

河蟹眼柄神经内分泌细胞 Glu 受体研究

孙金生^{1,2} 高春蕾² 相建海²

(1 天津师范学院生物系, 天津 300074; 天津水产研究所, 天津 300021;

2 中国科学院海洋研究所, 青岛 266071)

摘要: 作者采用全细胞膜片钳技术测定了中华绒螯蟹(*Eriocheir sinensis*)眼柄视神经节端髓X器官(MTXO)神经内分泌细胞对0.01—10mmol/L谷氨酸(Glu)的反应, 并结合药理学方法进行了Glu受体研究。结果表明, Glu激活A型和B型细胞离子型Cl⁻通道蛋白受体, 诱导快速激活、快速失活的配体门控Cl⁻通道电流(I_{Glu})。依据内外液的Cl⁻浓度比例引发去极化或超极化反应, 继续施加Glu, 细胞快速出现脱敏反应; 去除Glu后, 细胞约需20s恢复对Glu的敏感状态。I_{Glu}幅值呈浓度依赖性, 量效关系曲线呈线形, 激活阈值为0.01mmol/L, 约5mmol/L达到饱和。河蟹眼柄神经内分泌细胞I_{Glu}明显受到Cl⁻通道阻断剂picrotoxin(0.5mmol/L)抑制; 对离子型Glu受体激动剂Quisqualate、Kainate、NMDA、AMPA不敏感。Ibotenic acid(IA)可模拟Glu诱导快速激活、快速脱敏的Cl⁻电流, 并与Glu产生交互脱敏作用。Glu和GABA对河蟹眼柄神经内分泌细胞无交叉脱敏和交叉激活作用, 甘氨酸(Gly)没有诱导细胞产生任何反应, 提示中枢神经系统通过Glu和GABA两套系统实现对眼柄神经内分泌系统的精确调控。

关键词: 河蟹; MTXO; 神经内分泌细胞; 谷氨酸受体; 全细胞膜片钳技术

中图分类号: Q424, Q26 文献标识码: A 文章编号: 1009-3207(2004)06-0647-06

谷氨酸(Glutamic acid, Glu)是中枢神经系统中最丰富的一种兴奋性神经递质, 既有递质功能, 又参与代谢。根据生化药理研究结果, 可将哺乳动物中枢神经系统的Glu受体分为离子型受体和代谢型受体。前者包括N-甲基-D-天冬氨酸(N-Methyl-D-aspartate, NMDA)受体, 海人藻(KA)受体和 α 氨基羟甲基恶唑丙酸(alpha amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid, AMPA)受体; 后者包括L-2-氨基-4-磷丁酸(L-AP4)受体、反氨基环戊烷二羧酸(ACPDA)受体^[1,2]。哺乳动物神经细胞和肌肉细胞表达的离子型Glu受体多与GABA受体通道相关。一些节肢动物和软体动物也存在Glu和GABA共同的受体^[3]。离子型Glu受体也广泛存在于甲壳动物神经组织、肌肉组织和内分泌系统, 介导调控多种生理活动。如甲壳动物胃上神经节细胞表达抑制性谷氨酸受体通道(IGluRs), 介导抑制中枢对节律性活动组织的控制^[4]。

眼柄XO-SG神经内分泌系统是甲壳动物的特有结构, 类似于哺乳动物的下丘脑—垂体系统, 被称

为甲壳动物的内分泌调控中心。它分泌甲壳动物高糖激素(CHH)、蜕皮抑制激素(MIH)、性腺发育抑制激素(GIH)等多种神经肽类激素, 调控甲壳动物的生殖、发育和蜕皮等重要生理功能^[5,6]。虽然Glu作为递质或调质物质广泛的存在于甲壳动物体内, 由于受细胞培养材料的限制, 至今仅观察了一种热带地蟹即凶狠圆轴蟹(*Cardisoma carnifex*)分泌CHH细胞对Glu的反应^[7]。中华绒螯蟹(*Eriocheir sinensis*)俗称河蟹, 是我国主要养殖经济蟹类之一。近年来, 各地河蟹养殖中普遍发生性早熟和养殖规格小等难题, 严重地阻碍了我国河蟹养殖业的发展。对眼柄神经内分泌激素分泌机制和调控的研究不仅有助于解决这些难题, 还可为重要经济甲壳动物的人工繁殖和生长控制提供指导。作者已对河蟹眼柄XO-SG神经内分泌系统组织学、细胞学和免疫细胞化学方面进行了全面观察, 并进行了眼柄视神经节端髓X器官(MTXO)神经内分泌细胞离体培养研究, 依据大小、形态、超微结构和体外生长方式等特征区分出A、B、C三种类型细胞^[8,9]。本文在对河蟹眼柄神经

收稿日期: 2002-09-20; 修订日期: 2003-10-24

基金项目: 国家自然科学基金资助项目(30271019); 国家“973”重点基础研究资助项目(G1999012007)资助

作者简介: 孙金生(1965—), 男, 天津市人; 研究员, 博士后; 主要从事甲壳动物内分泌学研究

通讯作者: 相建海, E-mail: jhxian@ms. qlio.ac.cn

分泌细胞电生理特征^[10]研究的基础上, 采用全细胞膜片钳技术观察河蟹眼柄 MTXO 神经分泌细胞对 Glu 的反应, 并结合药理学方法进行 Glu 受体研究, 以为进一步研究眼柄神经肽类激素的分泌调控机制打下基础。

1 材料和方法

1.1 动物解剖和细胞培养 实验动物为取自天津市宁河县仁凤乡和山东东营河蟹养殖场的正常一龄蟹种, 壳宽为 2.1—2.4cm, 置室内水泥池暂养。动物解剖和细胞培养方法详见孙金生^[9]的描述。简述如下: 选取附肢健全的健康蟹种, 经低温“麻醉”和 1:30 碘伏浸泡消毒 20min 后, 在苏净 BCM-1000 超净工作台中取下眼柄。然后在无菌河蟹生理盐水中剥离外骨骼、肌肉和连接组织, 取出视神经节, 并沿窦腺的轴路, 在视神经节端髓取出 X 器官(MTXO)。MTXO 于 24℃ 振动消化 1.5h 后, 在培养液中搅动打散细胞, 分散的细胞于 24—26℃、黑暗、潮湿条件下培养。消化酶液为溶解于无 Ca^{2+} 、 Mg^{2+} 生理盐水的 0.3% 胰蛋白酶(Sigma)。培养液为 1.75 倍河蟹生理盐水配制的 L-15 培养基(pH7.5), 临用前加入 0.1mg/mL 庆大霉素、150mmol/L 葡萄糖和 1mmol/L 谷氨酰胺。膜片钳实验采用培养 2d、形态特征典型的 A、B、C 三种类型河蟹眼柄 MTXO 神经内分泌细胞, 用奥林巴斯 IX70 观察细胞。A 型和 B 型细胞分别为抗 CHH 和抗 MIH 免疫阳性细胞。实验前, 用无菌河蟹生理盐水冲洗培养皿 3 次。

1.2 膜片钳实验和数据的采集、处理 采用 EPC9 膜片钳放大器(HEKA Elektronik, Germany), 在电流钳和电压钳两种模式下测定河蟹眼柄神经分泌细胞对 Glu 的反应。实验在室温(22—26℃)下进行, 用高阻封接全细胞膜片钳技术记录电信号。数据的采集和储存均通过 PULSE 软件完成, 用 Igor 软件进行数据分析。玻璃电极毛坯为 WPI 公司生产的薄壁毛细管(1B150F-4), 无需灌尖, 充灌内液后电极电阻为 3—5M Ω 。用硅酮树脂涂敷电极尖端降低杂散电容干扰。快、慢电容为自动补偿, 串联电阻补偿至最佳。标准电极内液为 (mmol/L): 200KCl, 5NaCl, 5MgCl₂, 20HEPES, 5ATP-2Na⁺, 5BAPTA, KOH 调 pH7.5。标准细胞外液为添加 20mmol/L 葡萄糖的无菌河蟹生理盐水。因实验修改电极内外液的成分在文中另行说明。

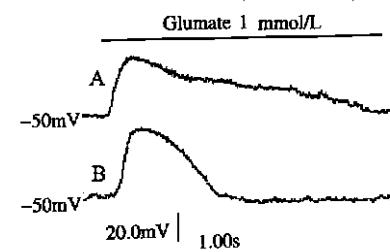
1.3 药品及加药方法 谷氨酸(L-Glutamic acid, Glu)、 γ -氨基丁酸(GABA)、甘氨酸(Glycine, Gly)、

Picrotoxin(PTX)、Bicuculline、Quisqualate、Kainate、NMDA、AMPA、LY354740 为 Sigma 产品, 实验前用无菌河蟹生理盐水配至终浓度。实验采用 16 通道快速加药系统(ALA Sci. Instruments N Y)进行加药。加药过程由计算机控制, 用操纵器操纵尖端直径为 100 μm 的加药头至细胞约 50 μm 处, 压力加药(10p.s. i.), 可在 10ms 内将 16 个储液槽中的任何一种药品或冲洗液快速地加到细胞表面并浸浴整个选定细胞。

2 结果

2.1 河蟹眼柄 MTXO 神经内分泌细胞对 Glu 的反应

在全细胞电流钳模式下, 将膜电流钳制在 0 pA, 使细胞处于静息不活动状态。三种类型细胞的静息膜电位均在 -50mV 左右(n=30)。此时灌流 1mmol/L Glu, 观察河蟹眼柄三种类型神经分泌细胞对 Glu 的反应。结果表明, A 型和 B 型细胞均产生去极化反应。A 型细胞的平均去极化电压为 45.8±3mV, 持续 6.5±0.8ms(n=5), B 型细胞的平均去极化电压为 -47±2mV, 持续 3.7±0.5ms(n=5)(图 1)。另外, 通过降低电极内液或升高细胞外液 Cl⁻ 浓度, 可使去极化反应转变为超极化。为了鉴别是否有钙离子和钠离子参与去极化电位的形成过程, 在进行 Glu 灌流前, 首先将培养细胞与含有钙离子通道阻断剂 Cd²⁺(0.5mol/L) 和钠离子通道阻断剂 TTX(5 $\mu\text{mol/L}$) 的细胞外液孵育 20min。结果表明, GABA 引起的 A、B 两种类型神经分泌细胞的去极化反应不受 TTX(n=3) 和 Cd²⁺(n=3) 的影响, 形成的去极化电压大小无明显差异($P>0.05$)。



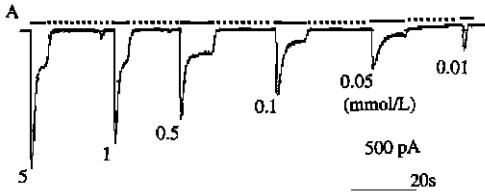

图 1 Glu(1mmol/L) 诱导 A 型(A) 和 B 型(B) 细胞产生去极化反应

Fig. 1 Depolarization were evoked in cell type A(A) and cell type B(B) in response to Glu(1mmol/L)

2.2 Glu 激活 Cl⁻ 通道蛋白受体

形成全细胞电压钳构型后, 将保持电压钳制在 -50mV(接近静息膜电位, 无明显的膜电流产生), 分别灌流 0.01—10mmol/L Glu, 观察河蟹眼柄 MTXO 神经内分泌细胞对 Glu 的反应。结果表明, A、B 型

细胞出现电流特征相似的快速激活、快速失活的内向电流(I_{Glu})。电流在灌流 Glu 后 425 ± 124 ms 内开始出现, 在约 465 ± 75 ms 内达到峰值, 635 ± 145 ms 后失活 $70\% - 90\%$, 随后出现 $10\% - 30\%$ 的平台期(图 2A)。量效关系呈明显的线型, 产生阈值电流反应的 Glu 浓度为 0.01mmol/L , 饱和浓度接近 5mmol/L (图 2B)。继续灌流 Glu, 两种细胞都出现脱敏反应。

脱敏反应与 Glu 的浓度无关, 灌流阈值浓度的 Glu (0.01mmol/L) 同样引起细胞的脱敏反应, 甚至继续灌流饱和浓度的 Glu 也不能使细胞产生反应。洗掉 Glu 后, 细胞很快就恢复到敏感状态。冲洗后约 4.5s 恢复 50% , 7s 恢复 75% , 10s 恢复 84% , 约 20s 内完全恢复(图 3A、B)。平台部分既无明显的失活, 也无明显的脱敏现象发生(图 3A)。

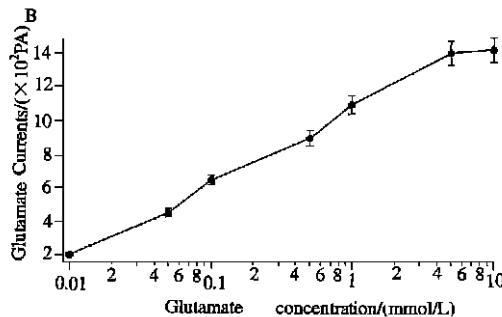


图2 河蟹眼柄MTXO 神经内分泌细胞对不同浓度谷氨酸的反应。A: 依次对同一个 A 型细胞灌流 $5 - 0.01\text{mmol/L}$ Glu, 诱发细胞产生不同幅值的快速激活、快速失活内向电流。实线示灌流 Glu, 虚线示标准细胞外液冲洗, 冲洗时间 $> 20\text{s}$ 。B: 线形量效关系曲线, 示激活阈值为 0.01mmol/L , 饱和浓度为 5mmol/L 。横坐标为 Glu 浓度的 Log 值

Fig. 2 The responses of MTXO neurosecretory cells to the application of glutamate. A: The transient Glu currents were evoked from one type A cell in response to a series of concentrations of Glu ($0.01 - 5\text{mmol/L}$) . Real lines indicated Glu perfusion; dotted lines indicated washing. B: Dose response curve, indicated a just discernable effect at 0.01mmol/L and a near saturation at 5mmol/L

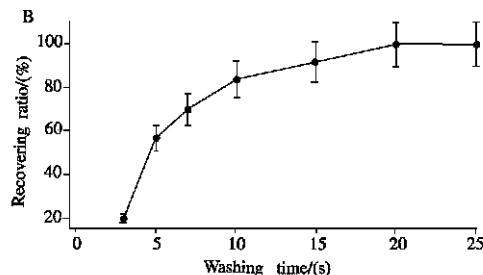
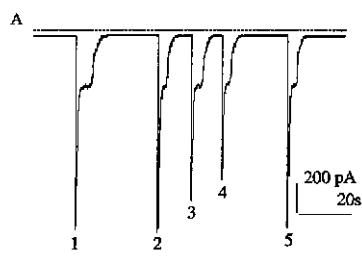



图3 河蟹眼柄MTXO 神经内分泌细胞对 Glu 产生快速脱敏反应, 洗去 Glu 后又快速恢复到敏感状态。A: 灌流 1mmol/L Glu (1) 引发脱敏反应后, 冲洗 7s (4)、 10s (3) 和 20s (2,5) 后记录的 A 型细胞 I_{Glu} 。示河蟹眼柄神经内分泌细胞 20s 后完全恢复对 Glu 的敏感状态, 平台部分未出现明显的脱敏反应。实线示灌流 Glu, 虚线示标准细胞外液冲洗。B: 1mmol/L Glu, 引发 A 型细胞脱敏反应后 $3 - 25\text{s}$ 内恢复的敏感程度。纵坐标为不同时间记录的 I_{Glu} 与对照 I_{Glu} 的比值, 示细胞在不同时间内恢复的敏感程度, 约冲洗 4.5s 后恢复 50%

Fig. 3 Desensitization occurred rapidly after Glu application, then recovered after washing with standard extracellular solution. A: The Glu currents were recorded 7s (4)、 10s (3) and 20s (2,5) after washing, showed recovering ratio of first response to 1mmol/L Glu (1) . Real lines indicated Glu perfusion; dotted lines indicated washing. B: Recovering ratio $3 - 25\text{s}$ after washing, showed that recovery to 50% of the first response required 4.5s , to 100% required about 20s

河蟹眼柄神经内分泌细胞的 Glu 电流幅值与保持电压相关。在电压钳模式下, 将保持电压分别钳制在 $-90 - 10\text{mV}$, 对同一个 A 型细胞灌流 1mmol/L Glu, 用标准电极内外液记录到一系列 I_{Glu} (图 4A)。电流电压关系曲线结果(图 4B)显示, I_{Glu} 没有整流特征, 但存在反转电位(约 -2.5mV), 接近 Cl^- 的 NERNST 电位(E_{Cl} , -4mV), 提示 I_{Glu} 的反转电位与电极内外液中氯离子的比例相关。于是, 通过改变

内液中氯离子的浓度, 观察 Cl^- 对 I_{Glu} 反转电位的影响。结果表明, I_{Glu} 的反转电位随着内外液中 Cl^- 浓度的比例的不同而发生变化, 非常接近 E_{Cl} 。图 5 是在 $0 - 90\text{mV}$ 保持电压下记录的 B 型细胞 I_{Glu} (A) 及电流-电压关系曲线(B)。 E_{Cl} 为 -45mV , 反转电位约为 -40mV 。作者还观察到保持电压越负, 记录的 I_{Glu} 失活越快(图 4A、5A)。进一步的结果表明, I_{Glu} 对氯离子通道阻断剂 picrotoxin 敏感(详见 2.3), 而且

图 4 在电压钳模式下, 将保持电压分别钳制在 $-90\text{mV} \rightarrow 10\text{mV}$, 对同一个 A 型细胞灌流 1mmol/L Glu , 用标准电极内液记录到一系列 I_{Glu} (A) 及其峰值与保持电压关系曲线(B)

Fig. 4 A series of Glu currents were recorded from one type A cell at the holding potential of $-90\text{mV} \rightarrow 10\text{mV}$ (A) and corresponding I(V) curve(B) in responses to 1mmol/L Glu , when the standard intracellular solution ($E_{\text{Cl}} = -4\text{mV}$) was used

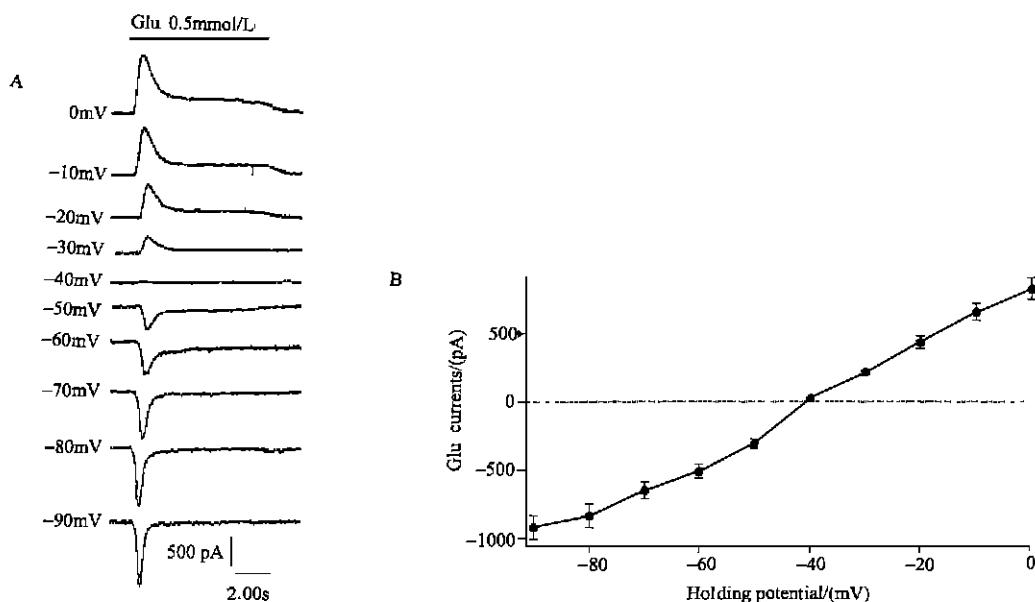


图 5 在电压钳模式下, 将保持电压为分别钳制在 $-90\text{mV} \rightarrow 0\text{mV}$, 对同一个 B 型细胞灌流 0.5mmol/L Glu , 记录到一系列 I_{Glu} (A) 及其与保持电压关系曲线(B)。 $E_{\text{Cl}} = -45$, 反转电位约为 -40mV

Fig. 5 A series of Glu currents were recorded from one type B cell at the holding potential of $-90\text{mV} \rightarrow 0\text{mV}$ and corresponding I(V) curve in response to 0.5mmol/L Glu , when the low Cl^- intracellular solution ($E_{\text{Cl}} = -65\text{mV}$) was used. Showed that reversal potential was at -40mV

Na^+ 和 Ca^{2+} 没有参与 Glu 诱导的去极化过程, 证明河蟹眼柄神经内分泌细胞表达的 Glu 受体为配体门控氯离子通道蛋白。

2.3 河蟹眼柄神经内分泌细胞 Glu 受体的药理学特性

作者通过观察细胞对一些哺乳动物 Glu 受体的激动剂和阻断剂^[11]的反应, 初步鉴定河蟹眼柄神经内分泌细胞 Glu 受体药理学特征。Picrotoxin 是最早被鉴定的配体门控 Cl^- 通道阻断剂之一。当河蟹眼柄神经内分泌细胞在含有 $0.5\text{mmol/L Picrotoxin}$ 的细胞外液中浸浴 5min 后, 对 Glu 的反应明显受到抑制, 抑制程度大于 90% ($n = 3$) (图 6)。LY354740 是

代谢型 Glu 受体激动剂, IA 是离子型和代谢型 Glu 受体激动剂。河蟹眼柄神经内分泌细胞仅对 IA 产生反应, 出现类似于 I_{Glu} 的快速激活和快速失活的内向电流。灌流 IA 20s 后, 快速更换为 Glu 或 GABA,

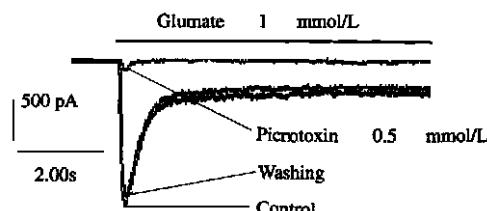


图 6 Picrotoxin 阻断河蟹眼柄 A 型神经内分泌细胞 Glu 电流

Fig. 6 Glu currents resolved from cell type A were blocked by application of Picrotoxin

只记录到 I_{GABA} (河蟹眼柄神经内分泌细胞对 GABA 的反应另文发表), 未记录到 I_{Glu} ($n=5$)。同样, 灌流 Glu20s 后, 细胞对 IA 引起的反应脱敏, 而对 GABA 的反应未受到影响 ($n=5$)。Gly (1 μ mmol/L) 没有诱导细胞产生任何反应 ($n=3$)。为进一步鉴定表达 Glu 受体的类型, 分别观察了离体培养的细胞对一些离子型 Glu 受体激动剂反应。结果显示河蟹眼柄神经内分泌细胞对 Quisqualate (1mmol/L, $n=3$)、Kainate (1mmol/L, $n=3$)、NMDA (1mmol/L, $n=3$)、AMPA (1mmol/L, $n=3$) 均不敏感。

3 讨论

眼柄 XO-SG 神经内分泌系统一直是甲壳动物内分泌研究的重点内容, 已分离纯化多种甲壳动物特有的神经肽类激素。这些激素在甲壳动物的性腺发育、蜕皮生长和能量代谢等重要生理活动中发挥着关键的作用。人们一直致力于这一系统激素的分泌调控研究, 期待在生产中控制经济甲壳动物的繁殖和生长。谷氨酸是广泛分布在甲壳动物神经系统的递质或调质类物质, 介导中枢神经系统 (CNS) 对不同靶组织的兴奋或抑制作用^[3, 4, 12]。但是, 由于研究手段和培养细胞材料的限制, 迄今仅观察了热带地蟹眼柄分泌 CHH 细胞对 Glu 的反应^[7]。作者采用全细胞膜片钳技术, 首次全面观察了河蟹眼柄 MTXO 不同类型神经内分泌细胞对 Glu 的反应, 发现分泌 CHH 和 MIH 细胞表达离子型 Glu 受体, 其他细胞对 Glu 没有反应。 I_{Glu} 不仅激活快、脱敏快, 而且恢复敏感状态也快, 在 20s 内完全恢复, 而热带地蟹需要 140s 恢复到 90% 的敏感状态。河蟹眼柄神经内分泌细胞 Glu 受体的一些药理学特征与热带地蟹眼柄分泌 CHH 细胞相似, 如 IA 可以模仿出对 Glu 的反应并与 Glu 的反应出现交叉脱敏作用, 对哺乳动物中枢神经系统 (CNS) 兴奋型受体激动剂 NMDA、Quisqualate、Kainate 不产生反应, 被 picrotoxin 抑制等。河蟹眼柄神经内分泌细胞 I_{Glu} 有两种成分, 一是快速脱敏的峰值部分, 另一是几乎不脱敏的平台部分, 提示河蟹眼柄神经内分泌细胞可能表达两种 Glu 受体。另外, 河蟹眼柄神经内分泌细胞 Glu 受体通道与 GABA 受体通道无交互脱敏和交互激活, 进

一步证实, 在甲壳动物眼柄神经内分泌系统中 Glu 和 GABA 激活不同的受体。这一结果提示, 甲壳动物中枢神经系统由 Glu 和 GABA 介导, 分别激活不同的受体, 通过两条途径实现对眼柄神经内分泌系统的精确调控。

参考文献:

- [1] Rekling J S, Funk G D, Beyliss D A, et al. Synaptic control of molluscan neuronal excitability [J]. *Physiol. Rev.* 2000, **80**: 767—852
- [2] Liberman D N, Mody I. Properties of single NMDA receptor channels in human dentate gyrus granule cells [J]. *J. Physiol.* 1999, **518**: 55—70
- [3] Cully D F, Wilkinson H, Vassilatis D K, et al. Molecular biology and electrophysiology of glutamate-gated chloride channels of invertebrates [J]. *Parasitology*. 1996a, **113**: S191—S200
- [4] Cleland T A, Selverston A L. Inhibitory Glutamate receptor channels in cultured lobster stomatogastric neurons [J]. *J. Neurophysiol.* 1998, **79**: 3189—3196
- [5] Cooke I M, Sullivan R E. *Hormones and neurosecretion* [M]. New York: Academic Press, 1982, 205—209
- [6] Keller R. Crustacean neuropeptides structure, function and comparative aspects [J]. *Experientia*. 1992, **48**: 439—448
- [7] Duan S, Cooke I M. Glutamate and GABA A activate different receptors and Cl^- conductances in crab peptidergic secretory neurons [J]. *J. Neurophysiol.* 2000, **83**: 31—37
- [8] Sun J S, Liu A X, Du Y Z. Microstructure and ultrastructure of sinus gland in the eyestalk of *Eriocheir sinensis* [J]. *Acta Zoologica Sin.* 2001a, **47**: 27—31 [孙金生, 刘安西, 杜育哲. 中华绒螯蟹窦腺的显微和超微结构. 动物学报, 2001, **47**: 27—31]
- [9] Sun J S, Liu A X, Chen J T, et al. Cytoband culture of neurosecretory cell in the eyestalk of *Eriocheir sinensis* [J]. *Acta Hydrobiol. Sin.* 2000, **24**: 374—379 [孙金生, 刘安西, 贺秉军. 河蟹眼柄 MTXO 神经分泌细胞的培养和细胞学研究. 水生生物学报 2000, **24**: 374—379]
- [10] Sun J S, Liu A X, Chen J T, et al. Patch clamp study on the ion channels in the cultured MTXO neurons in *Eriocheir sinensis* [J]. *Acta Biophysica Sin.* 2001, **17**: 231—238 [孙金生, 刘安西, 陈家童, 相建海. 河蟹眼柄 MTXO 细胞离子通道的膜片钳研究. 生物物理学报, 2001b, **17**: 231—238]
- [11] Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in mammalian central nervous system [J]. *Prog. Neurobiol.* 1998, **54**: 581—618
- [12] Cleland T A, Selverston A L. Glutamate-gated inhibitory currents of central pattern generator neurons in the lobster stomatogastric ganglion [J]. *J. Neurosci.* 1995, **15**: 6631—6639

RESEARCH ON THE GLUTAMATE GATED CHANNELS IN THE NEUROSECRETORY CELLS OF MTXO IN THE EYESTALKS OF *ERIOCHEIR SINENSIS*

SUN Jir Sheng^{1,2}, GAO Chur Le¹ and XIANG Jian Hai²

(1 Department of Biology, Tianjin Normal university, Tianjin 300074; Tianjin Fishery institute, Tianjin 300021;

2. Institute of Oceanology, The Chinese Academy of Sciences, Qingdao 266071)

Abstract: The X-organ sinus gland is a major peptidergic neurosecretory system in crustacean, analogous to the vertebrate hypothalamoneurohypophyseal system. Chinese mitten handed crab (*Eriocheir sinensis*) X-organ located on the ventral surface of terminalia in the eyestalk, named MTXO. Three types of neurosecretory cells dissociated from MTXO had been identified on the basis of shape, size and outgrowth fashion. The cell type A and cell type B were immunoactive to anti-CHH and anti-MIH serum respectively. In the present paper, the whole cell patch clamp technique was used to examine the responses of MTXO neurosecretory cells to rapid application of glutamic acid(Glu) and the Glu receptor characteristics. The results suggested that glutamate activated a ionotropic Cl^- channel receptor and evoked depolarization or hyperpolarization in the type A and type B neurosecretory cells in response to the Glu (1mmol/L) depending on the $[\text{Cl}^-]_0/[\text{Cl}^-]_i$ ratio. Under voltage clamp mode, the transient inward Cl^- channel currents(I_{Glu}) were resolved in responses to Glu(0.01—5mmol/L). The size of Glu currents were related to the Glu concentration, Dose-responses curve showed line shape, with a just discernable effect at 0.01mmol/L and near-saturation at 5mmol/L. During continued Glu perfusion, the responses declined more quickly for higher concentration. When the desensitization had occurred, it could not be overcome by application of higher concentration. The recovery required 20s for type A and type B cells after washing with standard extracellular solution. The Glu currents had reversal potentials that followed Nernst Cl^- potentials when $[\text{Cl}^-]$ was varied. The pharmacological results revealed that the GABA receptor of the crab neurosecretory cells were sensitive to the Cl^- channel blocker picrotoxin(0.5mmol/L), insensitive to ionotropic Glu receptor agonist, Quisqualate, Kainate, NMDA, AMPA. Ibotenic acid (IA) was proved to be an effective agonist on the cell type A and B, producing inward currents that showed rapid desensitization similar to the Glu responses. The responses to Glu were attenuated after application of IA, showed cross desensitization between IA and Glu. No response was observed in the crab MTXO cells after application of Glycine. Some evidence revealed that Glu and GABA activated different receptors. This suggests that the neurosecretory cells were regulated by CNS through different Glu and GABA system.

Key words: *Eriocheir sinensis*; MTXO; Neurosecretory cell; Glutamic acid(Glu); Whole cell patch clamp technique