

人工雌核发育鲢的遗传多样性及异源遗传物质整入的 RAPD 分析

邹桂伟 潘光碧 汪登强 邓怀 罗相忠

(农业部淡水鱼类种质资源与生物技术重点开放实验室; 中国水产科学研究院长江水产研究所, 荆州 434000)

摘要:运用 RAPD 技术对连续二代人工雌核发育鲢的遗传多样性及异源遗传物质的整入进行了分析, 结果表明: 一代雌核发育鲢, 个体间遗传相似度为 0.945—0.9956, 多样性指数为 0.175; 二代雌核发育鲢, 个体间遗传相似度为 0.9615—1.00, 平均为 0.9852, 多样性指数为 0.062。研究揭示经过连续二代人工雌核发育后, 其遗传多样性明显减少, 种质进一步纯化。通过对雌核发育鲢二代、亲本鲢和雄鲤的 RAPD 扩增比较, 发现雌核发育鲢含有少数与父本相同的特异 DNA 扩增带, 而亲本鲢没有, 在基因水平上表明雌核发育鲢整入了雄鲤的遗传物质。

关键词: 雌核发育鲢; 遗传多样性; RAPD; 异源遗传物质

中图分类号: Q959.4 文献标识码: A 文章编号: 1000-3207(2004)02-0180-06

鲢(*Hypophthalmichthys molitrix*)是我国淡水养殖的主要种类之一, 它具有食物链短、易饲养、成本低和能调节水质等优点, 因此, 鲢在我国淡水养殖业中具有重要地位。但是目前, 由于缺乏选种和保种技术, 很多生产单位在有限的群体内近亲交配, 逆向选择等, 使鲢优良性状严重退化(如生长减慢、抗病力下降等), 因此选育出生长快或具抗性的鲢新品种(品系)一直是鱼类遗传育种工作者最感兴趣的课题之一。作者自 1987 年成功诱导出雌核发育鲢一代以来^[1], 一直致力于鲢鱼的选育种研究, 已获得连续三代的雌核发育鲢, 同时结合性别人工控制和分子标记技术, 已初步建立了 2 个人工雌核发育系和 1 个快速生长的雌核发育鲢群体。迄今为止, 有关野生鲢的种群遗传结构及遗传多样性研究已有大量报道^[2-5]。对雌核发育鲢仅有关于子一代同工酶和蛋白质及 RAPD 指纹方面的初步研究^[6-7]。已有一些关于银鲫和彭泽鲫异源精子的生物学效应和外源遗传物质整入的 RAPD 分析报道^[8-10]。本研究采用随机扩增多态性 DNA (Random Amplified Polymorphic DNA, 简称 RAPD) 对连续二代人工雌核发育鲢的遗传多样性和异源遗传物质的整入进行了研究, 现将结果报道如下。

1 材料和方法

1.1 材料来源 1987 年采用极体雌核发育方法, 具体方法见文献^[1], 从一尾长江鲢诱导获得 5000 多尾雌核发育一代鱼苗(简称 GYF₁), 经筛选和自然淘汰培育成 200 多尾重 1kg 左右的二龄鱼, 作标记后套养到成鱼池培育成产卵亲鱼。1996 年选其生长性状优良的 18 尾 GYF₁ 性成熟亲鱼运回本所试验场, 并以一尾生长性状更优的 GYF₁ 鲢进行第二代雌核发育诱导, 诱导出雌核发育二代苗 2100 多尾(简称 GYF₂)。实验用 GYF₁ 和 GYF₂ 均为性成熟个体。

1.2 DNA 样品来源 长江鲢(亲本鲢 1 尾)、普通鲢(3 尾, 为荆州人繁群体中的性成熟个体)、GYF₁ 鲢(18 尾)和 GYF₂ 鲢(15 尾) DNA 样品来自尾静脉血, 每尾鱼抽取 1.5mL; 雄鲤(2 尾) DNA 样品来自成熟的精液。

1.3 总 DNA 的提取方法 各取 50μL 的血液(或精液)于 1.5mL 的离心管, 加 STE(10mmol/L Tris-HCl, pH = 8.0; 1mol/L EDTA, pH = 8.0) 0.5mL, 加 10mg/mL 蛋白酶 K 30μL 和 10% SDS 30μL 于 50℃ 水浴 2—4h。按常规酚抽提法除蛋白质。乙醇沉淀后, 离心收集 DNA, 加 TE 溶解备用。

收稿日期: 2002-12-06; 修订日期: 2003-04-12

基金项目: 国家“十五”科技攻关计划专题(2001BA505B0501)资助

作者简介: 邹桂伟(1963—), 男, 安徽巢湖人; 研究员。主要从事鱼类遗传育种与养殖研究

1.4 RAPD 反应体系与 DNA 电泳 在 Perkin Elmer 公司生产的 480 型 PCR 仪上进行。RAPD 反应所用随机引物是在做长江水系鲤遗传分析中出现多态的引物以及部分单态引物。为了使结果具有可比性, 每次所用药品和反应程序完全相同。即引物为美国 Operon Technologies 公司产品, TaqDNA 聚合酶均为 Promega 产品。RAPD 反应体系和 DNA 电泳按文献^[5]描述的进行。

1.5 数据分析 任意两个体间遗传相似性和遗传距离用下列公式计算:

$$F = 2N_{xy} / (N_x + N_y) \quad P = 1 - F$$

F 为两个体间遗传相似度, P 为两个体间遗传距离。N_x 和 N_y 分别为 X 和 Y 个体拥有的 RAPD 标

记总数, N_{xy} 是 X 和 Y 两个体共有 RAPD 标记数^[11]。用香农遗传多样性指数 (H₀) 进行遗传多样性分析^[12]。

2 结果

2.1 雌核发育鲤(GYF₁ 和 GYF₂) 基因组 RAPD 扩增 共用 23 个随机引物对 GYF₁ 鲢(普通鲤作对照) 进行了 RAPD 反应。只统计稳定清晰的 DNA 带, 共产生 117 条带, 即 117 个信息座位(表 1), 16 条带出现多态性。在 23 个引物中除 OPP20 无扩增产物外, 其它 22 个引物均有扩增带, 平均每个引物产生 5.32 条带。OPK7、OPQ6、OPQ11、OPP4、OPP11 和 OPP17 等

表 1 所用引物的编号、序列和扩增结果

Tab. 1 The codes and sequences of primers and amplification results

引物 Primer	序列(5'-3') Sequence(5'-3')	扩增带数 Amplified bands		引物 Primer	序列(5'-3') Sequence(5'-3')	扩增带数 Amplified bands	
		GYF ₁	GYF ₂			GYF ₁	GYF ₂
OPK07	AGCGGAGCAAG	4—5	2—5	OPP07	GTCATGCCA	5	
OPK08	GAACACTGGG	5	5	OPP09	GTGGTCCGCA	5	
OPK12	TGGCCCTCAC	4	1	OPP11	AACCGCTCGG	1—2	5
OPK17	CCCAGCTGTG	5	5	OPP12	AAGGGCGAGT	6	6
OPQ06	GAGCCGCTTG	8—10	1—2	OPP13	GGAGTGCCTC	4	
OPQ09	GGCTAACCGA	3—4	3—4	OPP14	CCAGCCGAAC	7	7
OPQ11	TCTCCGCAAC	1—2	2	OPP15	TGACCCGCCT	6—8	
OPP02	TGGGCACCGA	7	7	OPP16	CCAAGCTGCC	10	10
OPP03	CTGATACGCC	1	2	OPP17	TGACCCGCCT	7	7—8
OPP04	GTGCTCAGG	2—5	5	OPP18	GGCTTGGCCT	5	
OPP06	GTGGCTGAC	6		OPP19	GGGAAGGACA	6	
总带数 Total bands		53	38			64	36

注:a. GYF₁: 雌核发育鲤一代 Means gynogenetic F₁ progeny of silver carp; b GYF₂: 雌核发育鲤二代 Means gynogenetic F₂ progeny of silver carp 下同.

The following is alike

7 个引物扩增产物在 18 尾检测个体中有多态现象(如图 1: A、B), 其它 15 个引物 PCR 产物呈单态, 产生多态引物占总引物的 31.8%。多态座位比例达 13.68%。用 15 个随机引物对 15 尾 GYF₂ 性成熟亲鱼进行了 RAPD 扩增。这 15 个引物各产生 1 至 10 条 DNA 带, 共产生 74 条带, 即 74 个信息座位; 与 GYF₁ 鲢相比, 仅 4 个引物产生多态性, 它们是 OPK7、OPP17、OPQ9 和 OPQ6(图 2, A), 其余均为单态(图 2, B)。

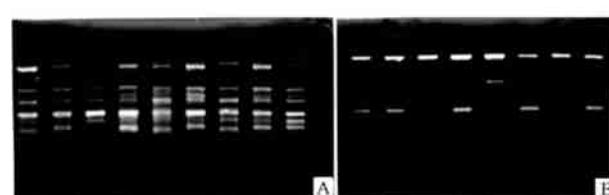


图 1 不同引物在雌核发育鲤一代(GYF₁)上的 RAPD 扩增结果
图 A 是引物 OPP17 扩增图; B 是引物 OPP11 扩增图

Fig. 1 RAPD amplification results in gynogenetic F₁ progeny of silver carp generated by different primers A was generated by OPP17 primer and B was generated by OPP11 primer

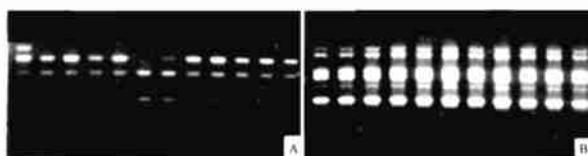

图 2 不同引物在雌核发育链二代(GYF₂)上的 RAPD 扩增结果

图 A 是引物 OPK07 扩增图; B 是引物 OPP11 扩增图

Fig. 2 RAPD amplification results in gynogenetic F₂ progeny of silver carp generated by different primers

A was generated by OPK07 primer and B was generated by OPP11 primer

2.2 雌核发育链(GYF₁ 和 GYF₂)的遗传多样性

表 2 列举了在 GYF₁ 链中产生多态性的 7 种引物和在 GYF₂ 链中产生多态性的 4 种引物的遗传多样性指数(H_o)和多态座位比例(P)，综合使用的所有引物，得出 GYF₁ 样本的遗传多样性指数(H_o)为 0.175，多态座位比例(P)为 13.68%；GYF₂ 样本的遗

传多样性指数(H_o)和多态座位比例分别为 0.062 和 9.74%。以 RAPD 所得数据进行了雌核发育链一代和普通链个体间的遗传相似性与遗传距离分析，18 尾 GYF₁ 链个体间遗传相似度均在 0.9459 以上，最大可达 0.9956，平均为 0.9724；3 尾普通链之间的平均遗传相似度为 0.9688；可见 GYF₁ 链只略高于普通链，两者相比并无显著差异，表明 GYF₁ 链仍具有与普通链差不多的遗传多样性。GYF₂ 样品间的遗传相似度和遗传距离计算结果见表 3。由表 3 可看出，这 15 个样品大致可分成两个系：GYF₂ I 系和 GYF₂ II 系。系内个体间遗传相似度为 1，即在所研究的引物中未见多态，两系间遗传相似度 0.9773。15 尾检测个体间遗传相似度在 0.9615—1.0，平均为 0.9852，个体间平均遗传距离为 0.015，上述实验结果表明，GYF₂ 与亲代(GYF₁)相比，遗传多样性明显减少，遗传相似度进一步提高，种质得到进一步纯化。

表 2 雌核发育链的遗传多样性指数和多态座位比例

Tab. 2 Index of genetic diversity(H_o) and proportion of polymorphic loci(P) in Gynogenetic silver carp

雌核发育链 Gynogenetic silver carp	多样性指数(H_o)和多态座位比例(P)							平均值 Average	
	Index of genetic diversity (H_o) and proportion of polymorphic loci (P)								
	OPK07	OPP04	OPP11	OPP17	OPQ06	OPQ09	OPQ11		
GYF ₁	0.301 (20.00)	0.407 (60.00)	0.451 (12.50)	0.569 (12.50)	1.175 (45.45)	0.687 (50.00)	0.451 (100.00)	0.175 (13.68)	
	0.309 (60.00)	0.00	0.00	0.270 (11.11)	0.124 (50.00)	0.227 (25.00)	0.00	0.062 (9.74)	

注：1. 表格中括号内的数字为多态座位比例(P) Numbers of the blank in the table mean proportion of polymorphic loci (P)；

2. 包括所有引物在内的平均值 Average including all Primer。

2.3 雌核发育链整入异源遗传物质的 RAPD 分析

使用 44 个随机引物对雌核发育链(GYF₂)、亲本链和雄鲤进行了 RAPD 随机扩增比较，结果除 2 个引物(OPP12、OPM01)没有扩增出任何带或扩增效果不佳外，其余 42 个引物均扩出清晰可辨的 DNA 带。其中有 10 个引物(OPP02、OPP03、OPP17、OPP18、OPQ04、OPP19、OPK20、OPN07、OPM14、OPM18)在雌核发育链二代和鲤鱼中产生了少数相同的特异 DNA 扩增片段；而亲本链则没有检测到(图 3)，占总引物的比例为 22.7%，呈现了雌核发育链与父本在遗传物质上的部分相似性。此结果在基因水平上揭示父本雄鲤的遗传物质确实整入了雌核发育链。另有 12 个引物(OPP7、OPP17、OPP18、OPQ11、OPQ17、OPK04 等)出现 1—2 条雌核发育链(GYF₂)独有的 DNA 片段，占引物的比例为 27.3%。

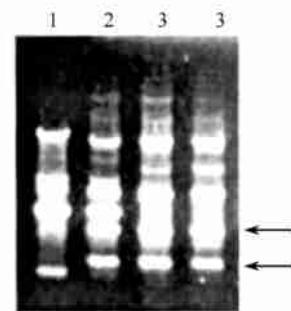


图 3 雌核发育链二代异源遗传物质整入的 RAPD 检测(引物 OPP3)

1. 亲本链 2. 雌核链(GYF₂) 3. 雄鲤 箭头示雌核发育链与鲤共有带Fig. 3 RAPD tested result of heterology genetic matter of gynogenetic F₂ progenies of silver carp by OPP3 primer

1. silver carp parent 2. gynogenetic F₂ progeny of silver carp 3. male carp Arrow indicates alike band between gynogenetic F₂ or F₃ progenies of silver carp and male carp

表3 基于 RAPD 分析所得的 15 尾 GYF_2 鲢的遗传相似度与遗传距离Tab. 3 Genetic similarity and genetic distance of 15 individuals of gynogenetic silver carp (GYF_2) based on RAPD analysis

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	\	.9769	.9699	.9923	.9618	.9699	.9699	.9699	.9699	.9699	.9699	.9699	.9923	.9621
2	.0231	\	.9773	.9846	.9769	.9773	.9773	.9773	.9846	.9773	.9773	.9773	.9773	.9846
3	.0301	.0227	\	.9773	.9848	1.000	1.000	1.000	.9773	1.000	1.000	1.000	.9773	.9925
4	.0077	.0154	.0227	\	.9615	.9773	.9773	.9773	1.000	.9773	.9773	.9773	.9773	.9695
5	.0882	.0231	.0152	.0385	\	.9848	.9848	.9848	.9773	.9848	.9848	.9848	.9773	.9771
6	.0301	.0227	.0000	.0227	.0152	\	1.000	1.000	.9773	1.000	1.000	1.000	.9773	.9925
7	.0301	.0227	.0000	.0227	.0152	.0000	\	1.000	.9773	1.000	1.000	1.000	.9773	.9925
8	.0077	.0227	.0000	.0227	.0152	.0000	.0000	\	.9773	1.000	1.000	1.000	.9773	.9925
9	.0301	.0154	.0227	.0000	.0227	.0227	.0227	.0227	\	.9773	.9773	.9773	.9773	.9695
10	.0301	.0227	.0000	.0227	.0152	.0000	.0000	.0000	.0227	\	1.000	1.000	.9773	.9925
11	.0301	.0227	.0000	.0227	.0152	.0000	.0000	.0000	.0227	.0000	\	1.000	1.000	.9773
12	.0301	.0227	.0000	.0227	.0152	.0000	.0000	.0000	.0227	.0000	.0000	\	1.000	.9773
13	.0301	.0227	.0000	.0227	.0152	.0000	.0000	.0000	.0227	.0000	.0000	.0000	\	.9773
14	.0077	.0154	.0227	.0227	.0227	.0227	.0227	.0227	.0227	.0227	.0227	.0227	\	.9695
15	.0379	.0153	.075	.0305	.0229	.0075	.0075	.0075	.0305	.0075	.0075	.0075	.0305	\

注: 表格对角线上半部为遗传相似度, 下半部为遗传距离, 1—15 代表 GYF_2 1—15。Notes: Above diagonal is genetic similarity and below diagonal is genetic distance. 1—15 was NO. of gynogenetic F_2 progeny in silver carp.

3 讨论

3.1 关于雌核发育鲢的遗传多样性

本研究结果初步揭示, 鲢经过一代雌核发育, 雌核发育子代的多态座位比例为 13.68%, 个体间的遗传相似度为 0.945—0.9956, 其遗传多样性和荆州的普通人繁鲢相比无显著差异; 但经过连续二代雌核发育后, 其子代个体间的遗传相似度进一步提高, 为 0.9615—1.000, 平均为 0.9852, 多态座位比例仅为 9.74%, 遗传多样性明显减少。吴力钊等^[3]采用同工酶技术研究认为长江鲢的多态座位比例为 14.8%; 张四明等^[5]采用 RAPD 技术分析认为长江鲢多态座位比例为 13%; 张德春等对鲢不同人工繁殖群体的遗传多样性研究表明, 湖北荆州的人繁群体内的遗传相似度在 0.9395—0.9855 之间, 平均为 0.9715; 广西昭平的人繁群体内的遗传相似度在 0.9310—0.9795 之间, 平均为 0.9665。荆州群体的遗传相似度略高于昭平群体^[13]。可见 GYF_1 鲢的结果与以上对普通鲢的研究十分相近, 说明雌核发育一代鲢个体间仍存在与普通人繁鲢差不多的遗传多样性。产生多样性的原因可能是由于外源精子的部分 DNA 作用造成的, 也可能是雌核鲢发育过程特别是早期发育过程染色体发生交换或丢失引起的, 尽管子代个体的基因纯合度增加, 但并不意味着个体

间遗传相似度增加。而杨书婷等^[6]采用同工酶分析两个雌核发育鲢群体时认为, 经一代雌核发育, 同一群体内个体间酶谱具有高度一致性, 纯合度高, 遗传分化不明显, 与本研究结果有一定的出入。由同工酶得出雌核发育鲢一代个体间遗传分化不明显很有可能与检测方法的灵敏度有关, 这也说明直接分析 DNA 比分析 DNA 的编码产物可以获得更多的遗传信息。在雌核发育鲢子二代研究中, 实验用的药品和方法与一代完全相同, 但同一引物(如 OPP1)在雌核发育一代鲢中是多态, 而在雌核发育二代鲢中则为单态, 差别较大。说明雌核发育二代鲢的遗传相似度比雌核发育鲢一代和普通鲢高, 揭示雌核鲢二代的遗传性状较一代得到了进一步纯化。

3.2 关于异精效应

本研究采用 44 个随机引物对二代雌核鲢、雄鲤和普通鲢进行了 RAPD 扩增, 结果有 10 个引物出现了雌核鲢与父本(雄鲤)相同的 DNA 扩增片段, 而野生长江鲢(亲本鲢)则没有, 这说明雌核鲢基因组 DNA 可能带有父本基因组 DNA 的特性。张海发等采用 RAPD 技术对异精激发彭泽鲫雌核发育时认为, 雌核发育子代中具有与父本相同而与母本相异的特异条带, 相似率为 21.05%^[10]; 陈洪等在研究异精激发方正银鲫也出现同样现象^[14]; 周莉等对银鲫复合种异源遗传物质的 RAPD 分析后认为银鲫复合

种整入了外源遗传物质; Schartl 等对雌核发育则提出全新的概念^[15], 认为雌核发育可能是一种集无性与有性生殖优点于一身的适应性生殖模型。他们发现 *P. formosa* 是以近缘两性种微染色体作为载体, 从而融合了近缘两性种的亚基因组 DNA, 作为无性的补偿, 这也许是 *P. formosa* 获得种群延续的行为方式。雌核鲤中父本特异扩增带的出现, 在 DNA 水平上意味着父性遗传物质参与的可能性。蒋一等研究认为异源精子不仅能激发银鲫的雌核发育, 还能影响雌核子代的某些生物学性状(如生长等), 提出了“异育效应”的观点^[9]。异精刺激鲤雌核发育研究结果也表明, “异育效应”在雌核发育鲤中可能也同样存在, 作者在进行雌核发育鲤与普通鲤的多次生长对比试验时发现, 雌核发育鲤的生长速度普遍快于普通人繁鲤(另文发表), 因此可以初步断定雌核发育鲤的快速生长很可能就是由于“异育效应”引起的。当然确切的结论还需要做 DNA 全序列分析、基因组作图以及遗传连锁图谱后才能得出。

参考文献:

[1] Pan G B. A technique study on artificial induced gynogenesis of fisher es[J]. *Freshwater Fisheries*, 1988, (6) : 17—20. [潘光碧. 人工诱导鱼类雌核发育技术研究. 淡水渔业, 1988, (6) : 17—20]

[2] Si F L. Studies on gemplasm resources of silver carp, head carp and grass carp in the Yangtze river, the Zhujiang river and the Heilongjiang river [M]. Shanghai: Shanghai science and technology press. 1990, 125—189. [李思发. 长江、珠江、黑龙江鲤、鳙、草鱼种质资源研究. 上海: 上海科学技术出版社. 1990, 125—189]

[3] Wu L Z, Wang Z X. Biochemical genetic structure and variation in natural population of silver carp from the middle reaches of the Yangtze river [J]. *Acta Hydrobiologica Sinica*, 1997, 21(2) : 157—162. [吴力钊, 王祖熊. 长江中游鲤鱼天然种群的生化遗传结构及变异. 水生生物学报, 1997, 21(2) : 157—162]

[4] Zhang S M, Wang D Q, Deng H, et al. Mitochondrial DNA variation of silver carp and grass carp in populations of the middle reaches of the Yangtze river revealed by RFLP[J]. *Acta Hydrobiologica Sinica*, 2002, 26(2) : 141—147. [张四明, 汪登强, 邓怀, 等. 长江中游水系鲤和草鱼群体 mtDNA 遗传变异的研究. 水生生物学报, 2002, 26(2) : 141—147]

[5] Zhang S M, Deng H, Wang D Q, et al. Population structure and genetic diversity of silver carp and grass carp from the Yangtze river system revealed by RAPD[J]. *Acta Hydrobiologica Sinica*, 2001, 25(4) : 324—330. [张四明, 邓怀, 汪登强, 等. 长江水系鲤和草鱼遗传结构及变异性的 RAPD 研究. 水生生物学报, 2001, 25(4) : 324—330]

[6] Yang S T, Gui J F. Isozyme analysis and preliminary confirmation of the genetic markers in two artificial gynogenetic populations of silver carp, *Hypophthalmichthys molitrix* [J]. *Acta Hydrobiologica Sinica*, 1999, 23(3) : 264—268. [杨书婷, 桂建芳. 两个雌核发育白鲢群体同工酶分析及遗传标记的确定. 水生生物学报, 1999, 23(3) : 264—268]

[7] Deng H, Zhang S M, Wang D Q, et al. Genetic analysis of gynogenetic silver carp by means of RAPD and protein electrophoresis [J]. *Freshwater Fisheries*, 1998, 28(6) : 10—13. [邓怀, 张四明, 汪登强, 等. 雌核发育鲤 RAPD 指纹和蛋白质电泳研究. 淡水渔业, 1998, 28(6) : 10—13]

[8] Zhou L, Fan L C, Gui J F. RAPD analysis of incorporation of heterologous genetic materials in multiple species of silver crucian carp [J]. *Acta Hydrobiologica Sinica*, 1998, 22(4) : 301—306. [周莉, 樊连春, 桂建芳. 银鲫复合种外源遗传物质整入的 RAPD 分析. 水生生物学报, 1998, 22(4) : 301—306]

[9] Jiang Y G, Liang S C, Chen B D, et al. Biological effect of heterologous sperm on gynogenetic offspring in *Carassius auratus gibelio* [J]. *Acta Hydrobiologica Sinica*, 1983, 8(1) : 1—13. [蒋一, 梁绍昌, 陈本德, 等. 异源精子在银鲫雌核发育子代中的生物学效应. 水生生物学集刊, 1983, 8(1) : 1—13]

[10] Zhang H F, Chen X L, Shu H, et al. RAPD analysis of gynogenetic F₁ progeny triggered by heterologous sperms and their parents of Pengze Crucian carp (*Carassius auratus*) [J]. *Chin. J. Appl. Environ. Bio*. 1999, 5(5) : 507—511. [张海发, 陈湘麟, 舒虎, 等. 异源精子激发彭泽鲫雌核发育产生的子一代及亲本 RAPD 分析. 应用与环境生物学报, 1999, 5(5) : 507—511]

[11] Lynch M. The similarity index and DNA fingerprinting [J]. *Mol Bio Evol*, 1990, 7: 478—484

[12] Wachira F N. Detection of genetic diversity in tea (*Camellia sinensis*) using RAPD markers[J]. *Genom.* 1995, 138: 201—210

[13] Zhang D C, Zhang X Y, Yang D Q, et al. Studies of genetic diversity of silver carp from artificial propagating population in different region [J]. *Freshwater Fisheries*, 2000, 30(3) : 38—41. [张德春, 张锡元, 杨代勤, 等. 不同地区鲤鱼人工繁殖群体遗传多样性研究. 淡水渔业, 2000, 30(3) : 38—41]

[14] Chen H, Yang J, Xue G X, et al. Application of RAPD on comparative study of silver crucian carp (*Carassius auratus gibelio*) triggered by heterologous sperms[J]. *Chinese Science Bulletin*, 1994, 39(7) : 661—663. [陈洪, 杨, 薛国雄, 等. RAPD 技术在异精激发方正银鲫比较研究中的应用[J]. 科学通报, 1994, 39(7) : 661—663]

[15] Schartl M, Indrajit N, Ingo S, et al. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish[J]. *Nature*, 1995, 373(5) : 68—71

GENETIC DIVERSITY OF ARTIFICIAL GYNOGENETIC SILVER CARP AND RAPD ANALYSIS OF INCORPORATION OF HETEROLOGOUS GENETIC MATERIALS IN GYNOGENETIC PROGENY

ZOU Gui Wei, PAN Guang Bi, WANG Deng Qiang, Deng Huai and LUO Xiang Zhong

(Key Lab of Freshwater Fish Germplasm Resources and Biotechnology by Ministry of Agriculture, Yangtze River Fisheries Research Institute, Jingzhou 434000)

Abstract: Silver carp (*Hypophthalmichthys molitrix*) is one of the most important fresh water farmed fish in China. The seedlings of silver carp for aquaculture have come from the Yangtze River because germplasm resources of silver carp is superior to those from other rivers. But advanced biological characteristics for aquaculture germplasm of silver carp was obviously decreased during past years after multigenerations artificial propagation. Their growth became slowly and ability of antidiisease reduced. Therefore, it is necessary to breed new strain or variety of silver carp by selecting breeding. Artificially induced fish gynogenesis is one of major manners of selecting breeding. In the present study, gynogenesis of one individual of silver carp from the Yangtze River was induced by heterologous sperms in 1987. We had gained artificial gynogenetic silver carp of two continued generations for ten years. Genetic diversities were analyzed in artificial gynogenetic silver carp in continued two generations, and incorporation of heterologous genetic materials in gynogenetic progenies was studied by RAPD. The results showed that genetic similarity of individuals was 0.945—0.995 among 18 individuals of gynogenetic F_1 progenies by 23 different primers, the average was 0.972. The average of proportion of polymorphic loci was 13.68% in gynogenetic F_1 progenies. Index of genetic diversity in gynogenetic F_1 progenies was 0.175. There were no significant difference in genetic diversity between common artificial propagated silver carp and gynogenetic F_1 progeny. Genetic similarity of individuals was 0.961—1.00 among 15 individuals of gynogenetic F_2 progenies by 15 different primers, the average was 0.9852. The average of proportion of polymorphic loci was 9.74% among them. Index of genetic diversity in gynogenetic F_2 progeny was only 0.062. According to the genetic similarity and distance, 15 individuals of gynogenetic F_2 progeny were approximately divided into two strains. The genetic similarity was 1.00 among strain, the genetic similarity was 0.9773 between two strains. The experiment showed that genetic diversity of gynogenetic F_2 progeny was significantly decreased after two continued generation gynogeneses. Individuals from gynogenetic F_2 progeny of silver carp, common silver carp in the Yangtze River and male common carp (*Cyprinus carpio L.*) were analyzed using RAPD by 44 different primers. The results indicated that clear RAPD bands were all produced among 42 primers except 2 primers. There were a few alike RAPD special bands that were detected in gynogenetic silver carp and male common carp among 10 primers, but not detected in common silver carp of the Yangtze River. In addition, there were exclusive RAPD bands in gynogenetic silver carp among the other 12 primers. Therefore, it was obvious that heterologous genetic material had been entered gynogenetic silver carp.

Key words: Gynogenetic silver carp; Genetic diversity; RAPD; Heterologous genetic material