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Abstract: Aristichthys nobilis (bighead carp) is a commercially valuable fish with a natural range extending
from southern China to the Amur River. Dams interfere with spawning migrations and reproduction in wild
populations has declined and effective fish passages are needed. To obtain data for the design of effective
fish passages for A. nobilis, a laboratory study of the swimming ability of juvenile A. nobilis was conducted
in a flume-type respirometer. Critical swimming speed (U.,;) was determined at five temperatures (5, 10, 15,
20 and 25°C) and U, increased significantly (P<0.05) with increasing temperature, reaching a maximum of
7.01 BL/s (1.19 m/s) at 25°C. The physiological stress caused by swimming to fatigue was assessed by
measuring serum levels of total protein (TP), blood glucose (Glu) and triglyceride (TG) before and after fa-
tigue at 5, 10, 15, 20 and 25°C. At fatigue, serum levels of TP, Glu and TG were significantly higher (P<0.05)
than before fatigue. Furthermore, when the water temperature was below 15°C, serum levels of TP, Glu and
TG tested at fatigue were significantly higher than those tested at fatigue in water above 15°C. This investi-
gation provides data on the physiological response of A. nobilis to exercise fatigue and the effect of envi-
ronmental stress produced by suboptimal temperature. Results will contribute to the fields of fish physiology

and conservation management and provide information valuable for designing effective fish passages.
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Aristichthys nobilis (bighead carp) is native to the
large rivers and associated floodplain lakes of eastern
Asia, with a natural range extending from southern China
to the Amur River "', Migration occurs during spawning,
overwintering and feeding. Because of its high growth
rate, A. nobilis is a lucrative aquaculture fish. However, a
decline in spawning has led to decreased wild popula-
tions and regulations have been imposed on fishing. In-
tensive re-stocking and habitat restoration programs have
been implemented as well as regulations requiring that
all indigenous migratory fish species be able to pass
dams constructed on the Yangtze River.

Protocols for testing swimming performance are
well-established and the resulting data are of interest to
fish physiologists because they provide design criteria
for construction of fish passages. Many factors affect the
swimming ability of fish, including morphology, tem-
perature, salinity, feeding, and food deprivation .
Investigators have demonstrated that the physiological
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stress level of aquatic animals can be indicated by
changes in swimming ability [*~*/. Testing the swimming
performance of fish provides important information on
stress response to flow rate, temperature and pollution "
and can be used to determine the optimal habitat for a
particular fish species .

Measurement of fish swimming performance is based
on fish swimming against the flow of water in a swim
channel under specified conditions. Monitoring oxygen
consumption during the tests provides data on the meta-
bolic response to exercise under those conditions ',
Critical swimming speed (U,y;) is determined to estimate
maximum swimming speed and maximum metabolic rate
(MMR) is determined to estimate maximum oxygen
consumption of test fish !'*~'"). Studies have shown that
there is an optimal temperature for swimming and that
performance declines and metabolic stress increases as
water temperature deviates from optimal R
at exhaustion and the resulting physiological stress
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limit fish migration in streams and passage through
fishways *°221 Exertional stress impairs swimming
performance and, after exhaustion, a recovery period is
necessary 1,

Few investigations have reported on the physiological
response of swimming to fatigue at different tempera-
tures, but this information is essential for characterizing
optimal habitat and designing effective fish passages. In
this study, physiological stress was indicated by measur-
ing serum levels of TP, Glu and TG before and after ex-
haustion at five temperatures (5, 10, 15, 20 and 25°C).
These temperatures were chosen because they represent
the normal range of temperatures over an annual cycle in
the pond where the fish were reared. Study results indi-
cate the optimal temperature for swimming and will be
useful for assessing swimming ability and determining
suitable habitat conditions for 4. nobilis. These new data
will also provide information to support the design of
effective fishways.

1 Materials and Methods

1.1 Test Fish

A. nobilis [body length = (19.57+0.53) cm; weight =
(156.59+14.57) g] were purchased from the Fisheries of
Yidu (Yichang City, China) in March 2011, and kept in
dechlorinated water at (5.0+1.0)°C. The dissolved oxy-
gen was maintained at >6.0 mg/L, and a natural photope-
riod was used. The fish were fed once every two days
and uneaten food and feces were removed. The fish were
fasted for 48h prior to testing. Temperature was con-
trolled with a submersible heater and increased by
(2—3)°C per day until the appropriate test temperature
was reached. The temperature was held constant for at
least 48h and fish were acclimated in the respirometer for
24 h before testing began.
1.2 Experimental apparatus

The U, tests were conducted in a temperature-
controlled flume-type respirometer with a swimming
chamber of 65 cmx25 cmx25 cm (LxWxH) (patent
number, ZL.201020136105.7). The respirometer also
includes sensor mounts for temperature and dissolved
oxygen. The flow rate was measured with a current me-
ter (Vectrino, Nortek) and dissolved oxygen was meas-
ured using a dissolved oxygen meter (Hach, USA). Flow
rate was controlled with a propeller driven by a 350 watt
variable-speed motor and giving a water velocity range
of 0.15—1.56 m/s.
1.3 U, tests

Five to eight bighead carp were tested in each trial and
each fish was tested only once. A single fish was placed
in the swim chamber maintained at the testing tempera-
ture and allowed to acclimate to a low current velocity
(about 0.15 m/s). The velocity was subsequently raised in
1 BL increments every 30 min until the fish was ex-
hausted. The test fish was considered to be exhausted

when it did not resume swimming after being brought
back to the front of the swimming channel three times
using a net. U,;; was calculated as described by Brett (241,
1.4 Serum Samples

To measure approximate initial serum levels of TP,
Glu and TG in exhausted fish, before-fatigue serum sam-
ples were taken from 5 individuals before testing. After
fatigue, serum samples were withdrawn immediately.
Blood samples were collected from the caudal blood
vessel and serum was obtained by centrifuging the sam-
ples at 3000xg. The samples were stored at 4°C and ana-
lyzed within 48h. TP, Glu and TG were determined using
a biochemical analyzer (AU7100, Hitachi, Japan).
1.5 Tail beat frequency (TBF) analysis

TBF was determined by counting the number of com-
plete tail beat cycles in 1min. One tail beat was defined
as caudal fin maximum extension to one side, oscillation
to the opposite side, and return to original position.
1.6 Data analysis

Statistical analyses were performed using the SPSS
software package. The significance of the regression was
tested using one-way analysis of variance (ANOVA).
Differences were considered to be significant at P<0.05.
The results are given as mean + standard error of the
mean (SEM).

2 Results

2.1 U, tests

The effect of temperature on U, is shown in Fig. 1.
The results indicated that U,,;; increased with temperature
and the maximum Uy was 7.01 BL/s (1.19 m/s) at 25°C.
There was little variation in U below 15°C (P>0.05),
but the differences were significant between 5°C to 15°C
and 15°C to 25°C (P<0.05).
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Fig. 1 Effect of temperature on Uci. A-Uei, BL/s; B-Usi,, m/s
Values without a common superscript (a, b) are significantly dif-
ferent (P<0.05)

Qo values, indicating the sensitivity of U to
changes in temperature, were determined using the equa-
10

tion Q= (U, /U;))">"1, where U, and U, were the
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critical swimming speeds for temperatures 77 and 75. The
Qo values for U,y between the temperatures ranges
5—10C, 10—15C, 15—20C and 20—25°C were 1.19,
1.19, 1.90 and 1.13, respectively. There was no significant
difference between Q;q values at different temperatures.
2.2 TBF

The relationship between fish TBF and swimming
speed at different temperatures is shown in Fig. 2. A lin-
ear relationship was observed between TBF and swim-
ming speed (P<0.01). TBF is a reliable indicator of en-
ergy cost during steady swimming . TBF increased
with swimming speed at a given temperature, but the
relationship was not temperature-dependent. The rela-
tionship between TBF and the swimming speed is de-
scribed by the following equation: T7BF =0.67U
(BL/s)+0.93, R* =0.98, P<0.01,n =21
2.3 Serum analysis

Serum levels of TP, Glu, and TG before and after fa-
tigue at different temperatures are shown in Figure 3.
Changes in serum levels of TP and Glu during swimming
were similar for before and after fatigue fish. Serum le-
vels of TP, Glu and TG were increased significantly after
fatigue at all test temperature. Both before and after fa-
tigue, TP and Glu levels decreased while TG levels in-
creased as temperature increased. And below 15°C, the
changes in serum levels of TP, Glu and TG were sig-
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nificantly larger than at temperatures above 15°C.

3 Discussion

3.1 Swimming performance

In the fixed swimming speed tests, the fish swim
against flow until exhausted and the exertion produces
physiological stress *%. In tests of swimming capability,
step times of 20—60min and speed increments of 1/9-1/4
full range are used to determine U,y O In this study, the
step time was 30 min and the speed increment was 1 BL/s.

Swimming capability is affected by temperature
because temperature directly affects physiological
function " '®2-27 4 nobilis is a warm-water fish and
the most suitable temperature for this species is
20—28°C. Our results support this view and quantify the
effect of temperature on Ug;. The effect of water tem-
perature on the Uy of juvenile A. nobilis is minor, given
that the Q,q is less than 2. Within this temperature range
(15—25°C), Qo declined, possibly because the thermal
optimum is approached *. The effect of temperature on
fish swimming performance is relate to the physical
characteristics of the water (such as viscosity and density),
and also affects ATP enzymes in muscle tissue "**") the oxy-
gen capacity of the blood, and energy expenditure . Further
experiments would be needed to test the physiological
response to exercise to exhaustion.

The caudal fin propels the fish against the counter
flow and energy expenditure increases with flow rate.
TBF increased with swimming speed at all temperatures
and the difference was significant (P<0.01), but tem-
perature had no detectable effect on TBF.

3.2 Physiology

Generally, TP level is used as a health indictor and for
nutritional analysis in fish. Glu is the immediate source
of metabolic energy and therefore is used to assess
physiological response. A stable Glu level is important
for maintaining normal activity. TG, produced by fat me-
tabolism, is also an important metabolic index "%. Serum
levels of TP, Glu and TG increased significantly after
swimming to fatigue. Fish metabolism is affected by
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Fig. 3 Effect of temperature on TP (A), Glu (B), and TG (C) levels, before and after fatigue



508

38

stress ¥ and the conversion rate of protein and glucose

are known to decrease after exercise.

Dissolved oxygen concentration is the primary factor
influencing physiological stress in fish **. At fatigue,
low blood oxygen limits aerobic metabolism and me-
tabolism is mainly anaerobic, impeding transfer of TP,
Glu and TG and causing the observed increases in serum
levels of TP, Glu and TG. When water temperature was
below 15°C, the increase in serum levels of TP, Glu and
TG were significantly higher than at temperatures above
15°C. The results suggest that swimming at temperatures
lower than 15°C produces greater physiological stress for
A. nobilis. TP, Glu and TG levels could be used as indi-
cators for physiological and ecological stresses in
changing environments, and the mechanisms underlying
the physiological changes in exercise capacity require
further research.

To summarize, sub-optimal water temperature is an
environmental stress affecting physiological condition
and swimming capability. Appropriate flow rate and
temperature improve physiological suitability and, ulti-
mately, swimming ability. Quantitative information about
the effect of environmental variables on swimming capa-
bility is crucial for characterizing optimal habitat and for
designing effective fish passages.
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