

DOI: 10.3724/SP.J.1035.2010.00966

鄱阳湖区泥鳅遗传多样性研究

曾柳根¹ 张伟^{1,2} 甘云飞¹ 王军花¹ 洪一江¹

(1. 南昌大学生命科学与食品工程学院, 南昌 330031; 2. 安徽体育运动职业技术学院, 合肥 230001)

摘要: 采用同工酶电泳、RAPD 引物 PCR 扩增和线粒体 DNA 细胞色素 *b* 基因全序列 3 种方法, 对鄱阳湖 3 种斑纹泥鳅的遗传结构进行分析。同工酶电泳显示 3 种斑纹泥鳅在 LDH、MDH 和 EST 这 3 种同工酶之间存在群体和组织差异; RAPD 试验结果显示 6 条 RAPD 引物在 18 尾鄱阳湖泥鳅个体中共扩增出了 169 条不同分子量的 RAPD 标记, 其中多态性带 101 条, 多态性带的比例为 59.56%, 平均每个引物产生 9.39 条带和 5.61 条多态性带, 不同斑纹泥鳅的遗传多样性指数显示 3 种斑纹泥鳅的遗传水平处于较高水平。以特异性引物进行 PCR 扩增, 获得了 1140 bp 的细胞色素 *b* 基因全序列。结果显示, 3 种不同斑纹泥鳅中检测出了 1 个共有单倍型和 3 个特有单倍型。与共有单倍型相比, 大花斑泥鳅特有单倍型有 91 个变异位点, 而小花斑泥鳅与无花斑泥鳅特有单倍型的变异位点为 20 和 24 个。基于单倍型构建的 NJ 树和 MP 树, 显示大花斑泥鳅的特有单倍型 EU145023 处于独立的分支上, 这反映出鄱阳湖地区不同斑纹的泥鳅之间在线粒体 DNA Cyt *b* 基因中出现了一定距离的分化。

关键词: 泥鳅; 遗传多样性; 同工酶; RAPD; 细胞色素 *b*

中图分类号: Q173 文献标识码: A 文章编号: 1000-3207(2010)05-0966-07

鳅科是鲤形目中一个较大的类群, 分布广、种类多、形态变异复杂。多数属种生活在流水环境中, 营底层生活, 属于中小型鱼类。鳅属是鳅亚科中种类最为繁盛也是分化最为明显的一个属, 其分布范围广泛, 除青藏高原外的欧亚大陆、大巽他群岛和非洲的摩洛哥都有分布^[1,2]。由于鳅属鱼类的个体小, 其形态上的差异常被忽略, 且随个体大小和栖息环境的不同其体色、斑纹的形状、大小和数目的多少以及背鳍的位置等均有较大的变异, 同时鳅属鱼类的雌雄异形, 使得鳅属鱼类的分类与鉴别比较困难, 因此鳅科鱼类的分类与鉴别比较困难^[2,3]。泥鳅 (*Misgurnus anguillicaudatus*) 隶属于鲤形目、鳅科、花鳅亚科、泥鳅属, 根据陈景星^[1]的论述, 分布于中国境内的泥鳅属(*Misgurnus*) 的鱼类共有 3 种: 北方泥鳅(*M. bipartitus*)、黑龙江泥鳅(*M. mohoit*) 和泥鳅(*M. anguillicaudatus*)。北方泥鳅主要分布于黄河以北地区, 黑龙江泥鳅仅分布于黑龙江水系, 泥鳅

在全国各地均有分布, 并开始成为主要的养殖品种。

对泥鳅的研究报道也有很多, 赵振山等^[4]分析了两种泥鳅不同核质关系下的 MDH 和 EST 同工酶基因的表达; Khan, et al.^[5]分析了分布日本的泥鳅的同工酶的变异和遗传分化; 常重杰等^[6]分析了黄河、长江和珠江三大水系中游的泥鳅不同群体间的遗传变异。李殿香等^[7]构建了泥鳅线粒体 DNA 限制性酶切图谱, Tang, et al.^[8]对鳅超科鱼类的分子系统发育进行了研究, Yang, et al.^[9]分析了华中地区存在的二倍体和四倍体细胞色素 *b* 基因的变异和进化。然而对于鄱阳湖区泥鳅的研究比较少, 只有张伟等^[10]介绍了鄱阳湖区泥鳅的生物学性状, 曾柳根等^[11]研究了鄱阳湖区泥鳅的微卫星 DNA 的多态性。本文采用同工酶、RAPD 及细胞色素 *b* 基因测序法这 3 种技术对鄱阳湖区泥鳅的遗传多样性进行研究, 并加以分析和讨论, 以期为今后开展鄱阳湖泥鳅的种质资源保护和遗传育种提供参考。

收稿日期: 2009-07-20; 修订日期: 2010-03-02

基金项目: 国家重点基础研究发展计划“973”项目(编号: 2004CB117401)资助

作者简介: 曾柳根(1981—), 男, 江西泰和人; 博士研究生; 主要从事水产动物遗传育种研究。E-mail: bingjianla2008@hotmail.com

通讯作者: 洪一江, E-mail: yjhong2008@163.com

1 材料与方法

1.1 材料

3种花斑的鄱阳湖区泥鳅均来自鄱阳湖野生泥鳅,根据张伟等^[12]的区分原则随机选取3种不同的花斑泥鳅,每种斑纹180尾。

1.2 方法

同工酶电泳 分别取不同斑纹活体泥鳅,取心、脑、肝、肌、性腺、眼组织。按照文献[12,13]的方法制样,电泳和染色方法参照何忠效^[14],略作改进,显色后取出拍照。

RAPD 扩增 基因组总 DNA 的提取参照标准酚-氯仿抽提程序进行(Sambrook)^[15]。OD 值和琼脂糖电泳定量 DNA 参照周莉等^[16]。PCR 反应扩增程序参照 Williams 等^[17]进行。电泳结束,将凝胶置紫外凝胶成像系统上观察,拍照并记录结果。RAPD 反应的数据利用 PopGene4.3^[18]软件进行处理和分析。

细胞色素 b 基因的扩增及序列分析 基因组 DNA 的提取及含量的测定与 1.2.3 一致, Cyt b 基因引物及 PCR 扩增参照 Irwin, *et al.*^[19]。PCR 扩增产物的纯化和基因测序由上海生工完成,采用双向测序,测序所用引物与 PCR 引物为同一对引物。DNA 序列的同源性比对(Alignment)使用 Clustal X1.8 软件,并经人工校对,序列相同视为同一单倍体

(Haplotype)。以胭脂鱼为外类群(AF036176),采用邻接法(NJ, Neighbor-joining)、最大简约法(MP, Maximum parsimony)用 Mega 4.0 软件分析鄱阳湖区泥鳅样品的 Cyt b 基因序列碱基的组成及序列变异情况。应用自展法(Bootstrap)估计所获得的树的分支支持率,自展重复次数定为 1000 次,构建 NJ 树与 MP 树^[20]。

2 结果

2.1 乳酸脱氢酶(LDH)电泳结果

鄱阳湖区 3 种不同斑纹泥鳅的 LDH 同工酶谱(图 1)。在 6 种组织中共检测到 7 条强弱不等的酶带,LDH1、LDH2 在 6 种组织中都有表达,为 3 种不同斑纹泥鳅共同的管家酶。在心脏、脑、肌肉、眼组织中表现出 LDH1、LDH2、LDH3 三条区带;大花斑泥鳅在肝脏中表现出 LDH1、LDH2、LDH3 三条区带,但在靠近负极的一端却无 cLDH 微带显现;小花斑、无花斑表达出 LDH1、LDH2,在近负极端小花斑有一条 cLDH 弱带,无花斑有 3 条 cLDH 弱带。在性腺中大花斑与小花斑泥鳅分布着 LDH1、LDH2、LDH4 三条酶谱带,而无花斑泥鳅却分布着 LDH1、LDH2、LDH3、LDH4 四条带。LDH-A、LDH-B、LDH-C 基因所决定的 A、B、C 亚基均参与表达,其中 B4、AB3 在性腺中表达较弱,但在其他 5 种组织中均有较强的表达;A4 在 6 种组织中都没有表达。

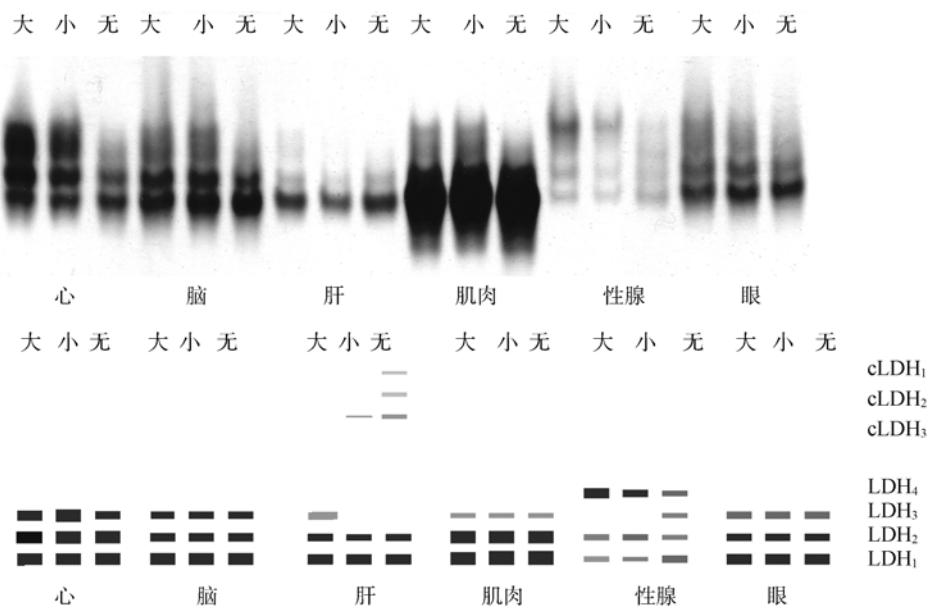


图 1 三种不同斑纹泥鳅 6 种组织 LDH 同工酶谱

Fig. 1 Electrophoretogram of LDH isozymes in six kinds of tissues of three different spot loaches

2.2 苹果酸脱氢酶(MDH)电泳结果

3 种不同斑纹泥鳅 MDH 酶谱(图 2), 在 6 种组织中共显示 9 条同工酶带, 从图中可以看出, 从正极到负极可以分为 2 个区, L₁ 区(包括 m-MDH-A、m-MDH-B)和 L₂ 区(s-MDH-C、s-MDH-D、s-MDH-E、s-MDH-F、s-MDH-G、s-MDH-H)。m-MDH-A、m-MDH-B 仅在 3 种斑纹泥鳅肌肉组织中出现, 且 m-MDH-B 仅存在于大花斑肌肉中。s-MDH-C 在 3 种斑纹泥鳅心脏及大、无花斑泥鳅脑组织中检测有表达。s-MDH-D 仅存在于小花斑泥鳅的脑组织及大花斑泥鳅的肌肉中。s-MDH-E 在 3 种斑纹泥鳅的心、脑、眼组织中均有表达, 在肝、肌肉、性腺中, 只有大花斑泥鳅 s-MDH-D 仅存在于小花斑泥鳅的脑组织及大花斑泥鳅的肌肉中。s-MDH-E 在 3 种斑纹泥鳅的心、脑、眼组织中均有表达, 在肝、肌肉、性腺中, 只有大花斑泥鳅出现 s-MDH-E 酶活性。在所有显示的 9 条带中, s-MDH-F、s-MDH-H、s-MDH-I 在各种斑纹泥鳅中都有表达, s-MDH-F 在小花斑中表现出的酶活性最强, 其次是大花斑, 无花斑酶活性相对较弱; s-MDH-H、s-MDH-I 酶活性在 3 种泥鳅中无显著差异, 较 s-MDH-F 活性弱。s-MDH-G 仅在小花斑肌肉中出现。

2.3 酯酶(EST)电泳结果

3 种斑纹泥鳅的 EST 酶谱(图 3), 在 7 种组织中

共检测到 7 条强弱不等的酶带, 从阴极到阳极分为 3 个区域(L₁、L₂、L₃)。L₁ 区的 EST-1、EST-2 两条带只在肝脏中表达, 其中大花斑只显示出一条 EST-2, 小花斑、无花斑两条都有表达。L₂ 区有 EST-3、EST-4 两条带, EST-4 在 7 种组织中都有表达, 而且在所有酶带中活性最强, 为 EST 管家酶; 而 EST-3 除了在小花斑的性腺中没有表达外, 其他都有表达。EST-5、EST-6、EST-7 在 L₃ 区中表达, 3 种泥鳅在肝肾中都表现出 3 条带, 在眼中只有小花斑和无花斑表现出 3 条带。

2.4 RAPD 扩增结果

35 个引物中有 6 个引物扩增出了较明显的多态性片段, 3 个种共检测到 169 个可以统计的位点, 其中多态性位点 101 个, 占总位点数的 59.56%。单引物最多可以产生 12 个位点, 最少产生 9 个位点, 平均每条引物能扩增出 9.39 个位点, 其中平均多态位点为 5.61 个, 所扩增片段长度范围在 200—1800 bp 之间, 3 种斑纹泥鳅的遗传多样性指数(表 1)。

2.5 细胞色素 b 扩增结果

经过 PCR 扩增, 得出一条 1140 bp 的鄱阳湖泥鳅线粒体 Cyt b 基因全序列, 将所得到的序列提交 GenBank。分别从 3 种不同斑纹泥鳅中检测出了 1 个共有单倍型(GenBank 登录号为 EU131136)和 3 个特有单倍型, 分别是大花斑泥鳅的特有单倍型(登录

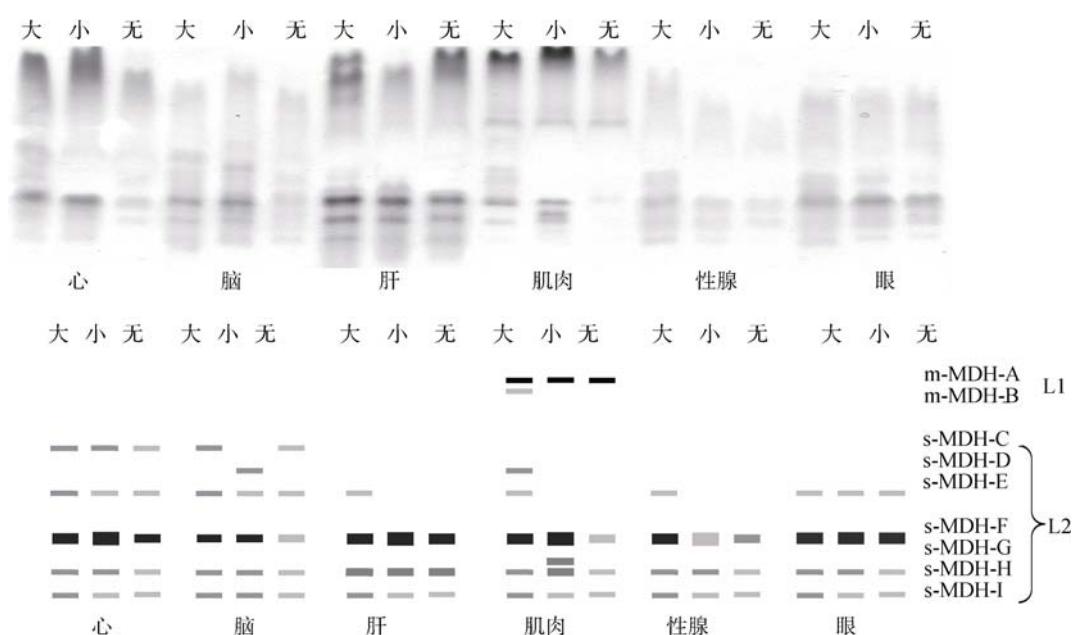


图 2 三种不同斑纹泥鳅 6 种组织 MDH 同工酶图

Fig. 2 Electrophoretogram of MDH isozymes in six kinds of tissues of three different spot loaches

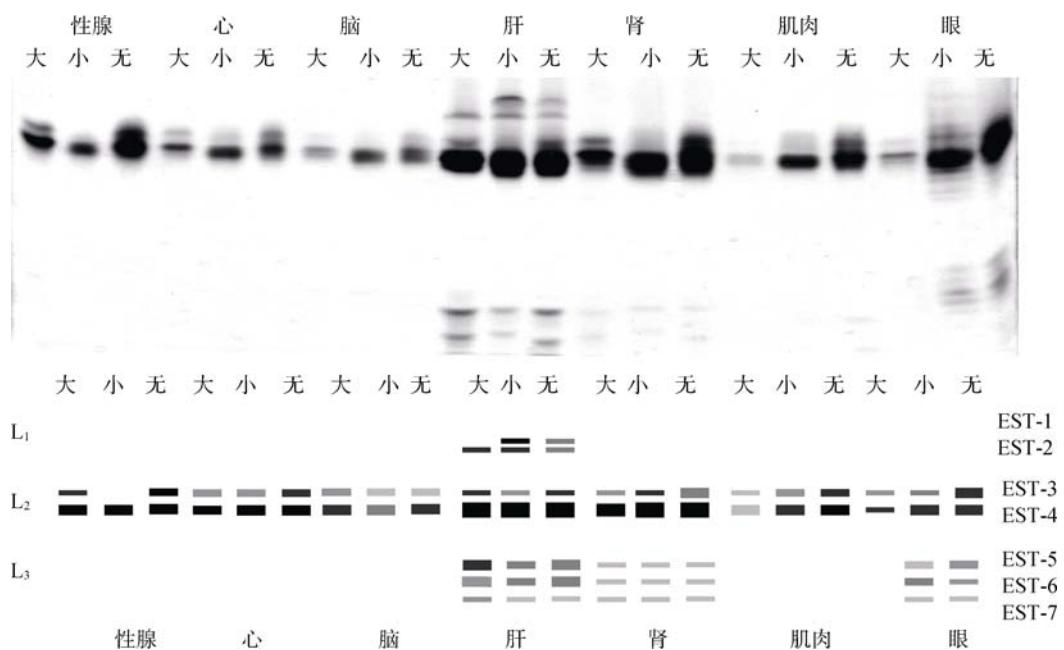


图 3 三种不同斑纹泥鳅 7 种组织 EST 同工酶谱图

Fig. 3 The pattern of EST isozymes in seven kinds of tissues of three different spot loaches

表 1 不同斑纹泥鳅的遗传多样性指数

Tab. 1 Statistics analysis of genetic variation in different spot loaches

群体 Population	个体 Sample size	观测等位基因数 N_a	有效等位基因数 N_e	Nei's 基因多样性 H_e	Shannon's 信息指数 H_o
大花斑泥鳅 Big-spot loach	10	1.6230	1.4657	0.2589	0.3750
小花斑泥鳅 Small-spot loach	10	1.5246	1.2971	0.1787	0.2706
无花斑泥鳅 Non-spot loach	10	1.4754	1.3210	0.1806	0.2656
平均 Mean	10	1.5410	1.3613	0.2061	0.3037

号为 EU145023)、小花斑泥鳅的特有单倍型(登录号为 EU131138)和无花斑泥鳅的特有单倍型(登录号为 EU131134)。共有单倍型分别占得样品数为大花斑泥鳅为 6 个、小花斑泥鳅为 7 个和无花斑泥鳅的 8 个。所得序列中有起始密码子 ATG, 终止密码子为 GCT, 无移码突变。A+T 碱基含量(59%)明显高于 G+C(41%)的含量。在三联密码子的不同位置, 碱基组成表现出很大的差异, 在密码子的第三位这种偏向更加明显。同时密码子在第三上 G 的含量特别的少, 只有 6.7%。在第二点上, T 的使用最频繁(41.1%), 这反映 Cyt b 基因在密码子的使用上具有偏倚性。与共有单倍型相比, 大花斑泥鳅特有单倍型有 91 个变异位点, 而小花斑泥鳅与无花斑泥鳅特有单倍型的变异位点为 20 和 24 个。基于单倍型所构建的 NJ、MP 进化树(图 4、图 5)。

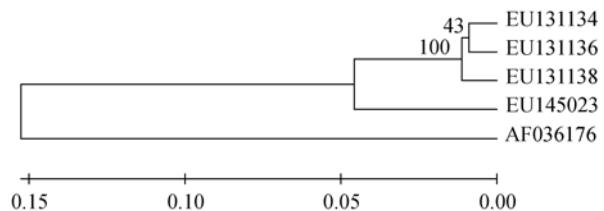


图 4 三种泥鳅的 mtDNA Cyt b 不同单倍型的 NJ 树

Fig. 4 mtDNA Cyt b Neighbor-joining phylogenetic tree among different haplotypes of three loaches

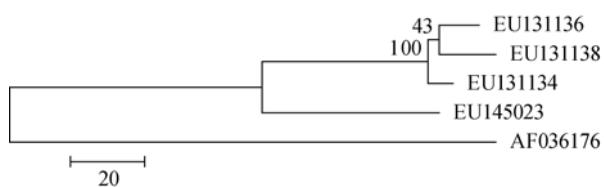


图 5 三种泥鳅的 mtDNA Cyt b 不同单倍型的 MP 树

Fig. 5 mtDNA Cyt b Maximum Parsimony phylogenetic tree among different haplotypes of three loaches

3 讨 论

同工酶^[5]、RAPD^[16]和线粒体 DNA 细胞色素 *b* 基因^[8]通常用于水生动物的遗传多样性分析。不同斑纹泥鳅之间 3 种同工酶之间的遗传多样性主要表现在两个方面。一为组织之间的表达差异性：如 LDH4 仅在 3 种斑纹泥鳅性腺组织中表达；m-MDH-A 仅在 3 种斑纹泥鳅肌肉组织中；EST-2 仅在 3 种斑纹泥鳅肝脏组织中表达。二为不同斑纹泥鳅之间的表达性：如在肝脏中组织，近负极端小花斑有一条 cLDH 弱带，无花斑有三条 cLDH 弱带；而大花斑泥鳅却无 cLDH 微带显现；LDH3 仅分布在无花斑泥鳅性腺组织中，m-MDH-B 仅存在于大花斑肌肉中，这与吴艳丽^[21]所研究的雌雄泥鳅不同组织同工酶特异性表达的结果是一致的。这表明鄱阳湖区 3 种斑纹的泥鳅在 EST、LDH 和 MDH 这 3 种同工酶之间呈现出不同组织和不同斑纹泥鳅之间的遗传多样性。Ldh-c 与进化有关，可以作为一种反映进化水平的特异基因，大花斑泥鳅 LDH 中没有检测出 cLdh，是否是进化程度更高还是环境所致还有待于进一步研究应证。s-MDH-G 只在小花斑肌肉中表达，这是小花斑泥鳅所特有，还是分子遗传基础不清楚的同工酶带，目前尚难下结论。

RAPD 标记一般呈显性遗传，RAPD 指纹图谱中的图带数、多态性带纹数、带纹整齐度在一定意义上反应种群纯度或近交水平。张岩等^[22]利用 RAPD 技术对蓬莱附近海域的钝吻黄盖鲽研究结果显示，*Nei* 基因多样性指数 H_e 平均为 0.1991，Shannon 信息指数平均为 0.2824，总体表明目前蓬莱附近海域的钝吻黄盖鲽的遗传变异较高，遗传多样性比较丰富。与之结论类似，本实验得出鄱阳湖泥鳅有效等位基因数平均值为 1.3613，遗传多样性指数(H_e)平均值为 0.2061，Shannon 多样性指数(H_o)平均值为 0.3037，说明鄱阳湖泥鳅的遗传多样性处于较高水平。

杨承泰等^[23]分析了二倍体泥鳅线粒体细胞色素 *b* 基因的序列，这与本研究中的共有单倍型 EU131136 是一致的，说明鄱阳湖 3 种斑纹泥鳅与其他地方的泥鳅一样，它们来自于共同的祖先，也是较为稳定的，能够适应环境选择。在所获得的鄱阳湖 3 种斑纹泥鳅的 4 个单倍型中，单倍型 EU131136 与单倍型 EU131134 之间的变异率最低(1.79%)，单倍型 EU131136 与单倍型 EU145023 之间的碱基变异率很高(9.82%)，从单倍型构建的分子进化树来看，

无论是 NJ 树还是 MP 树，我们都可以发现大花斑泥鳅的特有单倍型 EU145023，处于独立的分支上。这反映出鄱阳湖地区不同斑纹的泥鳅之间在线粒体 DNA Cyt *b* 基因中出现了一定距离的分化。我们推测在所选取的 3 种斑纹的泥鳅样品可能是一个复合类群，即在形态上可能存在很多复合的形态特征，而我们选取的材料中有表形很近的或者具有杂合形态的泥鳅。

鱼类遗传多样性是鱼类生存与遗传进化的基础，为鱼类遗传育种提供科学依据。从以上的结果显示鄱阳湖区的 3 种斑纹的泥鳅在同工酶水平、基因组 DNA 的水平及线粒体 DNA 的水平都显示出很高的遗传多样性，与鄱阳湖这个典型的吞吐型湖泊存在着密切的关联。鄱阳湖鱼类资源十分的丰富，是大规模苗种繁育的良好生产基地。本实验项目组通过对鄱阳湖泥鳅的调查，发现鄱阳湖泥鳅在表型和体色上存在一定的差异性，并且这种表型可以稳定的遗传。这也暗示着鄱阳湖泥鳅可以同鳅属鱼类一样利用噶氏斑纹进行分类^[24]。这些对鄱阳湖区泥鳅的良种选育具有重要的参考价值。

参考文献：

- [1] Chen J X. A Study on the Classification of the botoid fishes of China [J]. *Zoological Research*, 1980, **1**(1): 3—25 [陈景星. 中国沙鳅亚科鱼类系统分类的研究. 动物学研究, 1980, **1**(1): 3—25]
- [2] Nalbant T T. Some problems in the systematics of the genus Cobitis and its relatives (Pisces, Ostariophysi, Cobitidae) [J]. *Revue Roumaine de Biologie. Serie Biologie Animale*, 1993, **38**(2): 101—110
- [3] Ding R H. Cobitidae. Fauna of Sichuan Fresh Water Fishes [M]. Chengdu: Sichuan Publishing House of Science and Technology. 1994, 115—117 [丁瑞华. 鳅科. 四川鱼类志. 成都: 四川科学技术出版社. 1994, 115—117]
- [4] Zhao Z S, Wu Q J, Xiong C X, et al. Studies on the expression of EST and MDH isozymic genes in *Misgurnus anguillicaudatus* and *Paramisgurnus dabryanus* under the different relations between nucleus and cytoplasm [J]. *Journal of Huazhong Agricultural University*, 1999, **18**(5): 479—483 [赵振山, 吴清江, 熊传喜, 等. 两种泥鳅不同核质关系下 EST 和 MDH 同工酶基因表达的研究. 华中农业大学学报, 1999, **18**(5): 479—483]
- [5] Khan M R, Arai K. Allozyme variation and genetic differentiation in the loach *Misgurnus anguillicaudatus* [J]. *Fisheries Science*, 2000, **66**: 211—222
- [6] Chang Z J, Zhou R J, Yu Q X. Genetic variation of two loach species revealed by RAPD analysis [J]. *Zoologica Sinica*,

2001, **47**(1): 89—93 [常重杰, 周荣家, 余其兴. 两种泥鳅不同群体遗传变异的 RAPD 分析. 动物学报, 2001, **47**(1): 89—93]

[7] Li D X, Li C Y, Rong Q, et al. A map of restriction of mtDNA from *Misgurnus anguillicaudatus* [J]. *Zoological Research*, 1999, **20**(2): 153—155 [李殿香, 李传印, 戎茜, 等. 泥鳅线粒体 DNA 限制性酶切图谱. 动物学研究, 1999, **20**(2): 153—155]

[8] Tang Q Y, Liu H Z, Mayden R L, et al. Comparasion of evolution rates in the mitochondrial DNA cytochrome b gene and Control region and their implications for the phylogeny of the Cobitoidea [J]. *Molecular Phylogenetics and Evolution*, 2006, **39**: 347—357

[9] Yang C T, Cao L, Wang W M, et al. Comparative and evolutionary analysis in natural diploid and tetraploid weather loach *Misgurnus anguillicaudatus* based on cytochrome b sequence data in central China [J]. *Environ Biol Fish*, 2009, **86**: 145—153

[10] Zhang W, Zeng L G, Wang J, et al. Preliminary study on the reproducing and growth characteristics of loach *Misgurnus anguillicaudatus* from Poyang Lake [J]. *Reservoir Fisheries*, 2006, **26**(1): 40—42 [张伟, 曾柳根, 王静, 等. 鄱阳湖泥鳅繁殖与生长的初步研究. 水利渔业, 2006, **26**(1): 40—42]

[11] Zeng L G, Gan Y F, Wang J H, et al. Genetic diversity of loaches (*Misgurnus anguillicaudatus*) from Poyang Lake determined by microsatellites DNA [J]. *Journal of Nanchang University (Natural Science)*, 2008, **32**(1): 84—88 [曾柳根, 甘云飞, 王军花, 等. 鄱阳湖区泥鳅的微卫星 DNA 多态性分析. 南昌大学学报(理科版), 2008, **32**(1): 84—88]

[12] Wang J, Hong Y J, Wang J H, et al. The Genetic variation among populations of *Hyriopsis schlegelii* and *Hyriopsis cumingii* [J]. *Science Technology and Engineer*, 2005, **5**(4): 204—209 [王静, 洪一江, 王军花, 等. 不同年龄池蝶蚌(贝)与三角帆蚌同工酶的比较. 科学技术与工程, 2005, **5**(4): 204—209]

[13] Guo Y J. The Electrophoresis Technology for Protein [M]. Science Press. 1999, 123—138 [郭尧君. 蛋白质电泳实验技术. 科学出版社. 1999, 123—138]

[14] He Z X, Zhang S Z. Electrophoresis (2nd ed) [M]. Science Press. 1999, 287—298 [何忠效, 张树政. 电泳(第二版). 科学出版社. 1999, 287—298]

[15] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. New York; Cold Spring Harbor Laboratory [M]. Cold Spring Harbor Laboratory Press. 1989, 463—468

[16] Zhou L, Fan L C, Gui J F. RAPD analysis of incorporation of heterologous genetic materials in multiple species of silver crucian carp [J]. *Acta Hydrobiologica Sinica*, 1998, **22**(4): 301—306 [周莉, 樊连春, 桂建芳. 银鲫复合种外源遗传物质整入的 RAPD 分析. 水生生物学报, 1998, **22**(4): 301—306]

[17] Williams J G, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. *Nucleic Acids Research*, 1990, **18**: 6531—6535

[18] Jackson J E. A user's guide to principal components [M]. Wiley: New York. 1991, 5, 69

[19] Irwin D M, T D Kocher and A C Wilson. Evolution of cytochrome b gene of mammals [J]. *Molecular Evolution*, 1991, **32**: 128—144

[20] Meyer A. Evolution of mitochondrial DNA in fishes [J]. *Biochemistry and Molecular Biology of Fishes*, 1993, **2**: 1—38

[21] Wu Y L, Du Q Y. Tissue specificity analysis of isozyme in male and female of *Misgurnus anguillicaudatus* [J]. *Agri-culturae Boreali-occidentalis Sinica*, 2008, **17**(6): 36—40 [吴艳丽, 杜启艳. 雌雄泥鳅不同组织同工酶特异性表达分析. 西北农业学报, 2008, **17**(6): 36—40]

[22] Zhang Y, Xiao Y S, Gao T X, et al. Analysis of genetic diversity of natural population in *Pleuronectes yokohamae* [J]. *Journal of Fisheries of China*, 2008, **32**(3): 492—496 [张岩, 肖永双, 高天翔, 等. 钝吻黄盖鲽野生群体遗传多样性分析. 水产学报, 2008, **32**(3): 492—496]

[23] Yang C T, Wang W M, Cao L, et al. Sequence analysis of coding region in mitochondrial cytochrome b gene from diploid oriental weatherfish *Misgurnus anguillicaudatus* [J]. *Fisheries Science*, 2007, **26**(12): 652—655 [杨承泰, 王卫民, 曹玲, 等. 二倍体泥鳅线粒体细胞色素 b 基因的序列分析. 水产科学, 2007, **26**(12): 652—655]

[24] Chen Y F, Chen Y X. Secondary sexual characters, pigmentary zones of gambetta and taxonomical revision the geneus Cobitis from China (pisces, cobitidae, cobitinae) [J]. *Zootaxonomica Sinica*, 2005, **30**(4): 647—658 [陈毅峰, 陈咏霞. 中国鳅属鱼类的副性征、噶氏斑纹和分类整理(鲤形目, 鳅科, 鳅亚科). 动物分类学报, 2005, **30**(4): 647—658]

THE GENETIC DIVERSITY OF LOACH *MISGURNUS ANGULLICAUDATUS* FROM THE POYANG LAKE

ZENG Liu-Gen¹, ZHANG Wei^{1,2}, GAN Yun-Fei¹, WANG Jun-Hua¹ and HONG Yi-Jiang¹

(1. Institute of Life Science and Food Engineering College, Nanchang University, Nanchang 330031;

2. Anhui Professional & Technical Institute of Athletics, Hefei 230001)

Abstract: Loaches is one group of small freshwater fish dwelling in slow to moderately swift water, widely distributes in rivers and lakes. Poyang Lake, the biggest fresh water lake in China, has a rich biodiversity in fishes. The loaches of the Poyang Lake can be divided into three kinds based on skin spot: the big-spot loaches, the small-spot loaches and the non-spot loaches. Preliminary research indicated that the biological character of its skin spot was stable, which belongs to quantitative traits loci (QTL). In this study, with the expectation, to provide the evidence of theory in well-bred loach selection, isozyme electrophoresis, RAPD and mtDNA Cyt *b* gene sequencing were applied to investigate the genetic diversity of the three different kinds of loaches. Using discontinued polyacrylamide gel electrophoresis to analysis the isozymes, results showed that there were some genetic differences among the three kinds loaches based on LDH, MDH and EST isozymes. These differences were not only among different tissues, e.g. LDH₄ only existed in gonad tissue just as m-MDH-A in muscle tissue and EST-2 in liver tissue, but also among the three kind loaches, e.g. m-MDH-B only existed in muscle tissue of the big-spot loach but not in other two kinds loaches, cLDH was only existed in the liver tissue of the small-spot and non-spot loached not find in the big-spot loach. RAPD technique, as an important tool for genetic study, was widely used in identification of species. 6 random primers, with more stable and reproducible characteristics, were selected from 35 random primers in RAPD to evaluate the genetic diversity. 169 distinguishable DNA fragments were amplified in all, varying in length from 200 to 1800 bp, 101 of them (59.56%) were polymorphic. Each primer could amplify DNA fragments varied from 8 to 11, 9.39 fragments per primer, including 5.61 polymorphic fragments. The shannon's index was 0.3750 in the big-spot loaches, 0.2706 in small-spot and 0.2656 in none-spot loaches. So the genetic similarity index by the result of RAPD in the three kind loach were very high from the nuclear DNA. The Cyt *b* gene, 1140bp sequences, was obtained by PCR amplification in the three kind loaches. Four haplotypes were identified from 28 samples with 113 variation site, one was the mutual haplotype and others were endemic haplotypes. The endemic haplotype which presented only in big-spot loach had 91 variation sites compared to the mutual haplotype, but the endemic haplotype in small-spot and non-spot loach only had 20 and 24 variation sites. With *Myoxo-cyprinus asiaticus* as outgroup, the phylogenetic trees were analyzed using the neighbor joining (NJ) method and the maximum parsimony (MP) in MEGA 4.0. The result showed that the haplotype of the big-spot loach were clustered into another branch with high confidence level, it also indicated that there were a certain genetic differences among the three kinds loached based on mitochondrial cytochrome *b* gene sequences. The genetic diversity of the three kind loaches in Poyang Lake, based on the results of isozymes, nuclear DNA (RAPD analysis) and mtDNA (Cyt *b* gene analysis), was abundant. Results also indicated that the loach in Poyang Lake might have population heterozygosis.

Key words: Loach (*Misgurnus anguillicaudatus*); Genetic diversity; Isozyme; RAPD; Cyt *b*