

DOI: 10.3724/SP.J.1035.2010.00998

张氏鮈的繁殖生物学特性

孙宝柱^{1,2} 李晋³ 但胜国¹ 谭德清¹

(1. 中国科学院水生生物研究所, 武汉 430072; 2. 中国科学院研究生院, 北京 100049;
3. 四川省泸县水利局, 泸县 646106)

摘要: 文章对赤水河河口段张氏鮈的繁殖生物学进行了研究。结果表明: 5—9月份为其繁殖期; 最小性成熟个体为雌性体长 77mm, 体重 5.3g; 雄性体长 108mm, 体重 9.4g, 均为 1 龄; 繁殖群体性比为 1.07: 1, 由 4 个年龄组组成, 其中 2 龄个体占绝对优势。性成熟系数 3—7 月份逐渐增大, 然后持续减小, 至 12 月降到全年最小值。卵径(0.75 ± 0.14) mm 呈单峰型, 绝对繁殖力(11010 ± 7723) 粒, 相对繁殖力(275.1 ± 138.4) 粒/g, 每克卵巢卵粒数(3789 ± 1389) 粒。该种为单批产卵类型鱼类。绝对繁殖力随着鱼体体长、体重和年龄的增长而增大。

关键词: 张氏鮈; 特有鱼类; 繁殖; 生物学

中图分类号: Q958.8 文献标识码: A 文章编号: 1000-3207(2010)05-00998-06

张氏鮈(*Hemiculter tchangi* Fang 1942)隶属于鲤形目、鲤科、鮈亚科、鮈属, 因其尾鳍末端灰黑色, 又名黑尾鮈, 分布于重庆、四川的江河、水库、池塘等水体中, 为长江上游特有鱼类, 生活于水体中上层, 在一些水体中常成为优势种^[1, 2]。20世纪90年代, 有学者对嘉陵江水系中游的西充河、渠江等处该种的生物学进行了初步研究^[3], 但长江上游其他水系的研究至今未见报道。本研究旨在为赤水河国家级自然保护区中该种的生物学研究提供基础资料, 并为将特有鱼类作为指示种对赤水河资源进行估算和健康评价提供依据。

1 材料与方法

1.1 标本来源

研究材料于2005年11月到2009年2月间采于四川省合江县长江上游一级支流赤水河与二级支流习水河交汇的河口河段, 共1023尾, 为渔民用定置刺网捕捞的渔获物。每次采到标本后立即用10%福尔马林溶液固定, 集中在室内进行常规生物学测量

和解剖(包括体长、体重、空壳重、性腺及发育期)并采取鳞片。

1.2 实验方法和数据分析

长度指标用直尺测量, 全长为吻端至尾鳍末端的长度, 体长为吻端至最后一枚脊椎骨的长度, 精确至1 mm; 重量指标用电子天平称量, 体重和空壳重精确至0.1 g, 脂肪重、性腺重精确至0.01 g。用鳞片鉴定年龄, 在背鳍和侧线之间矩形区域取鳞(侧线以上3—4行), 处理后在解剖镜下以透射光读取。参照国内常用的关于性腺发育分期的方法^[4—6], 将性腺发育分为6个时期。从每尾性成熟的雌性个体IV期卵巢中称取0.10 g卵粒, 计数卵数, 统计整个卵巢的怀卵量, 然后再随机挑出100粒卵, 用解剖镜测量每个卵的卵径。在繁殖季节对生境进行调查。

分别用Excel和SPSS 13.0应用软件进行数据计算和分析, 选择 R^2 值高且使用方便的模型为优化模型。成熟系数、肥满度和繁殖力的计算公式分别为^[5, 6]:

$$\text{成熟系数}(GSI) = \text{性腺重(g)}/\text{空壳重(g)} \times 100$$

收稿日期: 2009-07-20; 修订日期: 2010-03-26

基金项目: 国务院三峡工程建设委员会办公室生态环境项目(SX2006-013); 长江上游珍稀、特有鱼类及保护区措施补偿科研项目(0605042-07); 国家自然科学基金(50679095)资助

作者简介: 孙宝柱(1984—), 男, 河北省承德人; 在读硕士研究生; 主要从事鱼类生态学与生理学研究。E-mail: baozhu.ok@ihb.ac.cn

通讯作者: 谭德清, E-mail: dqtan@ihb.ac.cn

$$\text{肥满度}(K)=\text{空壳重(g)}/\text{体长}^3(\text{mm}) \times 100$$

$$\text{绝对繁殖力}(F)=\text{每克卵巢卵粒数} \times \text{卵巢重(g)}$$

$$\text{相对繁殖力}(F/W)=\text{绝对繁殖力}/\text{体重(g)}$$

2 结 果

2.1 性腺和性腺发育

性腺形态和发育分期 张氏蟹的性腺成对, 为大小相等的两叶, 位于鳔后下方, 消化道两侧, 借系膜与体腔壁相连。随着性腺发育, 在形态、大小和色泽上发生一系列变化。其性腺发育可分为6个时期。I期性腺细线状, 透明, 不能分辨性别。卵巢各期特征为: II期细带状, 半透明, 在中线处可见明显的血管; III期较II期明显增大, 卵黄开始沉积, 呈微黄色; IV期黄色, 体积膨大充满体腔, 肉眼可见分布均匀的黄色卵粒; V期为正在产卵的亲鱼所具有, 轻压亲鱼腹部即可挤出游离的透明卵粒, 因V期出现时间较短, 在固定材料中很少见到; VI期为产卵后的卵巢, 可见未产出的卵粒, 有的卵粒卵黄已被吸收。精巢各期特征为: II期细带状, 半透明, 但在中线处无血管; III期带状, 较II期宽, 浅白色; IV期宽带状, 白色, 体积膨大; V期精巢为正在繁殖的亲鱼所具有, 轻压亲鱼腹部即可挤出白色的精液。

性腺发育各期组成的周年变化 将性腺发育至IV-V期的个体统计为性成熟个体(表1)。10月份至次年3月份绝大多数个体性腺发育处于II期, 而

4—9月份性成熟个体所占的比例显著升高。在4—5月份参与繁殖的亲鱼主要由3龄个体构成, 6—9月则主要由1—2龄个体构成。

性成熟系数 性成熟系数3月份开始增大, 7月份达到全年最大值(5.97 ± 3.84), 12月则降到最小值(0.55 ± 0.36)。雌性的成熟系数从5月份开始增大, 6—8月份为全年最高, 9月份以后则减小。除6月份外, 雄性的变化趋势与雌性基本相同(图1)。5—9月份性成熟的个体较多, 而在10月份至次年3月份则仅有1—2尾。

肥满度 除12月份雌性高于雄性外, 两性个体的周年变化趋势基本一致(图2)。其范围为0.0009—0.0014, 平均为 0.0011 ± 0.0001 。

卵径分布 测量了96尾个体IV期卵巢的卵径(图3, $n=9463$)。卵径为0.35—1.35 mm, 平均(0.75 ± 0.14) mm, 呈单峰型。4月份卵径的平均值较小, 为(0.62 ± 0.09) mm, 处于发育阶段, 5—9月份卵径的平均值较大, 为0.71—0.79 mm, 处于繁殖期。

2.2 繁殖群体组成

性比和性征 在能够分辨性腺的1001尾标本中, 性比为♀:♂=1.07:1, 符合1:1的理论比值($X^2=0.754$, $P>0.05$)。性成熟的361尾标本, 性比为♀:♂=1.39:1, 不符合1:1的理论比值($X^2=9.643$, $P<0.05$), 雌性个体显著多于雄性个体。成体在外形上几乎没有差异, 但在繁殖季节, 一般雌性个体腹部饱满, 个体明显大于雄性个体。

表1 性腺发育各期组成的周年变化
Tab. 1 The annual constitutions of different reproductive stage

月份 Month	雌性个体 Female					雄性个体 Male			
	标本数 Sample	II (%)	III (%)	IV、V (%)	VI (%)	标本数 Sample	II (%)	III (%)	IV、V (%)
1	7	100.0	0	0	0	20	75.0	25.0	0
2	71	97.2	0	2.8	0	36	97.2	2.8	0
3	38	97.4	0	2.6	0	39	94.9	5.1	0
4	14	78.6	0	21.4	0	28	14.3	28.6	57.1
5	90	35.6	13.3	51.1	0	81	28.4	12.3	59.3
6	47	23.4	10.6	66.0	0	88	63.6	15.9	20.5
7	87	2.3	16.1	73.6	8.0	27	18.5	0	81.5
8	54	11.1	16.7	61.1	11.1	48	20.8	18.8	56.3
9	24	33.3	12.5	54.2	0.0	24	25.0	0	75.0
10	27	92.6	7.4	0	0.0	30	83.3	16.7	0
11	43	90.7	2.3	2.3	4.7	41	100.0	0	0
12	16	93.8	0	6.3	0	21	95.2	4.8	0

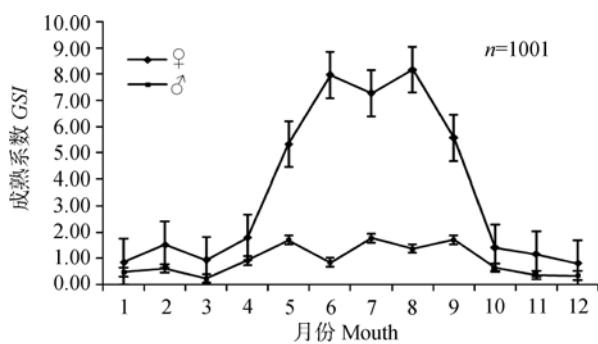


图 1 雌、雄性个体性成熟系数的周年变化
Fig. 1 Annual change of GSI between male and female

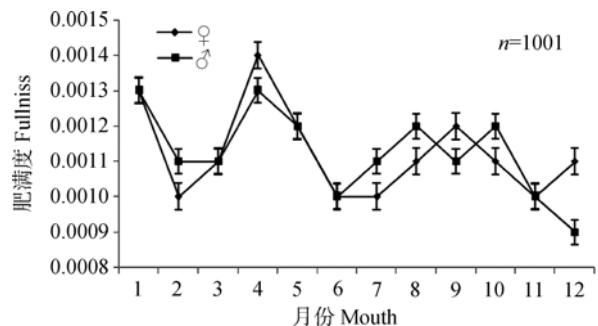


图 2 雌、雄性个体肥满度的周年变化
Fig. 2 Annual change of fullness between male and female

初次性成熟大小 最小性成熟个体雌性体长 77 mm, 体重 5.3 g, 成熟系数 14.77, 卵巢IV期, 绝对繁殖力 1164 粒。雄性体长 108 mm, 体重 9.4 g, 成熟系数 2.59, 精巢IV期。均为 6 月份采到的 1 龄个体。

繁殖群体年龄组成 繁殖群体由 4 个年龄组组成(图 4)。在性成熟的 361 尾个体中, 1 龄占 23.3%, 2 龄占 51.5%, 3 龄占 24.7%, 4 龄雌、雄各 1 尾。2 龄占绝对优势。雌性平均年龄 2.03 龄, 雄性 2.02 龄。

繁殖群体的体长、体重分布 性成熟的 361 尾个体, 体长分布范围为 77—216 mm, 主要分布于 101—180 mm (87.3%)。其中雌性主要分布于 111—180 mm (81.4%), 雄性主要分布于 101—130 mm (79.5%), 体长 200 mm 以上的个体全为雌性。

体重分布范围为 5.3—136.5 g, 主要分布于 10.1—80.0 g (90.3%)。其中雌性主要分布于 10.1—70.0 g (82.0%), 雄性主要分布于 10.1—60.0 g (75.5%), 90.0 g 以上的个体主要是雌性。雌性个体的平均体重为 47.4 g, 雄性个体为 40.3 g。

2.3 繁殖力

绝对繁殖力和相对繁殖力 对 141 尾个体的 IV 期卵巢统计了繁殖力。亲鱼体长 77—200 mm, 体

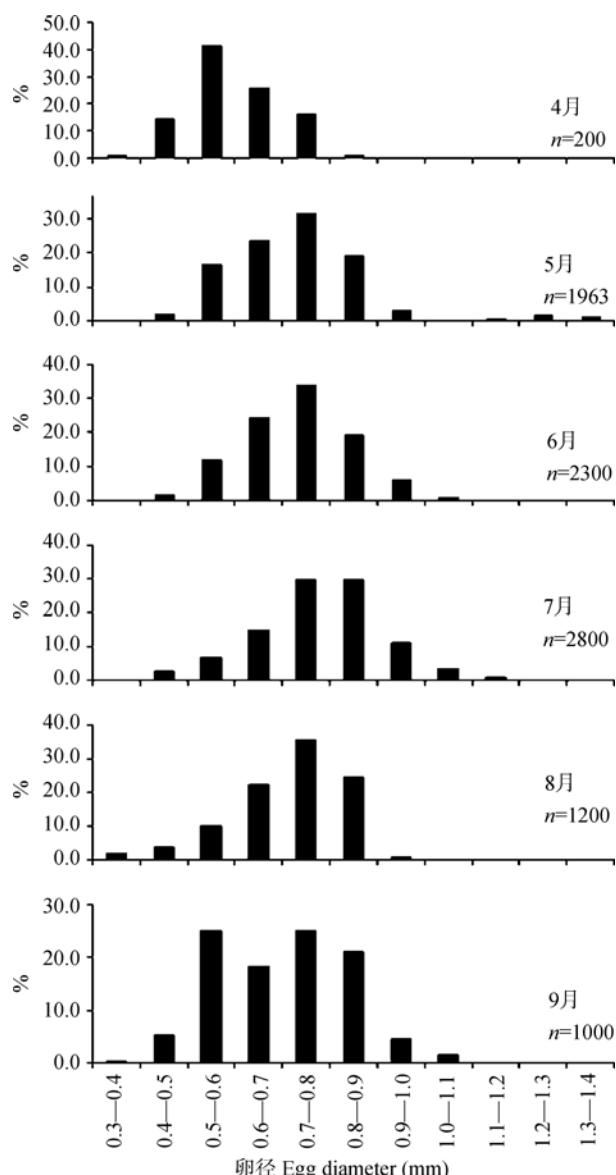


图 3 卵径的季节变化

Fig. 3 The distribution of egg-diameter in IV stage ovary from April to September

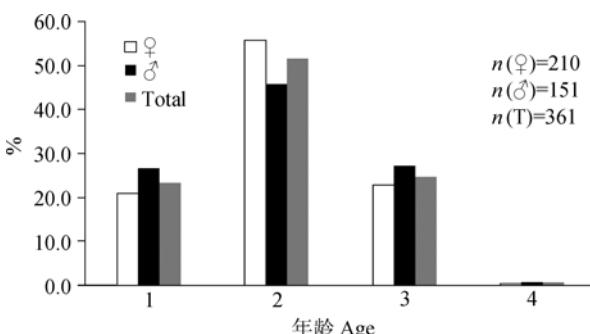


图 4 繁殖群体的年龄组成

Fig. 4 The age structure of reproductive population

重 5.3—123.9 g, 年龄 1—4 龄。绝对繁殖力 1164—41030 粒, 均值为 (11010 ± 7723) 粒; 相对繁殖力 24.4—721.4 粒/g, 均值为 (275.1 ± 138.4) 粒/g; 每克卵巢卵粒数为 1170—8880 粒, 均值为 (3786 ± 1389) 粒, 每克卵巢卵粒数随年龄的增长而减少(表 2)。

年龄与绝对繁殖力 绝对繁殖力(F)随年龄(Y)增长而增大, 其关系可以表达为 $F=3932\ln(Y)+6406$ ($R^2=0.983$, $P=0.117 > 0.05$, $n=141$)。比较各年龄组的总繁殖力以估算各龄组对种群补充的贡献率

(表 2), 结果显示: 2 龄组的繁殖贡献率最大, 但该年龄组在数量上亦占优势。3 龄组虽然在数量上不到 2 龄组的一半, 但贡献率仅较 2 龄组稍逊。

体长、体重与绝对繁殖力 绝对繁殖力随着体长、体重的增长而增大, 与体长的关系可以表达为 $F/L=158.1L-11650$ ($R^2=0.279$, $P<0.01$, $n=141$); 与体重的关系可表达为 $F/W = 212.5W + 1947$ ($R^2=0.423$, $P<0.01$, $n=141$)。两者的相关系数都不高, 因此不能用数学关系很好的表达。

表 2 不同年龄鱼的绝对繁殖力、每克卵巢卵粒数和总繁殖力

Tab. 2 The absolute fecundity and eggs in one gram ovary at different age

年龄 Age	1	2	3	4
个体数 Sample	25	82	33	1
平均绝对繁殖力 Absolute fecundity	6231 ± 3479	9579 ± 5490	10499 ± 13312	11816
平均每克卵粒数 Eggs (g) of ovary	4069 ± 1249	3690 ± 1436	2830 ± 6400	2800
总繁殖力 Total fecundity	155774	785441	575635	11816
百分比 Percentage	10.3	51.7	37.9	0.2

3 讨 论

3.1 产卵类型和繁殖季节

该种的卵径分布呈单峰型, 成熟系数也是呈单峰型的, 6—8 月为高峰期, 而肥满度则是在 6、7 月份较低, 这与性腺的发育变化情况是相对应的。综合这三项指标可以推断其为单批产卵类型鱼类^[7,8]。与邓其祥等^[3]在嘉陵江水系中游调查张氏蟹为分批产卵类型的结论不同。他们的结论仅建立在成熟系数的周年变化这一个指标上, 没有考虑卵径分布和肥满度等因素。另外, 根据对繁殖季节不同月份相近体长体重的雌性个体绝对繁殖力进行比较(表 3): 绝对繁殖力随着时间的推移而呈现规律性的变化, 从 4 月份绝对繁殖力逐渐增加, 到 6 月份达到最大值, 7 月份以后又持续减小。从这一角度看张氏蟹也是单批产卵类型鱼类。

表 3 相近体长体重雌性个体在不同月份的绝对繁殖力
Tab. 3 The absolute fecundity of near size female in different month

月份 Month	4	5	6	7	8
体长 Body-length	165	164	164	174	168
体重 Body-weight	60.9	59.9	63.3	67.6	51
年龄 Age	3	3	3	3	3
绝对繁殖力 Absolute fecundity	10602	19437	35501	20463	10499

在赤水河河口段该种的成熟个体以 II 期性腺越冬, 次年春天性腺开始发育, 长宽重同时增加, 甚至有些雌性个体产卵前卵巢占了体腔的 3/4。根据繁殖群体调查数据, 其繁殖期为 5—9 月份, 繁殖时间较长。鱼类繁殖时间的长短在不同种类之间差异很大^[9—12], 作者认为繁殖持续时间长是鱼类对外界环境条件的一种适应, 在这种情况下不会因为生活环境的陡然恶化而严重影响种群的增值, 而且有利于保证幼鱼的饵料需求。

3.2 张氏蟹与蟹属其他鱼类繁殖特征的比较

与黑龙江流域的贝氏蟹^[13]、嘉陵江南充段的蟹^[14]等蟹属鱼类比较(表 4), 本次调查张氏蟹的最小性成熟个体雌鱼规格较小, 雄鱼略大, 性比符合 1:1 的理论比值, 繁殖力较其他调查的鱼类略大。

3.3 张氏蟹的繁殖场、索饵场

该种是长江上游特有鱼类, 且分布的区域较广, 但赤水河河口河段分布更为集中和稳定。赤水河河口河段长约 10 km, 多年平均流量 $289.7 \text{ m}^3/\text{s}$, 年径流量 $91.3 \times 10^8 \text{ m}^3$ ^[15]。河水比降小, 河床平缓, 底质以页岩和砾石为主, 表层以泥沙为主。距赤水河口 1 km 处, 由右岸汇入二级支流习水河, 习水河合江段与赤水河下游河口段生境相似, 河床两岸均生长了大量的水生和湿生植物。在枯水期, 这些植物群落在河边大量生长, 河水上涨时它们被水淹没,

表 4 张氏鱊与其他鱊属鱼类繁殖特征的比较
Tab. 4 Comparison of reproductive ecology between *H. tchangi* and other *Hemiculter* fish

地点 Address	种类 Species	最小性成熟个体 Minimum size of matured	性比 Sex-radio	绝对繁殖力 Absolute fecundity	产卵季节 Spawning season
黑龙江流域	贝氏鱊	♀: 88 mm ♂: 90 mm	2: 3	—	6 月间
嘉陵江南充段	鱊	♀: 84 mm, 10.0 g ♂: 89 mm, 11.2 g	1: 1.29—4	3780—40257	5—8 月
赤水河河口段	张氏鱊	♀: 77 mm, 5.3 g ♂: 108 mm, 9.4 g	1.07: 1	1164—65963	5—9 月

这种现象对于产黏性卵鱼类的摄食、繁殖是非常有利的。从该河段多年的水情变化情况看, 5—9 月份是涨水季节, 这与该种的繁殖时间是相同的。1997—2009 年在该河段渔获物的调查中, 其重量比约占 11.64%、尾数比约占 9.65%, 多年的调查结果基本相同(引自中国科学院水生生物研究所: 长江上游珍稀、特有鱼类及保护区渔业资源与环境监测年度报告), 根据调查结果可以推测, 赤水河河口河段是其重要的索饵、繁殖场所。

致谢:

中国科学院水生生物研究所王剑伟研究员对本文提出了宝贵的修改意见, 在此表示真挚的谢意!

参考文献:

- [1] Fish Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Province. Fishes in the Yangtze River [M]. Beijing: Science Press. 1976, 113—114 [中国科学院水生生物研究所, 鱼类研究室. 长江鱼类. 北京: 科学出版社. 1976, 113—114]
- [2] Ding R H. The fishes of Sichuan, China [M]. Chengdu: Sichuan Publishing House of Science and Technology. 1994, 215—220 [丁瑞华. 四川鱼类志. 成都: 四川科学技术出版社. 1994, 215—220]
- [3] Deng Q X, Hao G S, Cao F J. Biology of *Hemiculter nigromarginis* [J]. *Acta Hydrobiologica Sinica*, 1993, 17(1): 88—89 [邓其祥, 郝功劭, 曹发君. 黑尾鱊生物学的研究. 水生生物学报, 1993, 17(1): 88—89]
- [4] Cao W X. Morphologic compare of *Megalabrama anblycephala* Yih and *Megalabrama terminalis* (Richardson) in Liangzihu Lake [J]. *Hydrobiology Journal*, 1960, 1: 57—78 [曹文宣. 梁子湖的团头鲂和三角鲂. 水生生物学集刊, 1960, 1: 57—82]
- [5] Duan Z H, Sun J Y. Studies on the reproductive biology of *Pelteobagrus vachelli* (Richardson) [J]. *Acta Hydrobiologica Sinica*, 1999, 23(6): 610—616 [段中华, 孙建贻. 瓦氏黄颡鱼的繁殖生物学研究. 水生生物学报, 1999, 23(6): 610—616]
- [6] Yin M C. Fish ecology [M]. Beijing: China Agriculture Press. 1993, 268—269 [殷名称. 鱼类生态学. 北京: 中国农业出版社. 1993, 268—269]
- [7] Wang J W. Reproductive biology of *Gobiocypris rarus* [J]. *Acta Hydrobiologica Sinica*, 1992, 16(2): 166—174 [王剑伟. 稀有鮈的繁殖生物学. 水生生物学报, 1992, 16(2): 166—174]
- [8] Li W J, Wang J W, Xie C X, et al. Reproductive biology and spawning habitats of *Megalobrama pellegrini*, an endemic fish in upper-reaches of Yangtze River basin [J]. *Acta Ecologica Sinica*, 2007, 27(5): 1917—1925 [李文静, 王剑伟, 谢从新, 等. 厚颌鲂(*Megalobrama pellegrini*)的繁殖生物学特征. 生态学报, 2007, 27(5): 1917—1925]
- [9] Justus Ruta, Anthony J. Booth. Reproductive biology of *ningu*, *Labeo victorianus* (Pisces: Cyprinidae), in the Kagera and Sio Rivers, Uganda [J]. *Environmental Biology of Fishes*, 2005, 73: 153—162
- [10] Long G H, Lin G, Hu D S, et al. The Reproductive Biology of *Barbel chub* [J]. *Chinese Journal of Zoology*, 2005, 40(5): 28—36 [龙光华, 林岗, 胡大胜, 等. 赤眼鳟的繁殖生物学. 动物学杂志 2005, 40(5): 28—36]
- [11] P Brickle, V Laptikhovsky, J Portela. Reproductive biology of *Patagonotothen ramsayi* (Regin, 1913) (Pisces: Nototheniidae) around the Falkland Islands [J]. *Polar Biol*, 2006, 29: 570—580
- [12] Xue Z K, He X F. A study on the individual fecundity of *A. nigrocauda* Yih et Woo [J]. *Journal of Southwest China Normal University (Natural Science)*, 2001, 26(1): 90—94 [薛正楷, 何学福. 黑尾近红鮈个体繁殖力的研究. 西南师范大学学报(自然科学版), 2001, 26(1): 90—94]
- [13] Wu Q J, Yi B L. The fish of *Hemiculter* and preliminary investigate on the ecology of *Hemiculter* in Heilongjiang River [J]. *Hydrobiology Journal*, 1959, (2): 157—168 [吴清江, 易伯鲁. 鳊条属鱼类和黑龙江流域鱊条属鱼类的初步生态调查. 水生生物学集刊, 1959, (2): 157—168]
- [14] Yang Z J, He X H, Lai C W, et al. The morphological character, age and growth, development of gonad of *Hemiculter leucisculus* [J]. *Sichuan Journal of Zoology*, 1992, 11(1): 38—40 [杨泽均, 何晓红, 赖朝文, 等. 鳊的性状、年龄与生长及性腺发育. 四川动物, 1992, 11(1): 38—40]
- [15] Cao W X. The natural reserve construction of endemic fishes in the upper Yangtze River and its related problems [J]. *Resources and Environment in the Yangtze Basin*, 2000, 9(2): 131—132 [曹文宣. 长江上游特有鱼类自然保护区的建设及相关问题的思考. 长江流域资源与环境, 2000, 9(2): 131—132]

STUDIES ON THE REPRODUCTIVE BIOLOGY OF *HEMICULTER TCHANGI* FANG

SUN Bao-Zhu^{1, 2}, LI Jin³, DAN Sheng-Guo¹ and TAN De-Qing¹

(1. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049; 3. The Bureau of Water Conservancy in Luxian, Luxian County 646106)

Abstract: *Hemiculter tchangi* Fang is an endemic fish in the upper Yangtze River, and mainly distribute in Sichuan Province and Chongqing City, China. At present, more and more researches have used endemic fish as indicative species to appraise the healthy of the river which they lived. Further more, due to the loss of habitat after the completion of the Three Gorges Project and other hydroelectricity projects, it was forecasted that the population sizes of the endemic fish might decreased sharply in the future. It is very urgent to make suitable countermeasures for the conservation and resource-recovery of those endemic species. So it is very important to study the biology of those fish. This paper deals with the reproductive biology of *H. tchangi*. One thousand and twenty three specimens were collected during November 2005 to February 2009 from the estuary of the Chishui River, the first-order tributary of the Yangtze River, which locates at Hejiang county of Sichuan Province. The results showed that the main spawning season of *H. tchangi* population took place from May to September. The minimum size of mature male was 108 mm in length and 9.4 g in weight, while that of mature female was 77 mm in length and 5.3 g in weight. Both of them were 1-year-old. There was significant different between the sex ratio in spawning season and non-spawning season. The sex ratio of males and females was 1.07:1 in the population, but there were more female individuals than male in the reproductive population ($X^2=9.643$, $P<0.05$, $n=361$). The body length of the mature individuals ranged from 77 to 216 mm, and most of them ranged from 101 to 180 mm (87.3%). The body weight ranged from 5.3 to 136.5 g, and most of them ranged from 10.1 to 80.0 g (90.3%). The population included 4 age-groups, some of them had got mature at 1-year-old, but most of them matured at 2-year-old. The gonadosomatic index (*GSI*) began to increase in March, and it reached to the peak in July. On the contrary, it decreased to the lowest in December. The egg diameter distribution in the ovary was unimodal at mature stage indicating that the fish was a total spawner as opposed to a batch spawner. The absolute fecundity of the mature females varied from 1164 to 41030 eggs, with an average of (11010 ± 7723) eggs. And the relative fecundity to body weight varied from 24.4 to 721.4 eggs per gram, with an average of (275.1 ± 138.4) eggs per gram. The absolute fecundity of the mature females increased with body length, body weight and age. The absolute individual fecundity was curvilinear correlative to age, and linearly correlative to body length and body weight. But the indexes of the later two were not obvious. Statistical analysis of the total absolute fecundity at different age showed that 2 and 3 year-old fish took place the majority part. It means that the supplementary population dominates the breeding population. Our fieldwork demonstrated that the estuary of the Chishui River is a good environment for feeding and reproducing of *H. tchangi*.

Key words: *Hemiculter tchangi* Fang; Endemic fish; Reproduction; Biology