genes participating in energy, protein, fat and amino acid metabolisms; and (4) some genes encoding un-

named proteins. It indicates that, besides inducing apoptosis, formalin also impacts C. elegans’ cell metabolism.
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