

# 微鞘藻胞外多糖在沙漠土壤成土中的作用

陈兰周 刘永定 宋立荣

(中国科学院水生生物研究所, 武汉 430072)

**摘要:** 研究了沙坡头藻结皮中的优势物种——微鞘藻的胞外多糖对沙漠表层土壤水分分布状况的影响及其光合特性。随着胞外多糖浓度的升高, 土壤持水量增大, 土壤水分蒸发速率降低, 水分在土壤中运动的速率被延缓。藻总水溶性多糖产率为 28.82%, 胞外水溶性多糖产率为 16.09%; 多糖产量在稳定期生物量最大时增长最快。微鞘藻光合作用最适温度为 25<sup>o</sup>, 最适光强为  $400\mu\text{E} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$ , 在 0.3 mol/L NaCl 浓度下其光合作用活性被强烈抑制; 微鞘藻的吸收光谱表明它比生长在湿润地区的藻类含有更多的胡萝卜素成分; 叶绿素 a 荧光( $F_v/F_m$ )分析表明在失水约为初始湿重的 56% 时  $F_v/F_m$  值恢复到水培养的 96%; 其光合作用特性有利于对逆境的适应和生物量的积累。表明微鞘藻胞外多糖可影响沙漠表层土壤水分分布状况, 并可作为一种潜在的生物肥料, 在荒漠原始成土过程中扮演着重要角色。

**关键词:** 藻结皮; 胞外多糖; 成土作用; 水分分布状况; 光合活性

**中图分类号:** Q949.25    **文献标识码:** A    **文章编号:** 1000-3207(2002)02-0155-05

微鞘藻是一种广泛分布的陆生藻类, 研究它对逆境适应能力及其较强的固沙能力的机制, 对研究和治理荒漠化有很大的意义。在我国, 对发菜曾进行过一些研究<sup>[1]</sup>, 另外对荒漠藻的形态分类和生态有过一些研究。本文拟阐述微鞘藻的胞外多糖对水分分布状况的影响及光合特性, 说明其在沙漠土壤成土过程中的作用。

## 1 材料和方法

**1.1 具鞘微鞘藻** (*Microcoleus vaginatus* Gom.) 由宁夏沙坡头采集、分离、纯化而得。采用 BG-11 培养基, 室温通气培养。除特别说明, 实验采用 18d 培养藻。

**1.2 多糖的提取** 取培养 30d 的微鞘藻, 离心(7000r/min, 30min) 收集取上清液, 抽滤并过 0.45μm 的玻璃纤维滤膜(W hatman<sup>R</sup>), 旋转蒸发仪浓缩(40<sup>o</sup>, 120r/min), 对蒸馏水透析(M WCO 10000), 冷冻干燥, 制得胞外多糖。热水溶性多糖的提取按前文<sup>[2]</sup>, 取冻干的藻粉用 80% 的酒精提取叶绿素过夜后, 在沸水浴中提取两次, 每次 4h, 离心, 取上清液浓缩, 冷冻干燥备用。

**1.3 取不同浓度的 EPS, 以 2mL/4g 沙混合, 装入 10mL 的注射器中, 45<sup>o</sup> 烘干, 后在上面加一块滤纸, 快速加入 5mL 水, 记录注射器从加水至第一滴水滴出的时间为水分在沙**

中的运动时间; 以 2mL/5g 沙混合, 装入直径 2.5cm 的小试剂瓶中, 在 45 烘干 16h, 称水分含量变化, 确定水分挥发速率; 以滴定管在水试剂瓶上 1cm 处滴定, 直到表面刚起水为止, 记录滴数为土壤持水量。

**1.4 叶绿素 a 荧光的测定** 取培养藻液, 抽滤, 使藻培养物沉积在滤纸上, 放在开阔处使水份逐渐风干(为加速风干, 可用吹风机轻吹), 测叶绿素 a 荧光。叶绿素 a 荧光用变携式植物效率分析仪 (PEA, Hansatech<sup>R</sup>, U. K.) 测定, 激发光强为最大光强的 50% (约  $1500\mu\text{E} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$ ), 暗适应时间不少于 10min, 记录时间为 5s。

**1.5 光合作用的测定** 以 Clark 型 DW 1 (Hansatech<sup>R</sup>, U. K.) 氧电极测定放氧速率, 记录时间不少于 5min, 其中盐胁迫处理时间为 24h。

**1.6 生物量(以叶绿素 a 表示)的测定** 按前文<sup>[3]</sup>, 多糖的测定用蒽酮比色法测定, 并作修改, 蛋白质含量用福林-酚法测定。

本文所有数据均重复 3 次以上, 取平均值。

## 2 结果与分析

**2.1 微鞘藻的胞外水溶性多糖(Exopolysaccharide, EPS)对沙漠土壤水分分布的影响**

**2.1.1 多糖产量及其主要组份** 微鞘藻胞外水溶性多糖的产量为 16.09%, 胞内热水溶性多糖产量为 12.73% (以多糖重/藻粉干重表示)。胞外聚合物的主要组份为多糖含量 46.70%, 蛋白质为 3.63%, 不含有淀粉。微鞘藻多糖含量高, 可以为土壤微生物提供较多的碳源。

**2.1.2 EPS 对水份在沙壤中运动的阻碍作用** 如图 1 所示, 随着沙中 EPS 浓度的增高, 水分运动的速度减慢, 透过时间增大, 水分透过时间增长, 不利于水分的下渗。在荒漠结皮中, 结皮越厚, 结皮的时间越长, 雨水下渗所需时间增长, 不利于雨水的下渗, 但有利于表层土壤充分吸收水分。

**2.1.3 EPS 对沙壤持水量的影响** 随着 EPS 浓度的增高, 其最大持水量逐渐增高(图 2), 在 1.0mg/mL 时比对照增加 18.17%。在降水过程中, 多糖含量越高, 表层土壤保墒能力越强, 因此可充分利用降水进行生长。

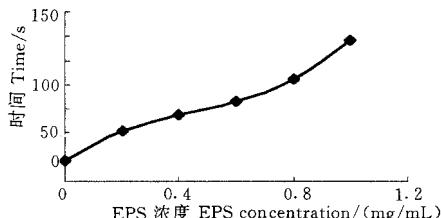



图 1 不同浓度的 EPS 对水分运动的阻碍作用

Fig. 1 The retard of water movement through the sand in different EPS concentration

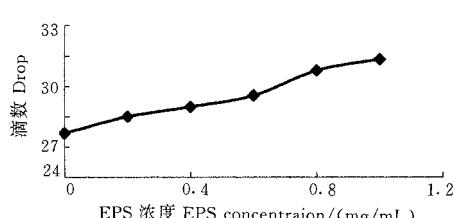



图 2 不同浓度的 EPS 对土壤持水量的影响

Fig. 2 The effect of EPS on soil water-holding capacity

**2.1.4 EPS 对土壤水分蒸发速率的影响** 由图 3 可以看出, 土壤最低含水量随浓度的增加而增加。1mg/ mL EPS 的含水量是对照的 3 倍, 是 0.5mg/ mL 的 1.8 倍, 极大地提高了土壤的含水量。并且延缓了土壤水分挥发的速率, 有利于保墒和荒漠藻在雨季来临时充分利用水分进行生长, 提高土壤生物量。

## 2.2 EPS 同生长的关系

如图 4 所示, 生物量的增长是典型的生长曲线, EPS 的增长同生物量的增长是同步的。但在生物量增长的稳定期, EPS 的增长仍比较快, 说明稳定期有利于 EPS 的积累。在稳定期, 生物量的增长已经停止, 生长环境由于生物量的增多而变恶劣, 环境的压力增大, 说明外界的环境胁迫有利于 EPS 的增长。

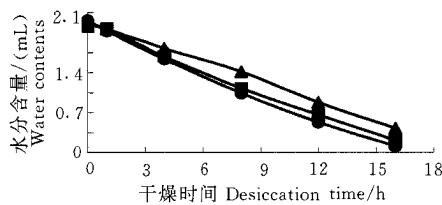



图 3 不同浓度 EPS 对土壤水分挥发的阻碍作用  
(◆ - 0, ▲ - 0.5, ■ - 1mg/ mL)

Fig. 3 The retard of soil water evaporation in different EPS concentrations

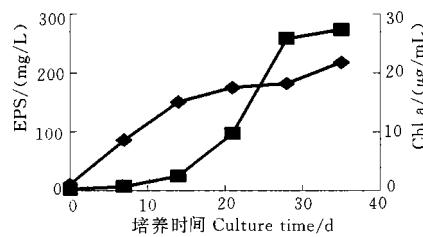



图 4 多糖增长和生物量增长的关系  
(◆ - EPS, ■ - Chl a)

Fig. 4 The relationship between EPS and Chlorophyll a in the growth phase

## 2.3 光合作用特性

**2.3.1 光强对光合作用活性的影响** 如图 5 所示, 在  $400 \mu\text{E} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$  时光合放氧速率最大, 即使在  $1000 \mu\text{E} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$  时仍较高, 并没有出现严重的光抑制现象, 说明微鞘藻能够适应较广泛的光强范围, 但更适合于中等强度的强光, 这同其在荒漠生物结皮中位于结皮上层的生态位有关。

**2.3.2 温度对光合作用的影响** 如图 6 所示, 光合作用活性在 25 时最高, 但在 40 时光合作用也没有出现强烈的抑制作用, 说明微鞘藻比较适合沙漠地区沙表面的高温。而且在 10 时光合作用活性仍很高, 说明它较耐低温, 能够承受沙漠地区较大的温差。

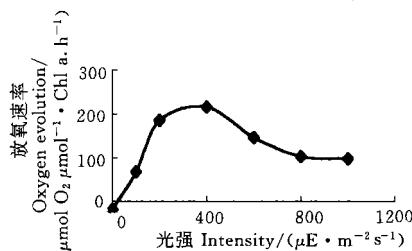



图 5 光强对光合放氧速率的影响

Fig. 5 The effect of light intensity on oxygen Evolution

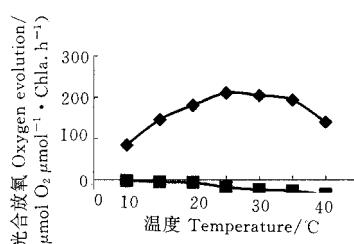



图 6 温度对光合放氧速率的影响

Fig. 6 The effect of temperature on oxygen Evolution

(◆ - light photosynthesis, ■ - dark respiration)

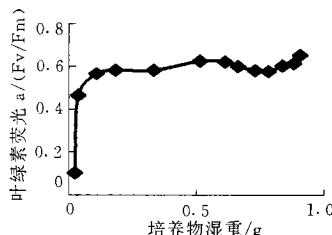



图 7 培养物相对含水量与叶绿素荧光的关系

Fig. 7 The effect of holding-water contents of cultures on  $F_v/F_m$

**2.3.3 叶绿素 a 荧光同水分的关系** 叶绿素 a 荧光值反映的是藻体净光合作用产量, 即 PSII 的活性,  $F_v/F_m$  比值越高, 光合作用活性越高。如图 7 所示, 水培养藻  $F_v/F_m$  值最高, 随后有一降低的过程, 在重量为鲜重的 56% 时光合作用活性又恢复到 96%, 最后随水分含量的减少,  $F_v/F_m$  值降低到最小, 表明微鞘藻能够忍受一定程度的干旱。

### 3. 讨论

对藻结皮在沙漠表层土壤中的作用, 许多研究工作者曾作过研究<sup>[5-7]</sup>。藻结皮粘结土壤表面的颗粒, 可以减少土壤流失, 并可有效防止降水的冲刷。藻壳结皮中的多糖可以提高土壤团聚体的含量, 因而有利于保持土壤含水量<sup>[6]</sup>。而从研究的结果看, 土壤最大持水量在 1.0 mg/mL 时增大将近 20%, 同时它还影响土壤水分挥发速率, 有利于保墒和充分利用水分。Savory<sup>[7]</sup>认为藻壳的出现不利于保持土壤水分, 陈荷生<sup>[8]</sup>也认为结皮大量滞阻了天然降水, 降水渗入沙体数量不断减少, 从而使无效降水损失不断增加, 导致深层土壤水分减少。藻结皮延缓了降水渗入的时间, 但其持水量增大, 可以延缓水分挥发速度, 具一定的保墒作用。降水量大时, 一旦水分透过 6mm 厚度的藻壳和含 EPS 的沙子, 其速度是一样的。沙漠降水量少时, 渗透深度不大, 可以保证被结皮充分吸收。之所以出现此争论, 主要是沙坡头地表高等植被消耗深层水分, 从而认为藻壳不利于沙漠土壤保持水分。

EPS 产量同生物量有着重要的联系, 而光合作用有利于生物量的积累。温度对植物光合作用活性影响较大, 沙漠表面的温度一般在 45–50, 而微鞘藻在 40 仍保持较高的光合活性, 能够忍受一定的高温。对光强, 则比较适合于中度强光, 这同其生活于壳的生态位有关<sup>[9]</sup>。在雨季之外, 藻壳主要吸收露水而生长, 叶绿素 a 荧光值表明, 当其藻体含水量为干重的 25 倍时, PSII 系统活性最好, 提供了沙漠种植藻壳的水分要求。以前的研究主要是集中在空气湿度对其影响上, 另外水势也有过研究, 对藻体本身水分需求则没有研究。

此外, 荒漠藻为沙漠提供了各种营养, 为其他异养微生物的生长提供了可能。在我国曾进行过固氮蓝藻对稻田肥力影响的大量研究。藻类能够为土壤提供碳源和氮源, 是一种潜在的生物肥料, 为荒漠化的综合治理提供一种新的理论上的途径。

### 参考文献:

- [1] Kunshan Gao. Chense studies on the edible blue-green alga, *Nostoc flagelliforme*: a review [J]. *J. Appl. phycol*, 1998, **11**: 37–49
- [2] Zebo Huang, Yong ding Liu et al. Studies on polysaccharides from three edible species of *nostoc* (Cyanobacteria) with different colony morphologies: comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures [J]. *J. phycol*, 1998, **34**: 962–968

- [ 3 ] 李敦海, 宋立荣, 刘永定. 葛仙米光合活性对盐胁迫的反应[J]. 水生生物学报, 1999, 23(5): 420—424
- [ 4 ] 李新荣, 张景光. 干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究[J]. 植物学报, 2000, 42(9): 965—970
- [ 5 ] 胡春香, 刘永定, 宋立荣. 宁夏沙坡头地区藻类及其分布[J]. 水生生物学报, 1999, 23(5): 443—448
- [ 6 ] Don Bailey, Andrew P. M, James R R. Aggregation of soil particles by algae[J]. *J. Phycol.*, 1973, 9, 99—101
- [ 7 ] Savory A. Holistic resource management[M]. Island Press, Covelo California, 1988, 564
- [ 8 ] 陈荷生. 沙坡头地区生物结皮的水文物理特点及其环境意义[J]. 干旱区研究, 1992, 9(1): 31—38
- [ 9 ] 胡春香, 刘永定, 宋立荣. 荒漠藻壳的精细结构与发育[J]. 水生生物学报, 2000, 24(1): 11—18

## THE FUNCTION OF EXOPOLYSACCHARIDES OF *MICROCOLEUS* IN THE FORMATION OF DESERT SOIL

CHEN Lan-zhou, LIU Yong-ding and SONG Li-rong

(Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, 430072)

**Abstract:** The present work deals with the exopolysaccharides (EPS) and photosynthetic activities of *Microcoleus viginatus* (one of the pioneer species in algal crusts at Shapotou, Linxia). With the concentration of EPS increasing, water-holding capacity of desert soil was increasing, water evaporation was decreasing, and water movement through the desert soil was retarded. The yield of exopolysaccharides was 28.82% of dry weight, and reached the maximum during the stationary phase. *Microcoleus* had more carotenoid contents than other misted cells in view of its absorption spectrum; the most optimum temperature for photosynthesis was about 25<sup>°</sup>C, the most optimum light intensity for photosynthesis was 400 $\mu$  Em<sup>-2·s<sup>-1</sup>, and photosynthetic activity was inhibited strongly after 0.3mol/l of NaCl; the value of Chlorophyll a fluorescence (Fv/Fm) recovered 96% of cultures after losing water to 56% of fresh weight. It indicated that *Microcoleus* influenced the hydrological properties and played an important role in desert soil formation.</sup>

**Key words:** Algae crust; Exopolysaccharide (EPS); Soil formation; Hydrological property; Photosynthetic activity