

DOI: 10.3724/SP.J.1035.2010.00250

甲基睾丸酮在罗非鱼苗种体内的消解规律

邹 琴^{1,2} 陈培基¹ 李刘冬¹ 林伟强³ 陈 挺³
杨金兰¹ 赵东豪¹ 黎智广¹

(1. 中国水产科学研究院南海水产研究所, 广州 510300; 2. 广东海洋大学食品科技学院, 湛江 524088;
3. 肇庆市水产科学研究所, 肇庆 526072)

摘要: 研究了养殖场在大规模养殖下, 甲基睾丸酮用于尼罗罗非鱼苗雄性化后在苗种体内的消解规律。采用含 200 mg/kg 甲基睾丸酮的饲料持续喂养尼罗罗非鱼苗 30d 来进行雄性化, 随后鱼苗放入池塘来进行甲基睾丸酮的消解实验, 应用高效液相色谱法检测不同时间鱼苗体内甲基睾丸酮的残留量, 并用 SPSS Statistics 17.0 统计软件结合 EXCEL 2003 进行数据处理和分析, 来研究甲基睾丸酮的消解规律。结果表明, 两次投喂间甲基睾丸酮在罗非鱼体内是缓慢减少的, 但是在罗非鱼雄性化期间甲基睾丸酮在罗非鱼体内具有一致性。此外, 停药后甲基睾丸酮消解比较缓慢, 在停药约 115d, 鱼苗体重为(14.12±2.12) g 时甲基睾丸酮才基本无检出, 拟合回归得到指数方程 $y = 1779.6e^{-0.0369x}$, $R^2 = 0.9332$ 。这说明甲基睾丸酮的消解符合指数递减, 后期消解缓慢, 建议在养殖过程中不宜使用甲基睾丸酮。

关键词: 甲基睾丸酮; 消解; 罗非鱼苗; 养殖模式

中图分类号: S965.125 文献标识码: A 文章编号: 1000-3207(2010)02-0250-06

据 2008 年 FAO 报道, 罗非鱼仅次于鲤鱼跻身于世界第二大养殖鱼类, 年产量达 2.5×10^6 t^[1]。如此高的产量得益于采用能够避免繁殖泛滥、大大提高罗非鱼产量的单雄化养殖^[2], 目前罗非鱼的雄性化主要是采用 17 α -甲基睾丸酮(17 α -methyltestosterone, MT)处理^[3]。17 α -甲基睾丸酮是一种人工合成雄激素类药物, 一直作为苗种培育和性别控制等方面的特效药物^[4], 广泛应用于水产养殖中。

关于甲基睾丸酮的消解规律, 国内还未见报道, 国外学者已经在银大马哈鱼(*Oncorhynchus kisutch*)^[5]、虹鳟鱼(*Oncorhynchus mykiss*)^[6-8]、星洲银罗非鱼(*Oreochromis mossambicus*)^[6,9,10]、尼罗罗非鱼(*Oreochromis aureus*)^[11]等鱼类中进行了研究, 但对于鱼苗雄性化后甲基睾丸酮的消解规律仅有 Johnstone, et al.^[6] 和 Goudie, et al.^[9] 探讨过, 他们采用的是放射性同位素示踪法, 且都是在实验室条件下进行, 实验采用的甲基睾丸酮的浓度分别是 40

mg/kg 和 30 mg/kg, 水温控制在 28℃ 左右。而在国内现实养殖中, 养殖环境大多无法控制水温, 另外养殖户为了追求罗非鱼的高雄性率和生长率, 大肆或过量地使用甲基睾丸酮, 使上市的鱼体内仍残留该种药物。有研究^[12,13]表明甲基睾丸酮能干扰人体内自然激素的平衡, 引起妇女出现类似早孕的反应及乳房胀、不规则出血等, 影响肝脏功能, 致新生儿畸形、溶血及黄疸等。由于甲基睾丸酮有着巨大的潜在危害, 而目前又没有有效的雄性化药物替代品, 因此有必要在养殖场大规模养殖下, 来考察使用甲基睾丸酮进行罗非鱼苗雄性化后在罗非鱼苗体内的消解规律, 其结果将对国内水产养殖生产具有直接的指导意义。

1 材料与方法

1.1 实验鱼苗及场所

采用刚离开雌鱼口腔的尼罗罗非鱼鱼苗(8—10

收稿日期: 2009-06-08; 修订日期: 2009-11-16

基金项目: 农业公益性行业科研专项(No. nyhyzx07-047)资助

作者简介: 邹琴(1984—), 女, 湖北赤壁人; 硕士在读; 研究方向为水产品质量安全及药物代谢。E-mail: qiaoqiao-1210@163.com

通讯作者: 李刘冬, 研究员; 研究方向为水产品质量安全及药物代谢。E-mail: 168LLd@163.com

mm, 9—13 mg)作为实验鱼苗。实验场所设在肇庆水产研究所, 雄性化水泥池的规格为 4.5 m×2 m×1.2 m, 养殖池塘水面面积为 7 亩。

1.2 仪器与试剂

仪器: Agilent 1100 高效液相色谱仪, 配置二极管阵列检测器(DAD); 研钵; 离心机(L-535R, 长沙湘仪离心机仪器有限公司); 超声波仪(KQ-250E, 昆山市超声波仪器有限公司); 漩涡混合器(XW-80A, 江苏海门市麒麟医用仪器厂); 减压旋转蒸发仪(RE-52A, 上海亚荣生化仪器厂), 温度计等。

试剂: 药用甲基睾丸酮(纯度 96%以上)购于宁波第二激素厂; 甲基睾丸酮标准品(纯度 99.8%以上), 购于德国 Dr.Ehrenstorfer GmbH 公司; 甲醇(色谱纯)购于 Sigma-Aldrich 公司; 无水乙醚、石油醚、无水硫酸钠等(分析纯)均购于广州化学试剂厂; 实验用水为 Milli-Q 制备的超纯水。

1.3 方法

鱼苗的雄性化及其体内甲基睾丸酮消解实验采用饲喂法进行鱼苗的雄性化: 将甲基睾丸酮先溶于 95%酒精中, 再倒入饲料中, 搅拌均匀, 晾干。该饲料的甲基睾丸酮含量为 200 mg /kg。实验在 3 个水泥池进行, 每个池投放苗种 10 万尾。饲料投喂之前搓揉成小块, 每天定时(8: 00、15: 00、23: 00)投喂 3 次, 每次饲料量约为鱼苗生物量的 3%—5%, 雄性化周期为 30 d, 整个雄性化过程每星期换一次水(井水), 采用温棚自然控温(28 ± 2)℃。30d 后停止喂药, 鱼苗转移到养殖池塘, 自然放养。根据实验设计, 检测不同时间、频率鱼苗的甲基睾丸酮残留量, 评价鱼苗体内甲基睾丸酮的消解规律。

样品采集 在雄性化期间, 每次采样均在 3 个池中随机捞取, 每 5 天采样一次, 每次定时采样。其中在喂药第 15 天和第 30 天两天的采样频率为喂药 0—6h 内每隔 1h 采样一次。停药后, 在停药的前 50 天里, 每天采样一次, 其后 50—107d 每隔 3 天采样一次, 107—142d 每隔一周采样一次, 停药后共计 71 个时间点采样。采集后用吸水纸吸掉鱼体表面的水分, 称重, 雄性化阶段每个样品采集约 12 g, 停药后每个样品采集约 20 g, 样品迅速放入-20℃冰箱冷冻保存。

样品前处理 将鱼苗(整条)样品放入研钵中研磨使样品混匀, 称取均匀样品 2 g(精确到 0.01 g)于

50 mL 离心管中, 加入乙醚 15 mL, 旋涡混匀 1min, 超声波提取 10min, 以 4000 r/min 离心 10min, 上清液经无水硫酸钠柱滤入圆底烧瓶中, 残渣加入 15 mL 乙醚, 重复上述操作提取一次, 用 10 mL 乙醚分 2 次冲洗无水硫酸钠柱, 并用洗耳球吹出柱中液体, 滤液均滤入同一烧瓶中。在 35℃水浴条件下减压蒸馏。加入 2.0 mL 流动相和 3.0 mL 石油醚溶解残渣并充分洗涤烧瓶, 溶液转移至 10.0 mL 具塞玻璃离心管中, 加塞振匀, 以 4000 r/min 离心 5min, 用吸管吸弃上层石油醚层, 向离心管中加水至 10 mL, 混匀后过预先活化的 Oasis 固相萃取小柱进一步净化, 2 mL 含 2%乙酸的(1:1)甲醇水洗涤后, 抽干小柱中溶液, 2 mL 甲醇洗脱定容, 0.2 μm 滤膜过滤后供上机测定。

高效液相色谱条件 采用高效液相色谱法外标法检测样品中甲基睾丸酮的残留量。色谱条件如下: 色谱柱: Waters Spherisorb ODS2 (4.6 mm × 250 mm, 填料粒径 5 μm); 检测波长: 254 nm; 柱温: 30℃; 流速: 1.0 mL/min; 流动相: 甲醇+水=77+23(v/v); 进样量: 20 μL。

数据处理 使用 SPSS Statistics 17.0 统计软件 Kappa 分析、线性回归分析结合 EXCEL 2003 对数据进行统计处理。

2 结果与讨论

2.1 线性范围与检出限

甲基睾丸酮标准、空白样品、喂药样品的色谱图(图 1—3)。由图可见甲基睾丸酮的色谱峰峰形良好, 且与其他组分完全分离。用 0.04、0.1、0.5、1.0、5.0、10.0 μg/mL 的甲基睾丸酮标准工作液, 在前述

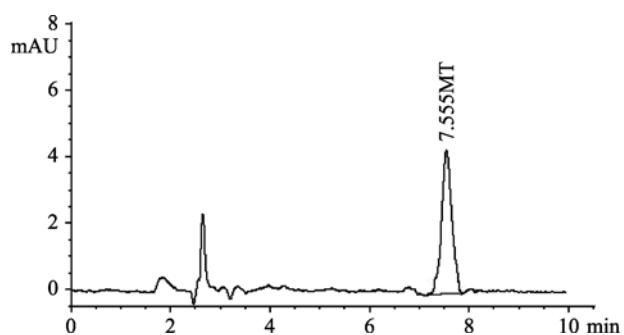


图 1 1 μg/mL 甲基睾丸酮标准的色谱图
Fig. 1 Standard spectrum of MT with concentration of 1 μg/mL

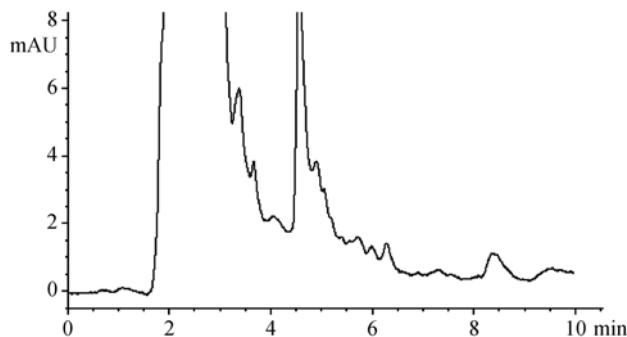


图 2 罗非鱼苗样品空白色谱图
Fig. 2 HPLC spectrum of tilapia fry blank sample

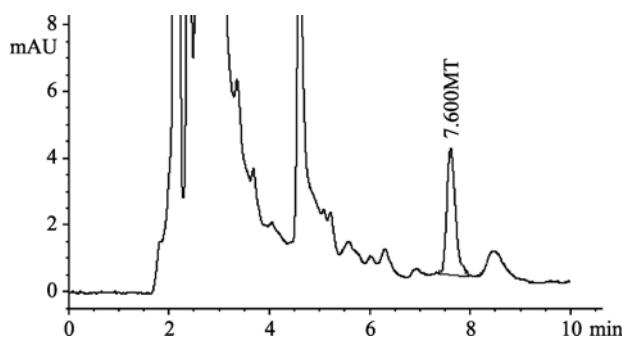


图 3 罗非鱼苗样品色谱图
Fig. 3 HPLC graph of tilapia fry sample

色谱条件下进行色谱分析, 以峰面积(A)为纵坐标, 浓度(C)为横坐标, 绘制标准曲线, 求出相关系数和线性范围。曲线方程为 $Y=74.8414X-0.2573$, 相关系数为 1.00000。甲基睾丸酮在 0.04—10 $\mu\text{g}/\text{mL}$ 范围内具有很好的线性。方法的检出限是指在保证具有一定可靠性(准确度和精密度)的前提下, 分析方法能测定出样品中某组分的最低浓度。本方法在样品中添加标准液浓度为 20 $\mu\text{g}/\text{kg}$ 时, 样品仍能给出大于 3 倍噪声的峰信号, 从而确定本方法的检出限为 20 $\mu\text{g}/\text{kg}$ 。

2.2 准确度与精密度

在空白罗非鱼苗体样品中加入甲基睾丸酮标准溶液, 加标水平为 25、500、5000 $\mu\text{g}/\text{kg}$, 每个水平做 6 个平行样品。加标后漩涡混匀, 静置 30min, 按上述前处理方法和检测方法来检测。回收率(%) = 样品实测浓度/样品理论浓度 $\times 100\%$ 。由测定结果可见, 方法的加标回收率都在 83% 以上, 其相对标准偏差在 3.61% 以下, 具体回收率和相对标准偏差(表 1)。

表 1 加标回收率和相对标准偏差($n=6$)
Tab. 1 Recoveries of MT in spiked samples and relative standard deviation (RSD) ($n=6$)

加标水平 Fortified level ($\mu\text{g}/\text{kg}$)	测定值 Determined level ($\mu\text{g}/\text{kg}$)						回收率 Extraction recoveries (%)	RSD (%)	
	1	2	3	4	5	6			
25	23.85	23.04	22.31	24.40	22.52	23.16	23.21	92.8	2.61
500	453.7	458.1	463.2	454.5	447.1	441.0	452.9	90.6	1.31
5000	4156	3883	4300	4360	3996	4279	4162	83.2	3.62

2.3 两次投喂间甲基睾丸酮在罗非鱼苗体内的消解

考虑到鱼苗太小, 选择喂药第 15 天和第 30 天考察两次投喂间罗非鱼苗体内的甲基睾丸酮的消解情况。两次投喂间甲基睾丸酮在罗非鱼苗体内的消解结果(图 4)。由图 4 可见, 在本实验两次投喂期间, 投喂后 1h 甲基睾丸酮在罗非鱼苗体内达到最大值, 随后在 3—4h 甲基睾丸酮含量又略高于 2h, 即出现多峰现象, 但是整体趋势还是下降的。多峰现象及其机制的探讨多见于哺乳动物, 水产动物体内单次给药方式下也观察到此类现象, 但未见深入研究。通常把此现象出现的原因解释为肠肝循环、胃肠循环、多部位吸收等, 而肠—肝循环(EHC)被认为是产生吸收多峰现象最可能的一种机制^[14]。由于本实验采用自然饲喂而不是每条罗非鱼苗人工给药, 罗非

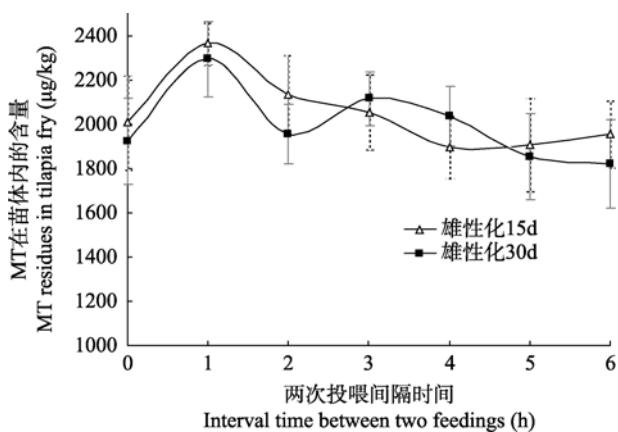


图 4 两次投喂间甲基睾丸酮在罗非鱼体内的消解
Fig. 4 The dissipation of MT in tilapia fry between two feedings

鱼苗进食差异较大且鱼苗摄取饲料有一个过程, 可能导致药物摄入不均匀。此外, 罗非鱼有底栖的习性, 自然喂养时药物随饲料沉入池底中, 容易造成多次反复的吸收, 使甲基睾丸酮在罗非鱼苗体内处于被摄取和被消解的动态过程, 因此下降幅度不大。

2.4 雄性化期间罗非鱼苗体内的甲基睾丸酮水平

雄性化期间罗非鱼苗体内的甲基睾丸酮水平测定结果(图 5)。由图 5 可见, 在喂药的 30d 里, 罗非鱼苗体内的甲基睾丸酮残留量大致处于(1937.17±77.76) $\mu\text{g}/\text{kg}$ 左右。采用 Kappa 分析喂药期间罗非鱼苗体内的甲基睾丸酮水平, 其 $\text{Kappa}=0.582>0.4$ (Kappa 统计量用于检查两次及其以上观测的一致性程度, $\text{Kappa}>0.75$ 说明具有很好的相关性, $\text{Kappa}<0.4$ 说明一致性程度不理想), 表明喂药期间甲基睾丸酮在罗非鱼苗体内的残留量具有一致性, 但一致性不是特别好, 有一些轻微的波动。这进一步验证了毒理学上经典的每次剂量和间隔时间都相同的多次染毒时量曲线的特点: 先为一锯齿状上升曲线, 然后趋于平衡, 在一定范围内波动^[15]。由于本实验是从给药的第 5 天开始采样的, 因此可能错过了锯齿状上升趋势。

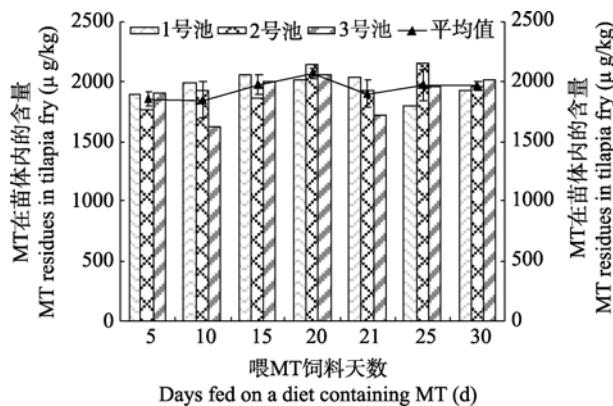


图 5 雄性化期间甲基睾丸酮在罗非鱼苗体内的残留水平

Fig. 5 The level of MT residues in tilapia fry during the sex reversal period

2.5 停药后甲基睾丸酮在罗非鱼苗体内的消解规律

30d 后, 停止投喂含有甲基睾丸酮的饲料, 将鱼苗转移到养殖池塘中, 改用普通饲料。停药后甲基睾丸酮在罗非鱼苗体内的消解规律(图 6)。由图 6 可知, 在停药后前 45 天里, 甲基睾丸酮在体内迅速减少, 其后的 46—115d 里, 甲基睾丸酮消解的较缓

慢, 到 115d 基本无检出, 此时鱼苗体重为(14.12±2.12) g。这符合药物本身的消解规律, 即在高浓度时易消解, 消解到一定量则放慢速度。而 Johnstone, *et al.*^[6]采用氚标记的甲基睾丸酮来研究了甲基睾丸酮用于奥里亚罗非鱼苗和虹鳟鱼苗雄性化后在体内的消除, 药期为 28d, 控制水温为(28±1)℃, 饲料药物浓度为 40 mg/kg, 停药后 100h 整个鱼体反射能还不到最初的 1%。Goudie, *et al.*^[9]用氚、¹⁴C 标记过的甲基睾丸酮和没有标记的甲基睾丸酮来持续喂养未分化的奥尼罗非鱼 21d, 控制水温为(26±2)℃, 药物浓度为 30 mg/kg, 停药 21d 之后, 放射能还不到最初的 1% (在肌肉组织中存在 5 ng MT/g)。究其原因, 可能是药物浓度、水温、制剂等实验条件对实验结果有很大影响。他们采用的是放射性同位素示踪法, 且都是在实验室模拟条件下进行, 用的甲基睾丸酮的浓度分别是 40 mg/kg 和 30 mg/kg, 水温控制在 28℃ 左右。而在国内现实养殖中, 养殖环境大多无法控制水温, 本实验主要是在自然环境下进行的, 药物浓度较高(200 mg/kg), 且实验正处于冬季, 水温较低, 最低温度达 9℃。当水温低于 15℃ 时, 罗非鱼处于休眠状态^[16], 可能对甲基睾丸酮在鱼苗体内消解有较大影响。

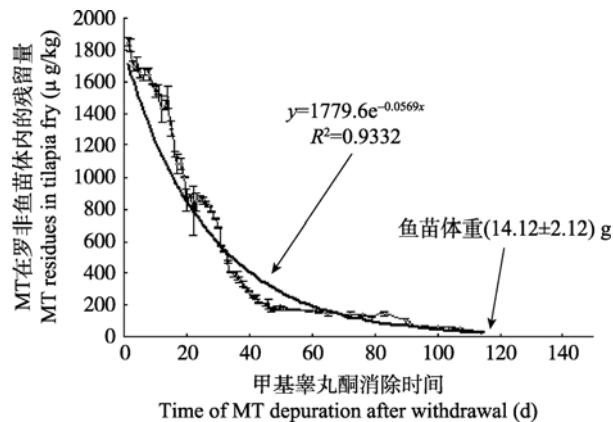


图 6 停药后甲基睾丸酮在罗非鱼苗体内的消解

Fig. 6 The dissipation of MT following the withdrawal

对于甲基睾丸酮用于罗非鱼雄性化是否安全的问题上, Bartholomew, *et al.*^[18]对甲基睾丸酮对人类食品安全的影响进行了回归分析预测, 结果显示采用甲基睾丸酮进行罗非鱼雄性化对食品安全没有负面影响, 回归分析显示甲基睾丸酮及其代谢物在鱼体总浓度在停药 8—40d 后将<100 pg/g, 在组织中的

浓度在停药后 6—50d 后将<10 pg/g。Gullu, *et al.*^[19]也指出甲基睾丸酮不同于其他类固醇激素, 它不会一直停留在鱼体内。而本实验在规模化养殖条件下, 采用 200 mg/kg 的甲基睾丸酮饲料持续喂养罗非鱼苗 30d, 在方法的检测限为 20 μg/kg 的条件下, 停药 115d 才基本无检出, 此时鱼苗体重为(14.12±2.12) g, 说明了甲基睾丸酮消解缓慢。对甲基睾丸酮消解曲线进行曲线预测, 拟合回归得到指数方程 $y = 1779.6e^{-0.0369x}$, $R^2 = 0.9332$ [Y =甲基睾丸酮在鱼体的总浓度(μg/kg 鱼苗), X =停止投喂甲基睾丸酮处理过的饲料的时间(d)]。这说明甲基睾丸酮的消解基本符合指数递减。Flaherty^[17]对罗非鱼体内甲基睾丸酮的消解规律得出的数学模型是指数模型: $Y = ae^{-bx} + ce^{-dx}$, 且 Johnstone, *et al.*^[6]和 Goudie, *et al.*^[9]的数据采用最小二乘方分析拟合该模型, 回归曲线方程分别为: $y = -1.36e^{(-x/1.595)} + 6.380e^{(-x/17.037)}$, $R^2 = 0.9701$ [Y =甲基睾丸酮及其代谢物在鱼体的总浓度(ng/mg 组织), X =停止投喂 MT 处理过的饲料的时间(h)]和 $y = 14.228e^{(-x/5.955)} + 4.511e^{(-x/154.954)}$, $R^2 = 0.9986$ [Y =甲基睾丸酮及其代谢物在鱼体的总浓度(ng/100mg 组织), X =停止投喂甲基睾丸酮处理过的饲料的时间(h)]。根据模型来推测, 后期甲基睾丸酮消解比较缓慢。

3 结 论

现实养殖中, 采用甲基睾丸酮进行罗非鱼的雄性化, 停药后甲基睾丸酮的消解基本符合指数递减, 后期消解比较缓慢。上市的罗非鱼一般>200 g, 鱼苗需要 3—6 个月才能达到上市规格, 采用含 200 mg/kg 甲基睾丸酮的饲料持续喂养尼罗罗非鱼苗 30d 来进行雄性化, 甲基睾丸酮在罗非鱼达到上市规格基本能消解掉。但是若养殖户使用超过本实验浓度的甲基睾丸酮来用于罗非鱼的雄性化, 就很难保证上市之前能消解掉。而且甲基睾丸酮毕竟是一种合成类激素, 它对鱼体本身各种器官的影响是否间接影响人的身体健康, 还有待进一步调查研究。因此在养殖过程中不宜使用甲基睾丸酮。

参考文献:

- [1] FAO. Fisheries and Aquaculture Information and Statistics Service [FAO FIES]. 2008
- [2] Baroiller J F, Cotta H. Environment and sex determination in farmed fish [J]. *Comparative biochemistry and physiology, Part C*, 2001, **130**: 399—409
- [3] Baroiller J F, Cotta H, Bezault E, *et al.* Tilapia sex determination: Where temperature and genetics meet [J]. *Comparative Biochemistry and Physiology, Part A*, 2009, **153**(1): 30—38
- [4] Zhuo X L, Zou J X, Cui K, *et al.* The influence of exogenous methyltestosterone on the gonad developmental process of female and intersexual monopterus albus [J]. *Acta Hydrobiologica Sinica*, 2008, **32**(6): 861—867 [卓孝磊, 邹记兴, 崔科, 等. 外源性甲基睾丸酮对雌性和间性黄鳝性腺发育的影响. 水生生物学报, 2008, **32**(6): 861—867]
- [5] Fagerlund H M, Helen M D. Depletion of radioactivity from yearling coho salmon (*Oncorhynchus kisutch*) after extended ingestion of anabolically effective doses of 17a-methyltestosterone-1, 2-³H [J]. *Aquaculture*, 1979, **18**(4): 303—315
- [6] Johnstone R, Macintosh D J, Wright R S. Elimination of orally administrated 17a-methyltestosterone by *Oreochromis mossambicus* (Tilapia) and *Salmo gairdneri* (rainbow trout) juveniles [J]. *Aquaculture*, 1983, **35**: 249—257
- [7] Cravedi J P, Delous G, Rao D. Disposition and elimination routes of 17a-methyltestosterone in rainbow trout (*Salmo gairdneri*) [J]. *Canadian Journal of Fisheries and Aquatic Sciences*, 1989, **46**: 159—165
- [8] Cravedi J P, Delous G, Debrauwer L, *et al.* Biotransformation and branchial excretion of 17a-methyltestosterone in trout [J]. *Drug Metabolism and Disposition*, 1993, **21**: 377—385
- [9] Goudie C A, Shelton W L, Parker N C. Tissue distribution and elimination of radiolabelled methyltestosterone fed to sexually undifferentiated blue tilapia [J]. *Aquaculture*, 1986, **58**: 215—226
- [10] Goudie C A, Shelton W L, Parker N C. Tissue distribution and elimination of radiolabelled methyltestosterone fed to adult blue tilapia [J]. *Aquaculture*, 1986, **58**: 227—240
- [11] Curtis L R, Diren F T, Hurley M D, *et al.* Disposition and elimination of 17a-methyltestosterone in Nile tilapia (*Oreochromis niloticus*) [J]. *Aquaculture*, 1991, **99**: 193—201
- [12] Vick A M, Hayton W L. Methyltestosterone pharmacokinetics and oral bioavailability in rainbow trout (*Oncorhynchus mykiss*) [J]. *Aquatic Toxicology*, 2001, **52**(3-4): 177—188
- [13] The illumination of nation prohibited drugs. http://www.shouyaowang.cn/new_view.asp?id=9061 [国家禁用渔药说明. http://www.shouyaowang.cn/new_view.asp?id=9061]
- [14] Wang H. Studies on the residue and elimination of oxolinic acid in cultured flounder (*Paralichthys olivaceus*) [D]. Thesis for Master of Science, Ocean University of China, Qingdao. 2006 [王慧. 噻唑酸在养殖牙鲆体内的残留消除规律研究. 硕士学位论文, 中国海洋大学, 青岛. 2006]
- [15] Zhang Q. Basis of Health Toxicology [M]. 3rd edition. Beijing: People's Medical Publishing House. 2000, 33—35 [张

桥. 卫生毒理学基础. 3 版. 北京: 人民卫生出版社. 2000, 33—35]

[16] Tilapia. <http://baike.baidu.com/view/90434.htm> [罗非鱼. <http://baike.baidu.com/view/90434.htm>]

[17] Flaherty E J. Toxicants and drugs: kinetics and dynamics [M]. John Wiley and Sons, New York, USA. 1981

[18] Bartholomew W G, David R T. Human Food Safety and Environmental Assessment of the Use of 17a-Methyltestosterone to Produce Male Tilapia in the United States [J]. *Journal of the World Aquaculture Society*, 2000, 31(3): 337—358

[19] Gullu K, Guzel S, Ekici K, et al. Residue analysis and effects of 17a-methyltestosterone on body composition of Rainbow Trout, *Oncorhynchus mykiss* [J]. *Italian Journal of Food Science*, 2007, 3(19): 357—362

DISSIPATION OF 17 α -METHYLTESTOSTERONE FED TO NILE TILAPIA *Oreochromis niloticus* (L.) FRY

ZOU Qin^{1,2}, CHEN Pei-Ji¹, LI Liu-Dong¹, LIN Wei-Qiang³, CHEN Ting³, YANG Jin-Lan¹, ZHAO Dong-Hao¹ and LI Zhi-Guang¹

(1. South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; 2. Guangdong Ocean University, Zhanjiang 524088, China; 3. Zhaoqing Fisheries Research Institute, Zhaoqing 526072, China)

Abstract: 17 α -methyltestosterone (MT), a synthetic androgen drugs, has served as a specific medicine on fry culture and gender control in aquaculture. It found that there were MT residues in tilapia at the market, which would harm the human body as this androgen has great potential hazard on human health. Studies were conducted on the dissipation of MT in Nile tilapia *Oreochromis niloticus* (L.) fry that received dietary of MT to induce sex reversal under aquaculture model in last winter. Sexually undifferentiated Nile tilapia fry (8—10 mm, 9—13 mg) were fed on a diet containing unlabeled MT (200 mg/kg) for 30d to effect masculinization in the concrete tank, daily feeding was regular, water was changed once a week, shed was used natural to control the temperature at (28 ± 2) °C. After 30d, the fry were transferred to a pond with normal feed, MT in fry were dissipation in the natural environment. The fry were sampled in different time and frequency in the latter days, then MT residues in fry were measured by high performance liquid chromatography (HPLC), the retention time of MT was approximately 7.6min, the recoveries obtained from fry samples were above 83.2%, with the relative standard deviation were below 3.62%, the detection limits of MT was 20 μ g/kg. SPSS Statistics 17.0 combines EXCEL 2003 statistical software were applied to the data processing and analysis in order to get the dissipation rule of MT after tilapia sex reversal. The results showed that MT residues in tilapia fry almost maintained consistently during the sex reversal period, MT residues in tilapia fry body at roughly about (1937.17 ± 77.76) μ g/kg, although overall trend of the dissipation was still downward while multi-peak phenomenon occurred in the dissipation of MT between two feedings. Besides, following the withdrawal, in the first 45d, MT had rapid reduction, in the subsequent 46-115d, the dissipation of MT was relatively slow, and ended approximately in 115d withdrawal, MT residues was not detected in tilapia fry from that day on, while the main weight of fry was (14.12±2.12) g. In general, the dissipation of MT was following the withdrawal slowly. By regression analysis of the MT dissipation curve, the exponential models were $y = 1779.6e^{-0.0369x}$, $R^2 = 0.9332$, where, Y = whole body concentration of MT in μ g/kg fry body, and X = time in d after withdrawal of MT-treated feed ($R^2 = 0.9332$). It suggested that the dissipation of MT fitted with exponential decline, and the dissipation was slowly in the latter. Though MT residues from tilapia sex reversal were not detected before marketing, but it could not be guaranteed as excessive use of MT and MT, after all, it was a synthetic hormone, its various impacts on organs of the fish itself would probably have indirect impact on human health. For safety's sake, the use of MT in the aquaculture should be forbidden.

Key words: 17 α -methyltestosterone (MT); Dissipation; Tilapia fry; Aquaculture model