

DOI: 10.3724/SP.J.1035.2010.00088

厚颌鲂和圆口铜鱼耗氧率与窒息点的测定

孙宝柱^{1,2} 黄 浩³ 曹文宣¹ 王剑伟¹ 谭德清¹

(1. 中国科学院水生生物研究所, 武汉 430072; 2. 中国科学院研究生院, 北京 100049;
3. 湖北生物科技职业学院, 武汉 430070)

摘要: 用封闭静水式装置测定了体重 2.3—4.7 g 厚颌鲂幼鱼的耗氧率和窒息点, 用封闭静水式和封闭流水式装置测定了体重 9.9—55.1 g 圆口铜鱼的耗氧率和窒息点。结果表明: 在 15—27℃ 条件下, 厚颌鲂的耗氧率随着温度的升高而升高, 耗氧率与水温呈线性关系; 在水温 24.8℃ 时厚颌鲂的窒息点为 $(0.91 \pm 0.08) \text{ mg/L}$ 。在水温 23—27℃、封闭静水实验条件下, 圆口铜鱼的耗氧率随体重增加而降低, 两者呈指数关系; 圆口铜鱼耗氧率昼夜变化明显, 夜间耗氧率大于白天, 推测圆口铜鱼夜间活动较多。在水温 24.5—26.0℃ 条件下, 体重 21.8—46.3 g 圆口铜鱼的窒息点变幅较小, 平均 $(1.14 \pm 0.23) \text{ mg/L}$ 。研究表明两种鱼都为耗氧率和窒息点较高的鱼类。

关键词: 厚颌鲂; 圆口铜鱼; 耗氧率(OCR); 窒息点(AP)

中图分类号: S965.1 文献标识码: A 文章编号: 1000-3207(2010)01-0088-06

厚颌鲂(*Megalobrama pellegrini*)隶属于鲤形目、鲤科、鮈亚科、鲂属, 分布于长江上游干流及岷江、沱江、赤水河、嘉陵江、乌江等主要支流的中下游, 产黏性卵, 为定居性鱼类, 是长江上游鱼类中个体较大、经济价值较高的种类^[1, 2]。一些学者对厚颌鲂的年龄结构与生长^[3]、人工繁殖及胚胎发育^[4]、营养成分^[5]等很多方面进行了深入研究。

圆口铜鱼(*Coreius guichnoti*)隶属于鲤形目、鲤科、鮈亚科、铜鱼属。常见于长江上游干流、嘉陵江中下游、沱江、岷江下游、金沙江下游、乌江下游等水系, 产漂流性卵, 为河道洄游性鱼类, 是长江上游主要经济鱼类^[1]。已对圆口铜鱼的食性^[6]等生物学方面及鱼病^[7]等进行了初步研究。

耗氧率和窒息点是鱼类生理学研究中一个比较重要的内容。尤其窒息点是不同鱼类对溶氧量的要求和对低氧的耐受力的重要参数。关于鱼类耗氧率和窒息点的测定, 国内外学者进行了很多研究。对于野生圆口铜鱼耗氧率的研究仅郑曙明^[8]有报道,

但没有测定窒息点。而对于驯养圆口铜鱼的耗氧率和窒息点研究未见报道。对于驯养的和野生的厚颌鲂耗氧率和窒息点的研究均未见报道。厚颌鲂和圆口铜鱼都为长江上游特有鱼类。本实验的目的是获得这两种鱼耗氧率和窒息点的基本参数, 以便为这两种鱼类的人工驯养和运输提供参考, 并探讨它们的生活习性不同在耗氧率和窒息点生理指标上是否有差异。

1 材料与方法

1.1 实验材料

厚颌鲂取自中国科学院水生生物研究所鱼类养殖实验室。为同一批人工繁殖的厚颌鲂。从中选取 50 尾作为实验鱼, 暂养在 $1.20 \text{ m} \times 1.00 \text{ m} \times 0.45 \text{ m}$ 的控温水族箱内。鱼体重范围为 2.3—4.7 g, 平均体重 3.5 g。实验在中国科学院水生生物研究所鱼类生态与资源保护科组实验室进行。

圆口铜鱼取自中国科学院水生生物研究所位于

收稿日期: 2009-05-05, 修订日期: 2009-10-01

基金项目: 中国长江三峡工程开发总公司生态与环境保护科研项目(0714091); 国务院三峡工程建设委员会办公室生态环境项目(SX2006-013); 国家自然科学基金资助项目(50679095)资助

作者简介: 孙宝柱(1984—), 男, 河北省承德人; 在读硕士研究生; 主要从事鱼类生态学与生理学研究。E-mail: baozhu.ok@ihb.ac.cn

通讯作者: 王剑伟, E-mail: wangjw@ihb.ac.cn

四川省泸州市长江上的船体网箱实验基地。于2008年5月在长江干流泸州江段捕捞了3000尾野生圆口铜鱼在船体网箱中进行驯养,6月初以后驯养的鱼未见大量死亡或发病。2008年7月,从中选取50尾作为实验鱼,实验鱼从船体网箱运回实验室后暂养在直径2.5 m,高1 m的六边形便携鱼池内。鱼体重范围为9.9—5.1 g,平均体重32.5 g。实验在泸州市江阳区鱼种站实验室进行。实验用水为曝气的自来水。

1.2 耗氧率测定

参照其他作者的方法,采用封闭静水式和封闭流水式实验测定耗氧率^[9—11]。

封闭静水式耗氧率测定实验装置根据鱼的大小选用500、1000 mL的广口瓶作为呼吸室。实验前用称量法测定呼吸室加塞封闭后的体积。实验时塞紧瓶塞,倒置时不会有水渗出,以隔绝空气。测定室温下的耗氧率,将呼吸室置于一般水箱中。测定不同温度下的耗氧率,则将呼吸室置于控温水箱中。实验前先让实验鱼停食24 h。将4个装满实验用水的呼吸室放入水箱中,待水温与水箱中水温相同后开始实验。取3尾实验用鱼,分别移入呼吸室1、2、3中,每个呼吸室各1尾,然后塞紧瓶塞,同时迅速采集呼吸室4中的3个水样并固定溶氧,然后测定溶氧。2.5 h后打开呼吸室1、2、3,迅速采集各3个水样并固定溶氧,然后测定溶氧。本文采用Winkler碘量法测定溶解氧。实验结束时溶解氧一般为5—7 mg/L。实验结束后,从实验装置中取出实验鱼,滤纸吸去浮水,用0.1 g电子天平称量鱼的体重。其中不同温度下厚颌鲂的耗氧率、室温条件下不同体重圆口铜鱼的耗氧率用该法测定。

除上述静水式实验外,还用封闭流水式实验测定了圆口铜鱼的耗氧率。根据鱼的大小选用500、1000、5000 mL广口瓶作为呼吸室。将呼吸室置于水箱中进行温度控制,瓶口用橡皮塞盖紧封闭,完全排除气泡。橡皮塞上钻有2个孔,分别插入进、出水玻璃管,其中进水管通到呼吸室的底部,出水管稍突出橡皮塞。实验用水预先用充气泵充气,溶氧一般在8 mg/L以上(通常饱和),根据鱼体大小调节呼吸室中水流速度,出水的溶氧始终保持在4 mg/L(水温20.5—26.0℃)以上。实验开始前,先让其在呼吸室中适应2—3 h,待其呼吸平稳后开始实验。每隔2 h测定一次水温和进、出呼吸室水的溶解氧,持续12 h(昼夜变化24 h)。实验结束后,统计

流过的水流量,测定鱼体重。

1.3 窒息点测定

窒息点测定装置与封闭静水式耗氧率测定装置相同。实验时在每个呼吸室中放置1尾实验鱼,封闭。当实验鱼侧倒、呼吸刚停止或接近停止时,用虹吸法采3个水样,测定水中的溶氧;实验结束后测定鱼体重。

1.4 实验结果计算

$$\text{静水式耗氧率}(\text{mg/g}\cdot\text{h}) = C \times (I-O) / (W \times H)$$

$$\text{流水式耗氧率}(\text{mg/g}\cdot\text{h}) = (I-O) \times V / W$$

式中: I 、 O 为进、出水口的溶氧量(mg/L), V 为单位时间的流量(L/h), W 为鱼体重(g), C 为呼吸室容积(L), H 为测定时间(h)。

2 结果

2.1 封闭静水条件下水温与厚颌鲂耗氧率的关系

在封闭静水条件下,体重2.3—4.7 g的厚颌鲂,在15—27℃的控制水温条件下,耗氧率范围为0.28—0.82 mg/g·h。实验结果显示,温度对厚颌鲂的耗氧率有较为显著的影响,通过对耗氧率与温度的回归方程 $y=0.036x-0.281(R^2=0.669, P<0.01, n=15)$,表明随着温度的增高厚颌鲂的耗氧率也随之升高(图1)。

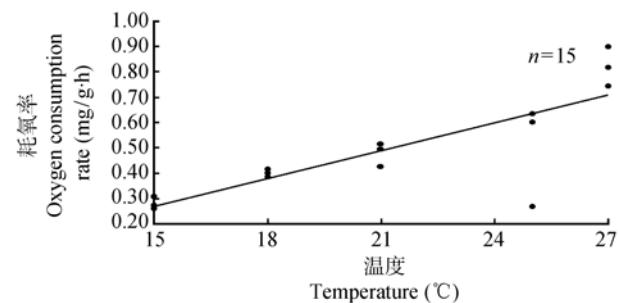


图1 封闭静水条件下温度与厚颌鲂耗氧率的关系

Fig. 1 The relationship of OCR and temperature of *M. pellegrini* in sealed-still water

2.2 厚颌鲂的窒息点

在封闭静水条件下测了12尾厚颌鲂的窒息点。在水温24.8℃条件下,体重1.3—3.2 g的厚颌鲂,窒息点范围为0.73—1.04 mg/L,平均值为(0.91±0.08) mg/L。对窒息点与体重进行相关性检验,在此体重范围内厚颌鲂窒息点的变化范围很小。

2.3 不同体重圆口铜鱼的耗氧率

在封闭静水条件下测了不同体重规格(21.8—

46.3 g)圆口铜鱼的耗氧率。在室温(水温 23—27℃)条件下的耗氧率范围为 0.64—0.18 mg/g·h。实验结果显示, 不同体重圆口铜鱼之间的耗氧率有较为显著的差别, 通过对圆口铜鱼体重与耗氧率的回归方程 $y=14.33x^{-1.08}$ ($R^2=0.545, P<0.01, n=21$), 表明圆口铜鱼体重与耗氧率呈负相关关系, 随着体重的增加圆口铜鱼的耗氧率呈下降的趋势(图 2)。

图 2 封闭静水条件下不同体重圆口铜鱼耗氧率的变动趋势
Fig. 2 The relationship between OCR and body weight of *C. guichcnodi* in sealed-still water

在封闭流水条件下测了 9 个不同体重规格圆口铜鱼的耗氧率。在室温(水温 20.5—21.5℃)条件下, 随着体重由 9.9 g 增加到 55.1 g, 耗氧率反而由 0.34 mg/g·h 下降到 0.09 mg/g·h(图 3)。统计分析结果呈现随体重增加而下降的趋势, 关系式为 $y=0.413x^{-0.63}$ ($R^2=0.910, P<0.01, n=9$)。在两种实验条件下圆口铜鱼的耗氧率都有随体重增加而下降的趋势。与封闭静水条件下相比, 在封闭流水条件下测定的耗氧率要低。

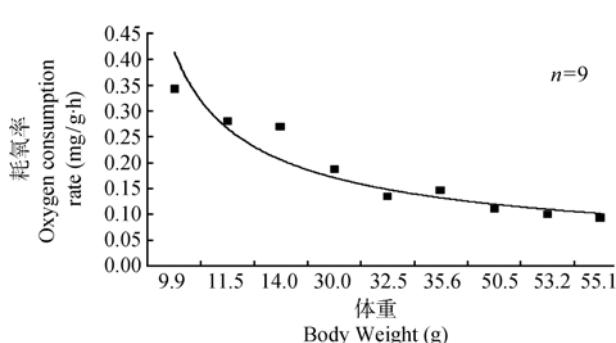


图 3 封闭流水条件下不同体重圆口铜鱼耗氧率的变动趋势
Fig. 3 The relationship of OCR and body weight of *C. guichcnodi* in sealed-flowing water

2.4 圆口铜鱼的昼夜耗氧率

在封闭流水条件下, 测了 3 个不同规格(9.9—14.0 g)圆口铜鱼的昼夜耗氧率, 实验进行了 24h。在

室温(水温 24.5—26.0℃)条件下, 耗氧率的范围为 0.09—0.78 mg/g·h。

圆口铜鱼的耗氧率在 21 时最低, 在 3 时最高。耗氧率在全天的变化规律为早 9 时处于一个低潮, 然后随着时间的推移逐渐升高, 11 时达到一个小高峰, 然后再逐渐下降, 21 时降到全天最低值, 然后再升高, 午夜 3 时升到全天最高值(图 4)。白天 7 至 19 时的平均耗氧率为 0.30 mg/g·h, 夜间 19 至 7 时的平均耗氧率为 0.41 mg/g·h, 夜间的平均耗氧率为白天的 1.37 倍。

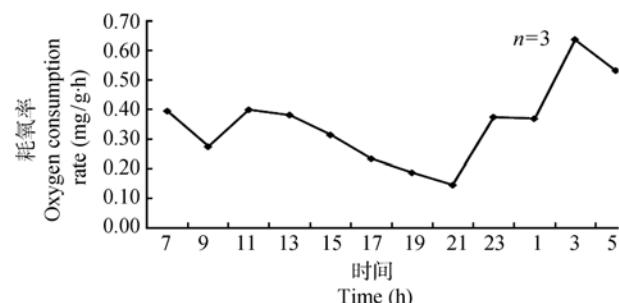


图 4 封闭流水条件下圆口铜鱼耗氧率的昼夜变动趋势

Fig. 4 The day and night fluctuation of the OCR of *C. guichcnodi* in sealed-fluid water

2.5 圆口铜鱼的窒息点

在室温(水温 24.5—26.0℃)条件下, 不同体重规格(21.8—46.3 g)圆口铜鱼的窒息点为 0.95—1.63 mg/L, 平均为 (1.14 ± 0.23) mg/L。由图 5 可以看出在此体重范围内, 圆口铜鱼窒息点的变化范围很小。

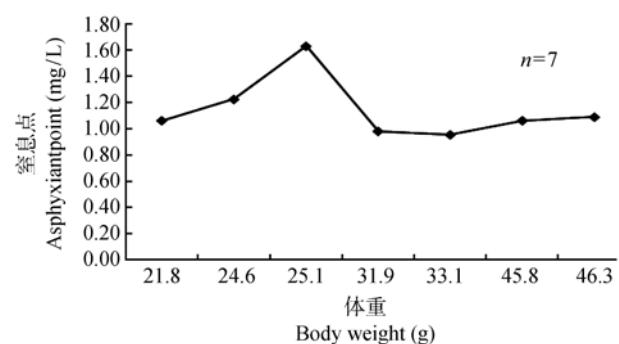


图 5 封闭静水条件下不同体重圆口铜鱼窒息点的变动趋势

Fig. 5 The relationship between AP and body weight of *C. guichcnodi* in sealed-still water

3 讨 论

3.1 耗氧率的昼夜变化

关于鱼类耗氧率昼夜的变化规律前人有很多报

道^[11—14], 一般认为鱼类代谢水平的昼夜变化有3种类型: 白天大于夜间、夜间大于白天、昼夜差异不明显^[13]。本实验结果表明, 圆口铜鱼的代谢水平属于第二种类型。有人认为鱼类耗氧率的昼夜变化代表着鱼类在自然环境中的活动周期, 耗氧率高时代表鱼类进食或进行其他活动^[13,14]。圆口铜鱼通常栖息在水流湍急的江河底层, 喜集群活动, 食性很广泛, 食谱中既有动物性食物, 也有植物性食物。黄琇等认为圆口铜鱼的食性为以动物性食物为主, 植物碎屑只是容易得到才被大量吞食的^[6]。但在长江上游泸州江段调查时发现当地渔民喜欢用发酵的豆腐钓圆口铜鱼, 说明圆口铜鱼对于植物性食物也是有所喜好的。根据观察养殖圆口铜鱼的摄食情况, 圆口铜鱼的摄食状况一般是上午吃食状况不如晚上, 尤其投喂浮性饲料。上午基本不吃, 下午略吃一些但吃食不剧烈, 而晚上十点后大部分鱼会浮出水面抢食。而从实验结果得知圆口铜鱼的耗氧最大值是在凌晨3时左右, 推测原因可能为摄食后的消化行为导致大量耗氧的结果。

3.2 窒息点

研究鱼类的窒息点, 弄清鱼类对水中溶氧的最低需求量, 在养殖生产实践中是非常重要的。本实验测得体重1.33—3.23 g的厚颌鲂, 在水温24.8℃条件下窒息点为0.73—1.04 mg/L。体重21.8—46.3 g的圆口铜鱼, 在23—27℃水温范围内的窒息点为0.95—1.63 mg/L。在相近体重和水温条件下, 厚颌鲂、圆口铜鱼的窒息点显著高于草鱼(0.24 mg/L)、鳙鱼(0.19 mg/L)、白鲢(0.26 mg/L)、青鱼(0.63—0.89 mg/L)、鲤鱼(0.30—0.34 mg/L)、鲫鱼(0.11—0.13 mg/L)^[10,15]等常规养殖种类; 与中华倒刺鲃(0.47 mg/L)、白甲鱼(0.70 mg/L)、翘嘴鮊(0.43—0.57 mg/L)、瓦氏黄颡鱼(0.91 mg/L)、黄颡鱼(0.75 mg/L)^[16,17]、长薄鳅(0.98—1.16 mg/L)^[18]等江河鱼类相比, 圆口铜鱼、厚颌鲂的窒息点也较高, 其中圆口铜鱼窒息点高于长薄鳅, 而厚颌鲂的窒息点略低于长薄鳅, 可见厚颌鲂和圆口铜鱼都为窒息点较高的鱼类。我们在长江上游特有鱼类的人工驯养繁殖研究中发现, 圆口铜鱼、长薄鳅、厚颌鲂三种鱼类中圆口铜鱼最难养, 长薄鳅次之, 厚颌鲂相对较易, 这可能与这几种鱼类耐低氧能力有关。驯养中还发现, 凌晨是一天中水体溶氧较低的时刻, 在驯养这些特有鱼类时需要特别注意观察, 如发现浮头要及

时增氧。

除种类外, 鱼类窒息点的高低还可能与体重、温度、性腺成熟、水的理化特性、氧张力等因素有关^[19]。本研究表明, 厚颌鲂、圆口铜鱼的窒息点不受体重影响, 这与王剑伟^[20]对稀有𬶋鲫的研究结果相似。有学者认为, 窒息点与体重呈负相关关系, 理由是随着个体的增长, 鱼的耐低氧能力增强, 即适应环境的能力更强^[9]。由于本研究使用的鱼体重差异不大, 因此关于圆口铜鱼、厚颌鲂窒息点与体重的关系有待进一步研究。

参考文献:

- [1] Ding R H. The fishes of Sichuan, China [M]. Chengdu, Sichuan Publishing House of Science and Technology. 1994, 238—240 [丁瑞华. 四川鱼类志. 成都: 四川科学技术出版社. 1994, 238—240]
- [2] Cao W X. Morphologic compare of *Megalabrama anblycephala* Yih and *Megalabrama terminalis* (Richardson) in Liangzihu Lake [J]. *Hydrobiology Journal*, 1960, 1: 57—78 [曹文宣. 梁子湖的团头鲂与三角鲂. 水生生物学集刊, 1960, 1: 57—82]
- [3] Li W J, Wang J W, Xie C X. Age structure and growth characteristics of *Megalobrama pellegrini* - an endemic fish living only in upper reaches of Yangtze River [J]. *Journal of Fishery Sciences of China*, 2007, 14(2): 215—222 [李文静, 王剑伟, 谢从新, 等. 厚颌鲂的年龄结构及生长特性. 中国水产科学, 2007, 14(2): 215—222]
- [4] Wang J W, Tan D Q, Li W J. Preliminary studies on artificial propagation and embryonic development of *Megalobrama pellegrini* [J]. *Acta Hydrobiologica Sinica*, 2005, 29(2): 130—136 [王剑伟, 谭德清, 李文静. 厚颌鲂人工繁殖初报及胚胎发育观察. 水生生物学报, 2005, 29(2): 130—136]
- [5] Tan D Q, Wang J W, Dan S G, et al. The ratio of muscle to body and analysis of the biochemical composition of muscle in *Megalobrama pellegrini* [J]. *Acta Hydrobiologica Sinica*, 2004, 28(1): 17—22 [谭德清, 王剑伟, 但胜国, 等. 厚颌鲂含肉率及生化成分的分析. 水生生物学报, 2004, 28(1): 17—22]
- [6] Huang X, Deng Z L. Study on the food of *Coreius heterodon* at Gezhouba in Yichang [J]. *Freshwater Fisheries*, 1990, 6: 11—14 [黄琇, 邓中舜. 宜昌葛洲坝下圆口铜鱼食性的研究. 淡水渔业, 1990, 6: 11—14]
- [7] Zhang Q Z, Chen L D. Histopathological observation of *Coreicus guichenoti* infected by *Ichthyophthirius multifiliis* Fouquet, 1876 [J]. *Journal of Southwest China Normal University (Natural Science)*, 2005, 30(6): 1112—1114 [张其中, 陈丽达. 患小瓜虫圆口铜鱼的组织病理学观察. 西南师范大学学报(自然科学版), 2005, 30(6): 1112—1114]

- [8] Zheng S M, Wu Q. The study on the oxygen consumption of *Coreicus Heterodon* and *Coreicus Guichenoti* [J]. *Journal of Sichuan Institute of Animal Husbandry and Veterinary Medicine*, 1998, **12**(3—4): 6—8 [郑曙明, 吴青. 铜鱼和圆口铜鱼耗氧率的研究. 四川畜牧兽医学院学报, 1998, **12**(3—4): 6—8]
- [9] Guan J, Liu X Z, Ma X K, et al. Study on the oxygen consumption rate and asphyxiation point of *Cynoglossus semilaevis* *Günther* larvae [J]. *Marine Fisheries Research*, 2006, **27**(2): 80—86 [关健, 柳学周, 马学坤, 等. 半滑舌鳎幼鱼耗氧率和窒息点的研究. 海洋水产研究, 2006, **27**(2): 80—86]
- [10] Chen N S, Shi Q F. The oxygen consumption rate of Grass carp, Silver carp and Variegated carp [J]. *Acta Zoologica Scinica*, 1955, **7**(1): 43—57 [陈宁生, 施琼芳. 草鱼、白鲢和花鲢的耗氧率. 动物学报, 1955, **7**(1): 43—57]
- [11] Wang Y L, Zhang Z P, Zhang Y P, et al. Preliminary studies on oxygen consumption rate of Red Sea Bream *Pagrosomus major* [J]. *Journal of Jimei University (Natural Science)*, 2002, **7**(3): 193—197 [王艺磊, 张子平, 张殷鹏, 等. 真鲷耗氧率的初步研究. 集美大学学报自然科学版, 2002, **7**(3): 193—197]
- [12] Wan C Y, Gao S B, Lin Y T, et al. Studies on oxygen consumption rate and suffocation point of *Megalobrama* fry [J]. *Reservoir Fisheries*, 1993, **65**(4): 7—9 [万成炎, 高少波, 林永泰, 等. 鲂鱼种耗氧率与窒息点的研究. 水利渔业, 1993, **65**(4): 7—9]
- [13] Gu R B, Xu G C, Wen H B. Studies on the oxygen consumption rate and asphyxiant point of *Hemibarbus maculatus* Bleeker [J]. *Journal of Shanghai Fisheries University*, 2006, **15**(1): 118—122 [顾若波, 徐钢春, 闻海波. 花耗氧率和窒息点的初步研究. 上海水产大学学报, 2006, **15**(1): 118—122]
- [14] Wang G X, Zhou J S, Qiang X M. Preliminary studies on oxygen consumption rate and suffocated point of *Brachymystax lenok tsinlingensis* [J]. *Chinese Journal of Zoology*, 2006, **41**(2): 72—75 [王高学, 周继术, 强晓鸣. 秦岭细鳞鲑耗氧率和窒息点的初步研究. 动物学杂志, 2006, **41**(2): 72—75]
- [15] Ye Y Z. Preliminary studies on the oxygen consumption rate, need of energy, asphyxiant point and breathe index of fry and fingerling [J]. *Acta Zoologica Scinica*, 1959, **11**(2): 117—135 [叶奕佐. 鱼苗、鱼种耗氧率、能需量、窒息点及呼吸系数的初步报告. 动物学报, 1959, **11**(2): 117—135]
- [16] Zhu H P, Huang Z H, Xie G, et al. Preliminary studies on the oxygen consumption rate and asphyxiant point of *Erythroculter ilishaeformis* (Bleeker) fry [J]. *Reservoir Fisheries*, 2003, **23**(4): 10—11 [朱华平, 黄樟翰, 谢刚, 等. 翘嘴红鲌鱼苗耗氧率和窒息点的初步研究. 水利渔业, 2003, **23**(4): 10—11]
- [17] Wan S L, Ge L, Zhang Y, et al. Oxygen consumption rate and suffocated concentration of *Pelteobagrus vachelli* and *P. fulvidraco* [J]. *Chinese Journal of Zoology*, 2005, **40**(6): 91—95 [万松良, 葛雷, 张杨, 等. 瓦氏黄颡鱼与黄颡鱼的耗氧率及窒息点. 动物学杂志, 2005, **40**(6): 91—95]
- [18] Zou G W, Luo X Z, Hu D G, et al. Study on the asphyxiant point and oxygen consumption rate of *Leptobatia elongate* (Bleeker) [J]. *Journal of Lake Science*, 1998, **10**(1): 49—54 [邹桂伟, 罗相忠, 胡德高, 等. 长薄鳅耗氧率与窒息点的研究. 湖泊科学, 1998, **10**(1): 49—54]
- [19] Li X J, Li A J, Peng X L, et al. At different salinities, compared analysis on rate of oxygen consumption, critical oxygen, point of asphyxiation to blackchin tilapia, nile tilapia and Israel red tilapia [J]. *Journal of Henan Normal University (Natural Science)*, 2007, **35**(2): 137—141 [李学军, 李爱景, 彭新亮, 等. 不同盐度下萨罗罗非鱼、尼罗罗非鱼和以色列红罗非鱼耗氧率、临界溶氧和窒息点的比较分析. 河南师范大学学报 (自然科学版), 2007, **35**(2): 137—141]
- [20] Wang J W. Acute effects of high concentration of dissolved free carbon dioxide and low dissolved oxygen on rare minnow [J]. *Acta Hydrobiologica Sinica*, 1995, **19**(1): 84—88 [王剑伟. 稀有𬶋鲫对高浓度二氧化碳和低溶氧的急性反应. 水生生物学报, 1995, **19**(1): 84—88]

STUDIES ON THE OXYGEN CONSUMPTION RATE AND ASPHYXIANT POINT OF *MEGALOBRAMA PELLEGRINI* AND *COREIUS GUICHNOTI*

SUN Bao-Zhu^{1,2}, HUANG Hao³, CAO Wen-Xuan¹, WANG Jian-Wei¹ and TAN De-Qing¹

(1. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049; 3. Hubei Vocational College of Bio-technology, Wuhan 430070)

Abstract: Both of *Megalobrama pellegrini* and *Coreius guichnoti* are endemic fish in the upper reach of Yangtze River (from Yichang to Yibin). The construction of the hydroelectric projects, such as the Gezhouba Dam, the Three Gorges Dam, and hydropower cascade exploitation in the Jinsha River, drastically modifies physical environment and regulates flow in the Yangtze River course. This causes the habitats fragmentation to fish, blocks their migration routes, and destroys their spawning grounds, leading to the severe negative impacts on the rare and endemic fishes of the Yangtze River. Due to these reasons, it is forecasted that the population of these two kinds of fish might decrease sharply in the future. It becomes very urgent to take suitable countermeasures for conservation and resource-recovery. The oxygen consumption rate (OCR) and asphyxiant point (AP) are the important physiological indexes to fish culturing and breeding. In this experiment, the OCR and AP of these two kinds of fish were investigated by means of determining the dissolved oxygen in water. The method of respiratory chambers which were self-made had been applied. Two kinds of these experiment apparatus were used, one was done in sealed-still water, the other was done in sealed-flowing water. The temperature in the sealed respiratory chamber could be controlled.

The oxygen consumption rate and the effect of body weight on the asphyxiant point of *Megalobrama pellegrini* were studied. The results demonstrated that, under the controlled temperature (15—27°C), the oxygen consumption rate of *M. pellegrini* increased while temperature rose, and decreased while body weight increased. The relationship between oxygen consumption rate and temperature can be described as $y=0.036x-0.281$ ($R^2=0.669$, $P<0.01$, $n=15$). The asphyxiant point decreased while body weight increased, but there was no significant difference ($P>0.05$). The oxygen consumption rate of this fish ranged from 0.28 mg/g·h to 0.82 mg/g·h. In the temperature of 24.8°C, the fish that weight 1.3—3.2 g had a mean asphyxiation point of (0.91 ± 0.08) mg/L and the range was 0.73—1.04 mg/L.

The day and night change of oxygen consumption rate was studied on *C. guichnoti*. The highest and lowest of the daily fluctuation of the oxygen consumption rate occurred at 3:00 and 21:00 respectively. The average oxygen consumption rate at night was much higher than that in the daytime. The result showed that this fish was more active at night. This phenomenon was identical with practice, and we found that this fish fed in night and slept in day. The fish that weight 21.8—46.3 g had a range of oxygen consumption rate from 0.64 mg/g·h to 0.18 mg/g·h under 23—27°C. The oxygen consumption rate decreased while the body weight of this fish increased. The relationship between oxygen consumption rate and body weight can be described as $y=14.33x^{-1.08}$ ($R^2=0.545$, $P<0.01$, $n=21$). The asphyxiant point of this fish was 0.95—1.63 mg/L, and the mean was (1.14 ± 0.23) mg/L. Both of these two fish had high oxygen consumption rate and asphyxiant point. The results showed that the ability of low oxygen endurance of these two fish were much feeble than that of other fish. The present study can provide the basis of rational stocking, water quality management, bait feeding and transportation of live fish in artificial culturing production.

Key words: *Megalobrama pellegrini*; *Coreius guichnoti*; Oxygen consumption rate (OCR); Asphyxiant point (AP)