

罗氏沼虾小触角表面结构的观察

曾 项 翔 李 琦

(海南大学, 海口 570228)

摘要: 罗氏沼虾的小触角是一类具附鞭的小触角。作者应用解剖镜和扫描电子显微镜观察了它的表面形态结构。发现它具有如下特征: 1) 内、外鞭极长, 外鞭另具一条附鞭, 而附鞭很短, 位于内外鞭之间; 2) 柄节具250根以上的羽状刚毛、少量的笋状刚毛与硬刺刚毛; 3) 内鞭、主鞭分节, 各节前缘环行分布着4—40根不等的软刺刚毛; 4) 附鞭系一凹槽结构, 槽内约着生着200多根化感刚毛; 5) 附鞭能纵向卷曲成圆筒状, 以包裹槽内的化感刚毛; 6) 化感刚毛分两段, 下为硬管段, 上为膜管段, 其中膜管壁极薄; 7) 凹槽近侧端的节段内还具有许多芽状的初生化感刚毛, 它们可发育成化感刚毛。因此, 罗氏沼虾小触角的表面形态迥异于以往报道的十足目甲壳动物小触角, 其附鞭构成嗅觉器官的主体结构, 且其本身具有独特的保护化感刚毛之方式。此外, 作者按形态学特征将已报道的十足目甲壳动物小触角分为蟹型、龙虾型、小龙虾型和对虾型四种类型, 而罗氏沼虾小触角则属于另一种类型——罗氏沼虾型。

关键词: 罗氏沼虾; 沼虾型小触角; 附鞭; 表面结构

中图分类号: Q959.223⁺.63; S917 文献标识码: A 文章编号: 1000-3207(2004)06-0613-09

十足目甲壳动物的小触角(第一触角)系嗅觉器官^[1,2], 其外鞭具有一类单纯性的化学传感器——化感刚毛^[3-7]。普遍认为, 这类传感器对摄食、生殖等行为具十分重要的作用^[8,9]。

有不少种类的十足目甲壳动物的小触角之外部形态被不同程度地研究过, 但被详细研究过的主要有美洲龙虾(*Panulirus argus*)^[10,11]、可口美青蟹(*Callinectes sapidus*)^[8]、阿拉斯加寄居蟹(*Pagurus alaskensis*)^[12]、中国对虾(*Fenneropenaeus chinensis*)^[13,14]、锯缘青蟹(*Scylla serrata*)^[15]以及凡纳滨对虾(*Litopenaeus vannamei*)^[16]等少数种类。从形态结构上看, 这些种类的小触角都仅具两条触角鞭(即内鞭与外鞭, 或称上鞭与下鞭)。然而, 已经知道, 沼虾属种类的小触角具有三条触角鞭, 即比上述种类多一条附鞭, 因而可以推测该属种类的小触角在形态学上可能大异于同目其他属的种类。

目前, 有关沼虾属种类小触角表面结构的研究工作在国内外均未见有详细报道。这类小触角之附鞭系何样结构、化感刚毛着生于何部以及化感刚毛有无特殊形态特征等诸多问题令人感兴趣, 因为弄

清楚这些问题将有助于进一步了解此类物种在嗅觉器官内部结构、嗅觉敏感性、气味物质的进入与清除以及在嗅觉信号传入途径上的特殊性等问题, 并对于丰富十足目甲壳动物小触角现有的形态学知识也具重要作用。为此, 作者选择沼虾属中材料来源较方便的罗氏沼虾(*Macrobrachium rosenbergii*)作为对象, 研究它们的小触角之表面结构尤其是附鞭和化感刚毛的外部形态特征。

1 材料与方法

1.1 供试动物 罗氏沼虾60尾(雄虾20尾, 雌虾40尾), 体长9.4—13.9cm, 体重10.7—77.6g。

1.2 实体显微镜研究方法 55尾虾的小触角用于实体显微镜观察, 其中部分样本用于测量或计数小触角长、柄长、内鞭、外鞭长及其分节数。

1.3 电子显微镜研究方法 5尾虾两侧小触角用于扫描电子显微镜观察。按常规方法处理样品。在JSM-T300扫描电镜下观察与拍照, 并依据照片比例尺测量和计算刚毛等的实际尺寸。

收稿日期: 2003-09-10; 修订日期: 2003-11-20

基金项目: 海南省教育厅基金(琼教高1998(28))资助

作者简介: 曾 (1951—), 男, 湖南省祁阳县人; 教授; 主要从事水产动物生理学教学与研究。

研究中承蒙同事王红勇副教授、赖秋明副教授和王林桂同志大力支持, 谨致谢忱!

2 结果与分析

2.1 小触角基本形态

与其他已报道的十足目种类一样, 罗氏沼虾的小触角即第一触角, 系头部第一对附肢, 也由三个柄节和内、外两鞭构成, 各柄节之间以及第三柄节与内、外鞭之间呈关节相连, 且不具有明显的性两型性。但罗氏沼虾小触角的特点是, 小触角长约为体长的 1.6 倍, 其内、外鞭十分细长, 而外鞭另具有一条很短的附鞭(图 1, 图版 I : 1)。这个特征迥异于同目其他属的种类。供试动物中多数个体的内、外鞭已不同程度被折断, 这可能因沼虾好斗所致。此外, 内鞭不能活动, 外鞭可由前向外向后在 0°—150°的范围内随意活动, 而附鞭则随外鞭被动活动。

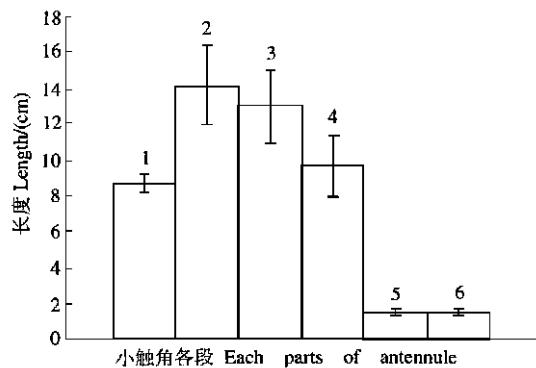


图 1 罗氏沼虾小触角各段长度比较

Fig. 1 The comparison in lengths of different sections of *M. rosenbergii* antennules

1. 体长 Body length(26) ; 2. 小触角 Antennule(24) ;
3. 外鞭 Outer flagellum(23) ; 4. 内鞭 Inner flagellum(23) ;
5. 附鞭 Appendage flagellum(23) ; 6. 柄部 Scape

(6) (括号内数字系样本数 Numbers in brackets are the ones of the samples measured)

2.2 柄部

柄部长约为体长的 0.2 倍, 是小触角较大的结构, 其中第一柄节背侧凹陷, 形成一个浅眼窝。第一、二、三柄节的长度比例依次约为 25:11:10。

沿柄部边缘以及内、外鞭的连接基部等处均着生着一类典型的羽状刚毛(图 2, 图版 I : 2)。这种刚毛的形态与作者在凡纳滨对虾小触角上观察到的羽状刚毛基本相似^[16], 刚毛粗长, 生于关节窝, 整个毛杆两侧具大量细毛。第一、二柄节背侧前部还着生着另一类羽状刚毛。其细毛较少且其着生无规律, 毛杆基段无细毛, 其中的一些刚毛组成垂直向上着生的毛簇。因这些刚毛明显具有细毛, 故将其也归入羽状刚毛类。

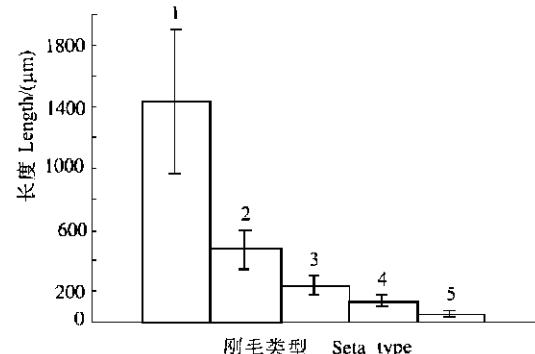


图 2 罗氏沼虾小触角几类刚毛长度的比较

Fig. 2 The comparison in lengths of several setae

1. 羽状刚毛 Plumose seta(9); 2. 硬刺刚毛 Hard thorn seta(5); 3. 化感刚毛 Aesthetasc (18); 4. 竹状刚毛 Bamboo shoot seta(8); 5. 软刺刚毛 Soft thorn seta(43) (括号内

数字系样本数 Numbers in the brackets

are the ones of the samples measured)

在第三柄节的褶上, 列生着十余根刚毛, 其含一类硬刺刚毛和一类形状特殊的竹状刚毛。根据电镜照片观察, 硬刺刚毛为一类中空、壁厚、顶端封闭的具坚硬感的较长刚毛, 而竹状刚毛为一类较粗短的刚毛, 其顶段形似毛笔头(图版: 3)。另外, 在第一柄节背面中部也可观察到若干根硬刺刚毛(图版: 4)。

2.3 内鞭

内鞭呈蓝色, 细长, 约为体长的 1.1 倍。内鞭分节, 其各节由基部向顶端方向逐渐变长, 同时其直径也随之逐渐趋小。内鞭各节均具软刺刚毛(图版 I : 5)。这些刚毛多为短刺状, 根据它们较粗短以及常呈各种流线弯曲状, 故判断其硬度显著低于硬刺刚毛。软刺刚毛多位于各节前缘, 围绕内鞭呈环行分布。每圈的刚毛数量为 4—40 根不等, 内鞭近端(即基部方向)的刚毛数量相对少而短, 而远端刚毛则相对多而长。软刺刚毛的着生窝一般呈“U”形, 一个着生窝仅具一根刚毛(图版 I : 5), 但也能看到每窝具两三根刚毛的现象。

2.4 外鞭

外鞭呈“Y”形, 由主鞭和附鞭所组成。主鞭白色, 略带透明感, 比内鞭略粗。主鞭长约为体长的 1.5 倍、内鞭的 1.3 倍、附鞭的 8.6 倍(图 1, 图版 I : 1)。附鞭连于主鞭近基部的内侧缘, 明显较主鞭短小, 在生活状态时呈半透明状, 是罗氏沼虾小触角的特征性结构。

从整体上看, 主鞭外形与内鞭无明显差异, 其刚毛种类、刚毛数量、着生部位以及着生窝形态等也与

内鞭的情形基本相同。附鞭在整体上则明显较内鞭和主鞭柔软, 也分节。在附鞭腹面, 从距基部约1/4以远处至附鞭顶端的一段为一个逐渐趋深的凹槽状构造, 槽内生着大量呈横排排列的一类特殊刚毛簇(图版I: 6)。凹槽面朝向下方, 附鞭顶端呈半圆勺状(图版II: 7)。根据以往文献可知^[1-8], 甲壳动物化刚毛在形态学上同时具有如下主要特点: 1) 数量大; 2) 刚毛成簇且仅着生于外鞭; 3) 具横排排列的着生列阵。在罗氏沼虾, 附鞭是主鞭的组成部分, 其凹槽内的特殊刚毛簇完全符合化刚毛的特征。因此, 作者认为凹槽中的特殊刚毛应是罗氏沼虾的化刚毛。

罗氏沼虾化刚毛的形态结构十分特殊, 它呈两段式结构(图版II: 8, 9), 上段为一管壁极薄的柔软膜管结构, 而下段为一管壁很厚(约2~4μm)的硬管结构。膜管段不分节, 硬管段则一般分5~9节左右(图版II: 8)。膜管下部套接于硬管中部(图版II: 9)。膜管虽极薄, 但在未固定标本中, 可见其充胀挺拔, 而在扫描电镜样品中其管壁常瘪塌贴附于一体, 从照片上不能判断其是否具有顶孔。另外, 从整体上看, 大多数的化刚毛在形态上是完好无缺的。

化刚毛约从附鞭的第18~36节范围内开始出现, 具化刚毛的节数约为27节, 每节具2排化刚毛, 其中1排位于节前缘, 另一排位于节中间。在刚出现化刚毛的3~4节中, 每排化刚毛的数量为1~2根, 此后的每排化刚毛均为4~5根。

化刚毛平均长度约为231.18μm。每个附鞭平均具有214根化刚毛(表1, 图3)。附鞭远端(顶端方向)的化刚毛之长度与直径均大于近端者(基部方向)。化刚毛分别着生在单独的窝内(图版II: 8, 9), 其着生窝赋予它以较大的活动空间, 但在生活状态下它们朝着前方与附鞭形成45°~60°的夹角。扫描电镜照片显示, 具有凹槽的附鞭节段能够发生整体性卷曲, 形成圆筒状, 而附鞭卷曲后几乎可以将槽内所有化刚毛都包裹进去(图版II: 10)。

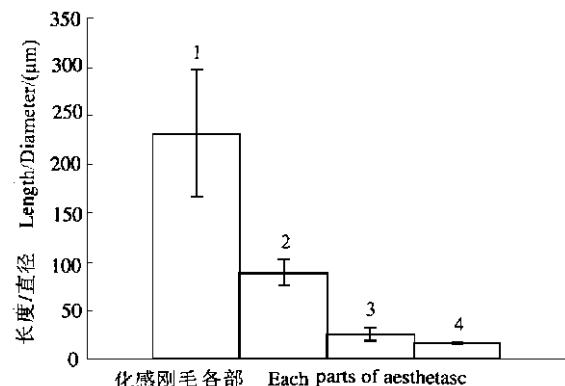


图3 罗氏沼虾化刚毛各部尺寸

Fig. 3 The comparison in sizes of several parts of

M. rosenbergii aesthetascs

1. 化刚毛长 Aesthetasc length(18); 2. 化刚毛硬管长 Length of hard tube part of aesthetasc(15); 3. 化刚毛基部直径 Base diameter of aesthetasc(29); 4. 硬管顶部直径 Top diameter of the hard tube(15) (括号内数字系样本数 Numbers in the brackets are the ones of the samples measured)

表1 罗氏沼虾附鞭及化刚毛的外部形态学参数

Tab. 1 Morphological parameters comparison of the appendage flagella and the aesthetascs on *M. rosenbergii*

项目 Item	参数 Parameter	备注 Comment
附鞭总节数 Segments numbers of an appendage flagellum	52±11(9)	
具初生化刚毛的节数 Segments numbers with primary aesthetascs	10±4(8)	约从第12~21节开始出现 Emerged from about No. 12~21 segment
初生化刚毛总数 Gross number of primary aesthetascs	77±28(8)	按每节2排每排4根刚毛计 Calculated in accordance with 2 rows per segment and 4 setae a row
具化刚毛的节数 Segments number with aesthetasc	27±7(9)	约从18~36节开始出现 Emerged from about No. 18~36 segment
化刚毛总数 Gross number of aesthetascs	214±54(9)	按每节2排每排4根刚毛计 Calculated in accordance with a segment 2 rows and a row 4 setae
化刚毛长度 Length of aesthetasc(μm)	231.18±65.54(18)	包括硬管段与膜管段的长度 Containing lengths of the hard tube and membrane tube parts
化刚毛毛基部直径 Diameter of basal part of aesthetasc(μm)	24.78±6.48(29)	
硬管段长度 Length of the hard tube part(μm)	89.39±13.07(15)	
硬管顶部直径 Diameter of top of hard tube(μm)	14.73±2.00(15)	
硬管壁厚 Wall thickness of hard tube(μm)	2~4	

注: 参数数据表示为平均数±标准差(样品数)。Data is expressed as means±SD(sample number)

此外, 在附鞭的凹槽中还可见到一类芽状刚毛, 它开始出现于附鞭的第 12—21 节, 具此种刚毛的小节数约有 10 节(图版 II: 11, 12)。若按从附鞭的基部到顶端的先后顺序描述, 芽状刚毛则先于化感刚毛出现, 其着生列阵与化感刚毛的相同, 也是每节两排(节前缘一排, 节中间一排), 每排具 3—5 根。在化感刚毛刚出现的几个小节上, 可以见到化感刚毛与芽状刚毛同排并存的现象, 而且在此几节内化感刚毛数量逐渐增加, 而芽状刚毛数量则逐步减少至零(表 1, 图版 II: 11)。同时, 与芽状刚毛交界的化感刚毛之形态一般常较远端的化感刚毛短小, 显示它们是芽状刚毛与化感刚毛之间的过渡形态(图版 II: 12)。这些现象表明, 化感刚毛是由芽状刚毛发育而来的。因而可认为, 芽状刚毛是化感刚毛的前身, 即初生化感刚毛。另外, 由于附鞭约 71% 的小节着生着初生化感刚毛和化感刚毛(表 1), 而其他部位均不存在这样的刚毛, 因此认为附鞭是罗氏沼虾嗅觉器官的主体结构。

从附鞭的断面看, 它的一侧为一薄片构造, 而另一侧则具厚圆感, 这种不对称性尤以具凹槽的节段为最甚。其薄片侧缘与附鞭同步分节, 各节的薄片侧缘多呈三角板形, 其前宽后窄, 并依各小节向槽内卷曲, 使其整体观呈波浪状, 而厚侧的边缘则无明显起伏, 只是在其每节前缘有一乳状突起(图版 II: 11), 其中有的乳突顶部还着生着一根软刺刚毛。

3 讨论

正如前述, 罗氏沼虾小触角具有如下特征: 1) 柄节具 250 根以上的羽状刚毛及少量笋状刚毛、硬刺刚毛; 2) 内鞭与外鞭极长, 外鞭由主鞭和附鞭组成, 但附鞭很短, 位于内鞭与主鞭之间; 3) 内鞭、主鞭各

节前缘具 4—40 根不等的软刺刚毛; 4) 附鞭腹面呈凹槽, 槽内平均着生着 214 根化感刚毛; 5) 化感刚毛的形态特殊, 分为两段, 其下段为硬管段, 而上段为膜管段, 膜管段较硬管段长, 且薄而软; 6) 附鞭能纵向卷曲成圆筒形, 以包裹凹槽内的化感刚毛; 7) 附鞭凹槽起始节段内尚具有许多芽状的初生化感刚毛, 它与化感刚毛之间存在着过渡的刚毛形态。因此, 罗氏沼虾这种具附鞭的特殊小触角之表面形态结构明显不同于以往所报道的十足目甲壳动物小触角, 尤其是其附鞭及其化感刚毛特殊的外形结构。由于附鞭着生着大量的初生化感刚毛和化感刚毛, 因此作者认为附鞭是罗氏沼虾嗅觉器官的主体结构。

除前言所提及的种类外, 还有一些种类的十足目甲壳动物小触角之外部形态在不同程度上也被研究过, 如, 欧洲鳌龙虾(*Homarus gammarus*)^[7], 克氏原鳌虾(*Procambarus clarkii*)^[17], *Cherax destructor*^[18], *Orconectes propinquus*^[19], 中华绒螯蟹(*Eriocheir sinensis*)^[9], *Pagurus hirsutusculus*^[20] 等等。从外部形态看, 这些种类的小触角之间存在着明显的基本差异, 作者将它们划归为四种类型, 即: 龙虾型(*Lobster-type*)^[3—5, 10, 11]、蟹型(*Crab-type*)^[8, 9, 12, 15, 20]、小龙虾型(*Crayfish-type*)^[17—19] 和对虾型(*Prawn-type*)^[13, 14, 16](表 2)。然而, 罗氏沼虾小触角的外型不同于这样四种类型, 其中最显著的差异在于罗氏沼虾的触角鞭为三条鞭, 即外鞭另具一条附鞭, 且化感刚毛全部着生在附鞭上, 而蟹型、龙虾型、小龙虾型和对虾型小触角的触角鞭均仅有两鞭, 它们的化感刚毛均着生于外鞭上(相当于罗氏沼虾的主鞭)。因此, 罗氏沼虾的小触角当属于另一类型, 即罗氏沼虾型(*M. rosenbergii-type*)(表 2)。

表 2 罗氏沼虾小触角与其他四类小触角的形态特征比较

Tab. 2 The comparison on morphology among the antennule type of *M. rosenbergii* and other four antennule types

小触角类型	小触角外形的基本特征	化感刚毛外形特征	化感刚毛着生部位
Antennule patterns	Main appearance of antennules	Aesthetasc appearance	Position bearing aesthetasc
龙虾型	大型, 两鞭, 粗且很长	粗长	外鞭顶段
Lobster type	Large type, with two very long and thick flagella	Long and thick	In distal part of outer flagellum
蟹型	小型, 两鞭粗且很短	细长, 但某些种类细短	外鞭中段
Crab type	Small type, with two thick and very short flagella	Long and thin, but short and thin in <i>E. sinensis</i>	In middle part of outer flagellum
对虾型	中型, 柄部较大, 两鞭较粗短, 外鞭具片状隆起	较细短	外鞭片状隆起的基段
Prawn type	Middle type, with larger scape, two shorter flagella and with a piece like processus on outer flagellum	Shorter and thinner	In proximal part of the piece like processus of outer flagellum
小龙虾型	中型, 两鞭较粗短	较粗短, 分两节	外鞭顶段

续表

小触角类型	小触角外形的基本特征	化感刚毛外形特征	化感刚毛着生部位
Antennule patterns	Main appearance of antennules	Aesthetasc appearance	Position bearing aesthetasc
Crayfish type	Middle type, with two flagella, shorter and think	Shorter and thicker, with two segments.	In distal part of outer flagellum
罗氏沼虾型	中型, 触角鞭细长, 三鞭, 具附鞭	较粗短, 分硬管和膜管段两段	附鞭顶段
<i>M. rosenbergii</i> type	Middle type, with three flagella, long inner and outer flagella as well as a shorter appendage flagellum	Long and thick with a hard tube part and a membrane tube part	In distal part of appendage flagellum

一般认为, 化感刚毛属于单纯化学感受性的, 即系嗅觉感受刚毛^[1-8]。对于这样一类重要的刚毛, 作者曾提出十足目甲壳动物自身具有保护化感刚毛免遭伤害能力的观点^[15]。在研究锯缘青蟹嗅觉器官的保护性形态特征时, 作者发现该动物通过内鞭的屏障作用以及内外鞭的基本夹角等能高效率地保护它们的化感刚毛^[15]。该观点可能也适用于罗氏沼虾, 因为在所观察的罗氏沼虾小触角中大多数化感刚毛也具有相当完整的外形结构。但与其他种类相比, 罗氏沼虾化感刚毛形态特殊, 明显呈两段结构(表2), 其中柔软的膜管段较长, 约占刚毛全长的

3/5(图3)。这样的薄壁结构虽可能有利于嗅觉刺激物质的进出, 但也可能带来更易遭受损伤的机会。而且, 罗氏沼虾小触角化感刚毛全部着生于附鞭凹槽内, 这种特殊的形态学结构决定了该动物对化感刚毛的保护机制与已报道的种类的情形不同(表3)。罗氏沼虾特殊的附鞭凹槽构造及其对化感刚毛的包裹方式(图版I: 6, 图版II: 7, 10, 11), 可以解释其化感刚毛簇较少遭受破损的原因。此外, 长长的内鞭和主鞭将短小的附鞭夹护于其间的空间构型关系(图版I: 1)提示: 它可能藉保护附鞭以保护化感刚毛。

表3 罗氏沼虾与其他十足目种类对化感刚毛保护性结构的比较

Tab. 3 The comparison on defensive structures for aesthetascs among *M. rosenbergii* and the other three decapod species

动物	保护性结构	文献
Animal	Defense morphological structures	References
美洲龙虾	由警戒刚毛、伴随刚毛和不对称刚毛所“编织”的保护性外罩	[4, 10, 11]
<i>P. argus</i>	The protective mantle woven by some guard setae, companion setae and asymmetric setae	
锯缘青蟹	内鞭的屏障作用, 以及由内鞭基部的半圆锥形凹面所决定的内、外鞭之间的保护性基本夹角	[15]
<i>S. serrata</i>	The defence screen of inner flagellum, and the protective basic angle between the inner and outer flagella	
凡纳滨对虾	由内鞭及内鞭的羽状刚毛所构成的屏障	[16]
<i>L. vannamei</i>	The defence screen of inner flagellum and plumose setae	
罗氏沼虾	附鞭形成特殊的凹槽构造及其保护性的包裹作用, 以及内、外鞭的夹护作用	本文(this paper)
<i>M. rosenbergii</i>	The concave slot on appendage flagellum and its protective wrapping function, and defence screen consisted of the inner and main flagella together	

参考文献:

[1] Schmitt B C. Olfaction: responses of a decapod crustacean are enhanced by flicking[J]. *Saenae*, 1979, **20**(13): 204—206

[2] Derby C D, Steullet P. Why do animals have so many receptors? The role of multiple chemosensors in animal perception[J]. *Bio Bull*, 2001, **200**(2): 211—215

[3] Derby CD, Cate HS, Gentilcore L. Perireception in olfaction: molecular mass sieving by aesthetasc sensillar cuticle determines odorant access to receptor sites in the Caribbean spiny lobster *Panulirus argus* [J]. *J Exp Biol*, 1997, **200**: 2073—2081

[4] Gleseson R A, Carr WES, Trapido Rosenthal H G. Morphological characteristics facilitate stimulus access and removal in the olfactory organ of the spiny lobster, *Panulirus argus*: insight from the design [J]. *Chem Senses*, 1993, **18**(1): 65—75

[5] Steullet P, Cate H S, Derby C D. A spatiotemporal wave of turnover and functional maturation of olfactory receptor neurons in the spiny lobster *Panulirus argus* [J]. *Neuroscience*, 2000, **209**(9): 3282—3294

[6] Hallberg E, Johansson K U, Elofsson R. The aesthetasc concept: structural variations of putative olfactory receptor cell complexes in crustaceans [J]. *Microsc Res Tech*, 1992, **22**(4): 325—335

[7] Atsma J, Fay R R, Popper A N, et al. *Sensory biology of aquatic animals* [M]. New York: Springer-Verlag, 1988, 287—312

[8] Gleeson R A. Morphological and behavioral identification of the sensory structures mediating pheromone reception in the blue crab, *Callinectes sapidus* [J]. *Biol Bull*, 1982, **163**: 162—171

[9] Lu W Q, Ping Y. Study on the function of the antenna and the compound eye of the Mitten crab(*Eriocheir sinensis*) in feeding behaviour [J]. *Fisheries Science & Technology Information*. 1994, **21**(3): 99—102[陆文卿, 平原. 中华绒螯蟹触角及复眼在觅食行为中的作用研究 [J]. 水产科技情报, 1994, **21**(3): 99—102]

[10] Cate H S, Derby C D. Morphology and distribution of setae on the antennules of Caribbean spiny lobster *Panulirus argus* reveal new types of bimodal chemosensilla [J]. *Cell Tissue Res*, 2001, **304**: 439—454

[11] Laverack M S. The antennular sense organs of *Panulirus argus* [J]. *Comp Biochem Physiol*, 1964, **13**: 301—321

[12] Snow P J. Surface structures of the antennular flagella of the hermit crab *Pagurus alaskensis* (Benedict): A light and scanning electron microscopy study [J]. *J. Morph.*, 1974, **144**: 195—216

[13] Chen N S, Sun H B. Structure and function of cuticular sensillae of *Penaeus chinensis* II. Innervation of the aesthetasc hairs [J]. *Marine Sciences*, 1992, **4**: 28—32[陈楠生, 孙海宝. 中国对虾体表感觉毛结构和功能的研究 II 嗅毛的神经调控方式 [J]. 海洋科学, 1992, **4**: 28—32]

[14] Chen K Z, Wang Q. A study on the structure of antennular chemoreceptor of *Penaeus chinensis* [J]. *J Ocean University of Qingdao* 1991, **21**(4): 31—35[陈宽智, 王青. 中国对虾 *Penaeus chinensis* (O 'sbeck) 第一触角化学感受器结构的研究 [J]. 青岛海洋大学学报, 1991, **21**(4): 31—35]

[15] Zeng C, Xu Q F, Huang X F, et al. , Morphological characteristics facilitating protection of the olfactory organ of the mud crab *Scylla serrata* [J]. *Acta Zool Sinica*. 2002, **48**(6): 804—811[曾, 徐奇放, 黄晓峰, 等. 锯缘青蟹嗅觉器官的保护性形态特征 [J]. 动物学报, 2002, **48**(6): 804—811]

[16] Zeng C, Dai L X, Liu Y H, et al. , Surface microstructures of the antennule of the white shrimp *Penaeus vannamei* [J]. *J Huazhong Agricultural University*. 2003, **21**(4): 371—378[曾, 戴立贤, 刘永红等. 凡纳滨对虾小触角的表面结构 [J]. 华中农业大学学报, 2002, **21**(4): 371—378]

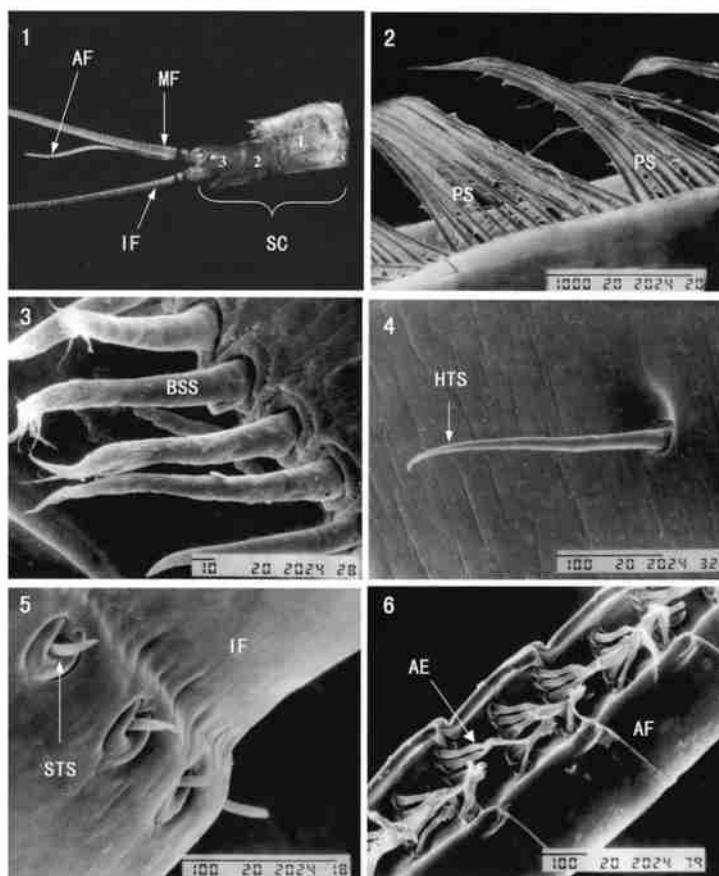
[17] Mellon DeF, Mungar S D. Nontopographic projection of olfactory sensory neurons in the crayfish brain [J]. *J Comparat Neurology*, 1990, **296**: 253—262

[18] Sandeman R E, Sandeman D C. Pre and postembryonic development, growth and turnover of olfactory receptor neurons in crayfish antennules [J]. *J Exp Biol*, 1996, **199**: 2409—2418

[19] Tiemey A J, Thompson C S, Dunham DW. Fine structure of aesthetasc chemoreceptors in the crayfish *Orconectes propinquus* [J]. *Can J Zool* 1986, **64**: 392—399

[20] Ghiradella H T, Case J F, Cronshaw J. Structure of aesthetascs in selected marine and terrestrial decapods: chemoreceptor morphology and environment [J]. *Am. Zoologist*, 1986, **8**: 603—621

THE SURFACE STRUCTURES OF THE ANTENNULE IN FRESHWATER PRAWN *MACROBRACHIUM ROSENBERGII*: AN ANTENNULE TYPE WITH AN APPENDAGE FLAGELLUM


ZENG Ceng, XIANG Xiang and LI Qi

(Marine College, Hainan University, Haikou 570228)

Abstract: The surface structure of the antennule of *Macrobrachium rosenbergii*, an antennule type with an appendage flagellum, were observed in detail with stereomicroscope and scanning electron microscope. The results revealed that: 1) the antennule of *M. rosenbergii* was composed of inner flagellum or medial flagellum, outer flagellum or lateral flagellum, and three scapes. The outer flagellum consisted of an appendage flagellum and a main flagellum (Plate I: 1); 2) there were above 250 plumose setae on the whole scape portion (Plate I: 2), in addition, there were several hard thorn setae (Plate I: 4) and some bamboo shoot-like setae (Plate I: 3) whose function is not clear at present; 3) the inner and main flagella were extremely long (Tab. 1) and their annuli were well-marked. There were 4~40 soft thorn-like setae on each segment of the flagella, whose top sealed and were thin. The shape of the base socket of the setae was U-type (Plate I: 5); 4) there was a concave slot on the ventral side of each appendage flagellum (Plate I: 5, Plate II: 7, 10, 11). In the slot, there existed above 200 aesthetascs that were similar to the ones of *Penaeus vannamei* in quantity (Plate I: 5, Plate II: 7—2)^[16], but obviously fewer than that of the most of other decapod species known^[4, 8, 12, 15]; 5) the slot of appendage flagellum wrapped up in longitudinal direction to display a cylindrical status (Plate II: 10), which maybe had a defensive function for their aesthetascs; 6) each aesthetasc was divided into two parts, one was a hard tube part (lower part), the other was a membrane tube part (upper part) (Plate II: 8). There were several segments along the hard tube part, and the wall of the part was thick. However, wall of the membrane tube part was extremely thin which maybe makes the chemical substances entry easier (Plate II: 9); 7) many bud-shape setae emerged from proximal segments of the slot of the appendage flagellum, and these setae were some primary aesthetascs as they became gradually to aesthetascs in whose appearance were completed (Plate II: 11, 12).

In addition, we suggested that the antennules of several decapod species known should be classified according to basic appearances of their antennules (Tab. 2). They were Crab-type^[8, 9, 12, 15, 20], Lobster-type^[3—5, 10, 11], Crayfish-type^[17—19] and Prawn-type^[13, 14, 16]. However, since the antennule of *M. rosenbergii* possess a particular appendage flagellum as well as its configurations, the antennule was geared to a new type, “*Macrobrachium rosenbergii*-type”. Moreover, according to the characteristics of configurations of the appendage flagellum, *M. rosenbergii* was respectively different from *P. argus*^[4, 10, 11], *L. vannamei*^[16], and *S. serrata*^[15] in defence structure model for their aesthetascs (Tab. 3).

Key words: *Macrobrachium rosenbergii*; *Macrobrachium*-type antennule; Appendage flagellum; Surface structure

图版 I

1. 罗氏沼虾右侧的小触角。示外鞭由附鞭和主鞭构成，主鞭与内鞭(仅示局部)均比附鞭长数倍，柄部可分为第1、2、3柄节。 $\times 2$ ； 2. 示位于柄部边缘的一些羽状刚毛。 $\times 33$ ； 3. 示位于第三柄节的几根笋状刚毛。 $\times 510$ ； 4. 示位于柄部的一根硬刺刚毛。 $\times 240$ ； 5. 示位于内鞭某节上的几根软刺刚毛。 $\times 347$ ； 6. 示附鞭腹面的凹槽结构以及呈横排排列的化感刚毛簇。每节具2排化感刚毛，每排4—5根。 $\times 100$ 。

AF: 附鞭, MF: 主鞭, IF: 内鞭, SC: 柄部, PS: 羽状刚毛, BSS: 笋状刚毛, HTS: 硬刺刚毛, STS: 软刺刚毛, AE: 化感刚毛。

1. A right antennule of *M. rosenbergii*. Outer flagellum consists of a main flagellum and an appendage flagellum, and the length of main and inner flagellum is longer several times than the appendage flagellum. The Scape part is divided into 1st, 2nd and 3rd. $\times 2$; 2. A scanning electron micrograph showing some plumose setae along border of the scape. $\times 33$. 3. Some bamboo shoot like setae on 3rd scape. $\times 510$. 4. A hard thorn seta on the scape. $\times 240$. 5. A micrograph of inner flagellum, showing some soft thorn setae on front border of a segment. $\times 347$. 6. A graph showing the structure of a concave slot on an appendage flagellum and many of aesthetascs within which those setae are arranged in transverse row. The aesthetascs occur in transverse rows containing between four and five of such setae, and there exist two rows of the aesthetascs on a segment. $\times 100$. AF: Appendage flagellum, MF: Main flagellum, IF: Inner flagellum, SC: Scape, PS: Plumose seta, BSS: Bamboo shoot-like seta, HTS: Hard thorn seta, STS: Soft thorn seta, AE: Aesthetasc.

图版 II

7. 示附鞭顶端结构。凹槽内具有化感刚毛。 $\times 124$ 8. 示一排化感刚毛。每一根化感刚毛都分为两段, 即膜管部和硬管部。膜管部的壁极薄, 硬管部分节且壁较厚。 $\times 344$; 9. 示几根化感刚毛的基部。其中一根化感刚毛的膜管部已破裂且卧倒于一旁。可观察到该膜管套在硬管上的情形以及膜管的薄壁。 $\times 596$; 10. 示附鞭卷曲呈圆筒状, 而化感刚毛被包裹于其中。 $\times 57$; 11. 示附鞭凹槽中初生化感刚毛区与化感刚毛区相连接的情形。 $\times 55$; 12. 示不同形态的初生化感刚毛和在形态上发育尚不完全的化感刚毛。说明初生化感刚毛可发育成化感刚毛。 $\times 413$ AE: 化感刚毛, AF: 附鞭, MTP: 化感刚毛的膜管部, HTP: 化感刚毛的硬管部, PAE: 初生化感刚毛

7. A scanning electron micrograph, showing the configuration on the most distal part of an appendage flagellum. Some aesthetascs are seen within the concave slot. $\times 124$. 8. A graph of a row of aesthetascs, showing two parts of each aesthetasc, hard tube part and membrane tube part. The wall of the membrane tube part is extremely thin, and hard tube part has some segments and its wall is very thick. $\times 344$. 9. A graph showing the base parts of several aesthetascs. The membrane tube part of an aesthetasc splits out and lies down. The membrane tube part is partially overlapped with hard tube part, and the thin wall of the membrane tube part can be found. $\times 596$. 10. The concave slot of appendage flagellum becomes to a cylinder that wraps up the all of aesthetascs. $\times 57$. 11. A graph showing the connective status between the primary aesthetasc and the aesthetasc area. $\times 55$. 12. A graph showing the different morphological primary aesthetascs, and two aesthetascs developed incompletely. $\times 413$. AE: Aesthetasc, AF: Appendage flagellum, MTP: Membrane tube part of aesthetasc, HTP: Hard tube part of aesthetasc, PAE: Primary aesthetasc

PAE: Primary aesthetasc