

微藻细胞的连续气浮法采收

曾文炉¹ 李宝华² 蔡昭铃¹ 丛 威¹ 欧阳藩

(1. 中国科学院过程工程研究所生化工程国家重点实验室, 北京 100080)

2. 北京华大基因研究中心, 北京 100093

摘要: 以螺旋藻为模型藻, 较为详细地研究了藻细胞的絮凝行为以及回流比、藻液浓度、溶气时间和溶气压力因素等对藻细胞连续气浮采收效率的影响。结果表明, 调节 pH 值为 11—12 可使藻液产生良好的絮凝性能; 增大回流比、提高溶气压力、延长溶气时间和接触停留时间, 可有效地提高气浮采收效率; 藻液浓度较低时, 气浮采收效率较高。所提出的连续气浮采收动力学模型可较好地拟合实验结果。

关键词: 气浮; 螺旋藻; 微藻; 采收动力学

中图分类号: Q949.2 文献标识码: A 文章编号: 1000-3207(2003)05-0507-05

微藻细胞生物量的采收方法有许多种。但由于其生物量浓度通常较低,而且细胞密度与水体相当,传统的固液分离手段如离心、絮凝沉淀或过滤等,由于效率低下和成本偏高等原因,不太适用于微藻领域^[1]。气浮分离是一种人为地向水体导入气泡,使其黏附于絮粒上形成“气泡—絮粒”聚集体以降低絮粒整体密度,并借气泡上升的浮力强行使絮粒体上升,由此实现固液快速分离的新型固液分离技术。气浮法现已被广泛应用于发酵产品的浓缩、给水排水、废水处理、石油化工、食品工业等诸多领域,并取得良好效果^[2-3],但鲜见有应用于微藻细胞采收的报道。本文以螺旋藻为实验对象,较为详细地研究了操作条件对微藻细胞连续溶气气浮采收的影响,并提出了相应的采收动力学模型,以期对工业实践提供有益的借鉴。

的溶气水自塔底进入,同时藻液通过蠕动泵由塔中
部引入。富集得到的浓藻液由塔顶排入贮槽,而经
采收后的稀藻液则自塔底流出。

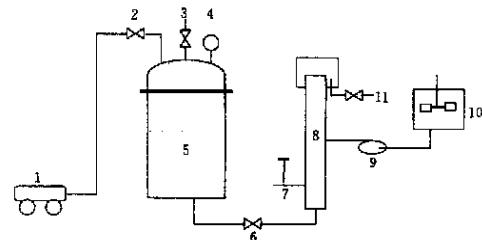


图 1 实验装置与流程

Fig. 1 Schematic of dissolved air flotation setup and flow diagram
 1. 空气压缩机 2. 阀门 3. 安全阀 4. 压力表 5. 饱和溶气罐 6. 针形
 阀 7. 底流液 8. 气浮塔 9. 蠕动泵 10. 藻液贮槽 11. 浓缩液出口
 1. Air compressor 2. Valve 3. Safty valve 4. Pressure gauge 5. Saturator
 6. Needle valve 7. Subnatant 8. Flotation column 9. Peristaltic pump 10. Culture
 reservoir 11. Flotate outlet

1 材料与方法

1.1 藻种 钝顶螺旋藻(*Spirulina platensis*)由烟台大学生化工程研究所提供

1.2 气浮装置 实验装置(图1)主要由空压机、饱和溶气罐和气浮分离塔等组成。其中,由碳钢制成的溶气罐有效容积约50L,操作压力为0.1—0.6MPa。分离塔由有机玻璃制成,其内径和高度分别为3.2cm和50cm。实验操作流程为:经空气饱和

1.3 仪器 7553-75型蠕动泵(Cole-Parmer仪器公司);DU Series 7000型分光光度计(Beckman公司);JC-302型数字式pH计(北京创业仪器厂);地球牌781型磁力搅拌器(上海南汇电讯器材厂)。

1.4 藻液浓度测定 以空白 Zarrouk 培养基^[4]为对照, 在分光光度计上测定藻液在 560nm 处的吸光度 (OD_{560}), 依此反映藻液浓度。藻细胞质量浓度(干

收稿日期: 2002-06-01; 修订日期: 2003-04-15

基金项目:国家自然科学基金资助项目(批准号:29776044)

作者简介:曾文炉(1969—),男,江西省玉山县人;博士;主要从事生化工程方面的研究。

重) (mg/L): 根据细胞干重浓度与藻液 OD_{560} 之间的标准曲线关系, 由下式计算得到。

$$\text{mg/L} = 0.6449 \times OD_{560}$$

1.5 絮凝实验 取藻液样品以 3mol/L 的 HCl 或 NaOH 溶液调节其 pH 值。之后加入一定量的絮凝剂(聚合氯化铝、硫酸铝和硫酸铝钾)。取此混合液 100mL, 在磁力搅拌仪上先快速处理 10min, 再缓慢搅拌 5min。之后, 将其倒入 150mL 量筒中静置絮凝。每隔 1min 用注射器小心吸取下清液 3mL, 在分光光度计上测定其 OD_{560} 。以下式计算絮凝率 Y (%) ($OD_{560,0}$ 和 $OD_{560,t}$ 分别表示藻液在初始时间和 t 时刻的吸光度):

$$Y = \frac{OD_{560,0} - OD_{560,t}}{OD_{560,0}} \times 100\%$$

1.6 连续气浮采收实验 取一定量的螺旋藻液, 根据设定的回流比 r , 分别调节蠕动泵和针形阀的流量。然后分别自气浮塔底和中部同时引入溶气水和待分离藻液, 浓缩藻液和分离后的稀藻液则不断被取出。当操作达到稳态时, 分别测定它们的吸光度。以 R 表示细胞采收率 (OD_{in} 、 OD_{out} 分别表示进料和

分离后稀藻液的吸光度):

$$R = \frac{OD_{in} - OD_{out}}{OD_{in}} \times 100\% = \left(1 - \frac{OD_{out}}{OD_{in}} \right) \times 100\%$$

2 结果与分析

2.1 螺旋藻细胞的絮凝行为

如前所述, 一定数量和大小的絮凝体的存在是发生有效黏附进而实现细胞分离的前提。为此, 就螺旋藻液的絮凝特性进行了研究。

不同 PAC 浓度下的絮凝结果如图 2(a) 所示。从中可以看出, 当浓度低于 10mg/kg 时, 即使在最适于 Al^{3+} 发挥絮凝作用的 pH 条件下(约为 6.8—7.5), 絮凝效果仍不理想。只有当 Al^{3+} 浓度提高到 100mg/kg 时, 才具有比较显著的絮凝效果。但此时 Al^{3+} 浓度已是国家饮用水铝残留标准(2mg/kg)的 50 倍。其他一些絮凝剂如硫酸铝和硫酸铝钾, 也具有相似的结果(文中未列)。因此, 从安全性及后处理难易方面考虑, 它们都不宜用作气浮采收过程的藻液絮凝剂。

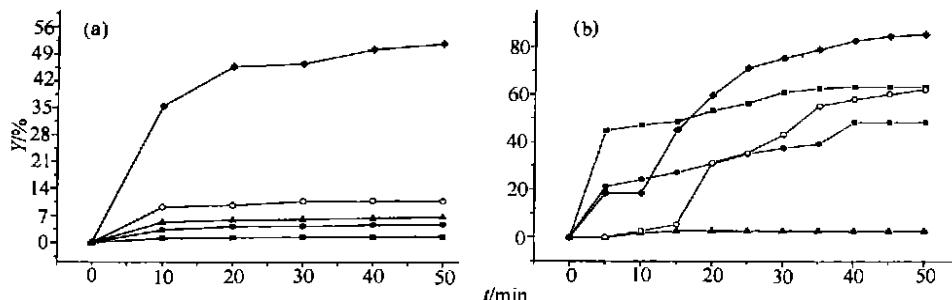


图 2 螺旋藻细胞的絮凝行为

Fig. 2 Flocculation behavior of *Spirulina* cells

(a) Effect of Al^{3+} concentration on flocculation rate of *Spirulina* suspension

■ 1mg/kg ● 2mg/kg ▲ 4mg/kg ○ 10mg/kg ◆ 100mg/kg

(b) Effect of pH value on flocculation rate of *Spirulina* suspension

■ pH=4 ● pH=6 ▲ pH=8 ○ pH=10 ◆ pH=12

研究表明, 藻类和微生物细胞表面是由一些多羟基的有机酸或糖类组成的, 这些组分在水中往往发生离解, 从而使细胞表面带有一定量的电荷。在特定的 pH 或离子条件下, 细胞表面的净电荷将减少甚至为零(可称之为“细胞等电点”), 此时细胞将发生脱稳现象, 并产生自发的絮凝行为^[5]。为此, 实验考察了 pH 值对藻细胞絮凝性能的影响。从图 2(b) 可以看出, 当 pH 值处于适宜螺旋藻细胞生长的范围内时(8—10), 细胞的絮凝表现不佳。而当藻液 pH 值越酸或越碱时(> 10 — 13 或 < 4 — 8), 细胞絮凝

性能良好。而当 pH 低于 3 或高于 13 时, 虽然细胞絮凝得又快又彻底, 但此时藻细胞颜色发黄, 表明其细胞已受到较为严重的“pH 损伤”。

此外, 通过与图 2(a) 比较可以看出, 调节藻液 pH 值方法所能实现的絮凝效果可与加入 100mg/kg 的 Al^{3+} 的效果相当。说明这种絮凝方法不仅是可行的, 而且具有相当的优越性。因此, 在下述气浮分离实验中, 都将采用与此相同的方法先对藻液进行絮凝处理。

2.2 回流比对连续气浮采收效率的影响

实验采用的溶气压力为 0.35MPa。先调节藻液

的pH值为12.0。再根据设定的回流比, 分别调节溶气水和待分离藻液的流量。实验结果见图3。从中可以看出, 随着回流比的增加, 底流液细胞浓度越来越低, 细胞采收率则越来越高。固定藻液流量, 而调节溶气水的流量, 可得到类似的结果(图表未列)。这主要是由于在较高回流比(或气固比)条件下, 单位质量的细胞絮凝体所能捕获的气泡数量越多, 则其所受浮力也越大, 导致被采收的细胞质量越多。可见, 在连续气浮采收过程中, 为达到一定的采收速度和效率, 须保证有一定的回流比。

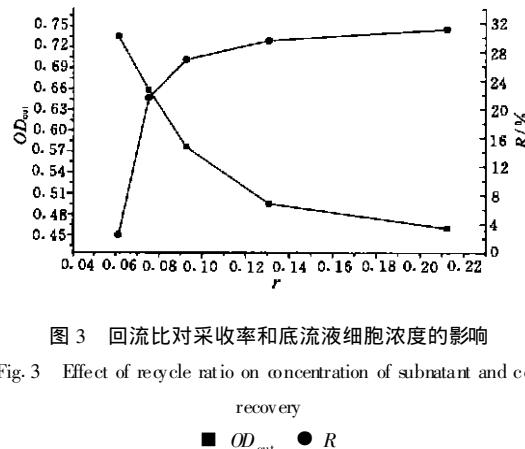


图3 回流比对采收率和底流液细胞浓度的影响

Fig. 3 Effect of recycle ratio on concentration of subnatant and cell recovery

■ OD_{out} ● R

2.3 细胞浓度对连续气浮采收效率的影响

采用10%左右的回流比, 溶气水压力0.35MPa。实验结果见图4。从中可以看出, 随着细胞浓度的降低, 气固比不断增加, 底流液细胞浓度和采收效率则各呈下降和上升趋势。从这个意义上说, 气浮分离过程比较适宜于处理浓度比较低的体系, 这也正是其区别与其他常规固液分离手段的特性和优势所在。

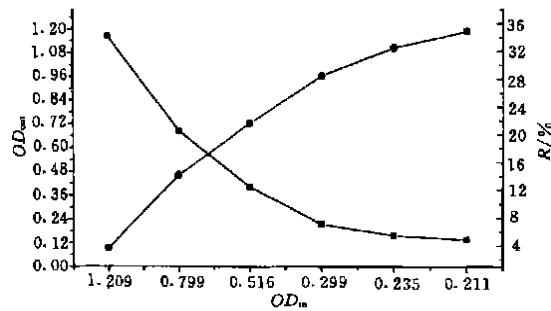


图4 进料浓度对采收率和底流液细胞浓度的影响

Fig. 4 Effect of feeding concentration on concentration of subnatant and cell recovery

■ OD_{out} ● R

2.4 溶气压力和溶气时间对连续气浮采收效率的影响

溶气压力对藻液采收效果的影响如图5所示

(溶气水压力为0.25MPa、0.35MPa和0.45MPa, 回流比10%)。显然, 由于溶气压力的提高, 在同一进料浓度下, 体系的气固比将会上升, 由此提高采收效率, 降低底流液细胞浓度。即相当于藻液在流经该气浮分离反应器后, 得到较高的反应转化率。

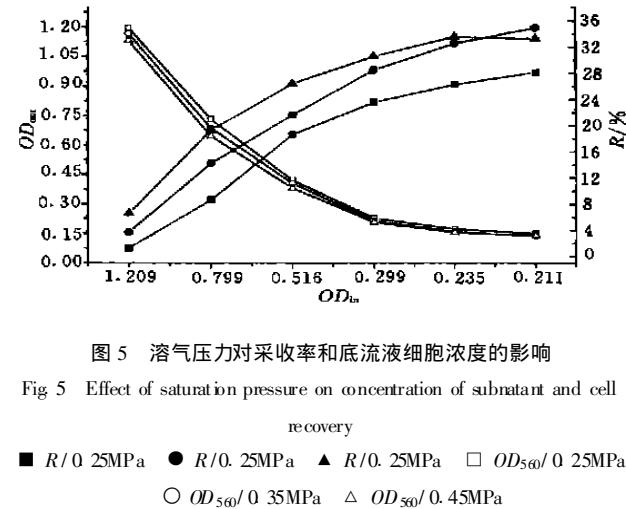


图5 溶气压力对采收率和底流液细胞浓度的影响

Fig. 5 Effect of saturation pressure on concentration of subnatant and cell recovery

■ R/0.25MPa ● R/0.35MPa ▲ R/0.45MPa
□ OD_{out}/0.25MPa ○ OD_{out}/0.35MPa △ OD_{out}/0.45MPa

在0.35MPa溶气压力下, 采用经12h、24h和36h三种溶气时间处理的溶气水, 重复上述实验, 得到了类似的结果(图6)。

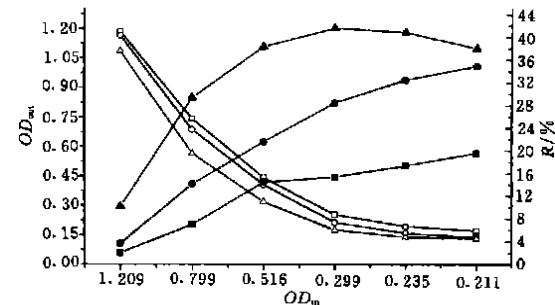


图6 溶气时间对采收率和底流液细胞浓度的影响

Fig. 6 Effect of dissolving time on concentration of subnatant and cell recovery

■ R/12h ● R/24h ▲ R/36h □ OD_{out}/12h ○ OD_{out}/36h

2.5 停留时间对连续气浮采收效率的影响

停留时间 t_r 对连续气浮采收效能的影响见图7。实验是在保持进料浓度不变的情况下, 使进料流量与气浮水流量呈等比例变化(回流比和气固比都保持恒定)条件下进行的。从中可以看出, 适当延长气泡与絮粒体的接触时间, 将有利于提高絮粒体对气泡的捕获概率, 实现较高的气泡利用率和气浮分离效率。但这往往需要以增大大气浮采收池的容积作代价。在保持气浮池体积不变的情况下, 适当提高

反应池的高径比, 也将有助于提高分离效率。

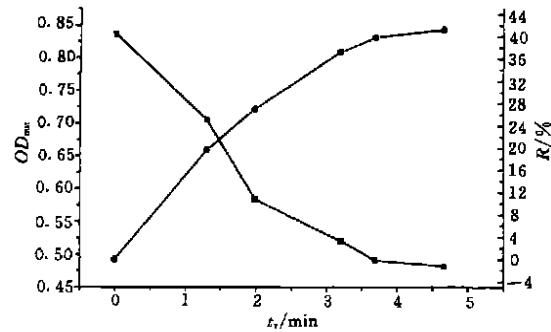


图 7 不同停留时间对采收效率和底流液细
胞浓度的影响

Fig. 7 Cell recovery and concentration of subnatant
as a function of residence time

■ OD_{out} ● R

2.6 连续气浮采收动力学

许多研究表明^[6], 微小颗粒气浮分离的总速率服从一级反应动力学形式, 即颗粒分离(去除或采收)的速率正比于颗粒浓度。可以下式表示:

$$\frac{dC}{dt} = -kC$$

上式的解为

$$C = C_0 \exp^{-kt}$$

其中, k 是一个表征气浮分离体系物化性质、表面特性和操作条件等综合影响的参数。

在连续操作过程中, 由于颗粒在气浮池中存在停留时间分布, 设停留时间分布函数为 $E(t)$, 则有:

$$\int_0^{\infty} E(t) dt = 1$$

对于连续气浮分离体系, 可将其近似视为全混流体系, 则停留时间分布函数为 $E(t)$ 可表示为^[6]

$$E(t) = \frac{1}{\tau} \exp^{-\frac{t}{\tau}}$$

式中, τ 表示平均停留时间, 等于反应器体积与气浮水和进料流量之和的比值。

因此

$$C = \int_0^{\infty} C_0 \exp^{-kt} \left[\frac{1}{\tau} \exp^{-\frac{t}{\tau}} \right] dt$$

解之得(方程 1)

$$C = C_0 \frac{1}{1 + k\tau}$$

因此, 细胞采收率 R 可表示为(方程 2)

$$R = \frac{C_0 - C}{C_0} = 1 - \frac{C}{C_0} = \frac{k\tau}{1 + k\tau}$$

将方程 1 和方程 2 对实验数据进行拟合, 求得速率常数后即可建立连续气浮采收过程的模型。以

图 7 的数据为例, 拟合得到的图形见图 8。可以看出, 模型能够比较准确地描述连续气浮采收过程。

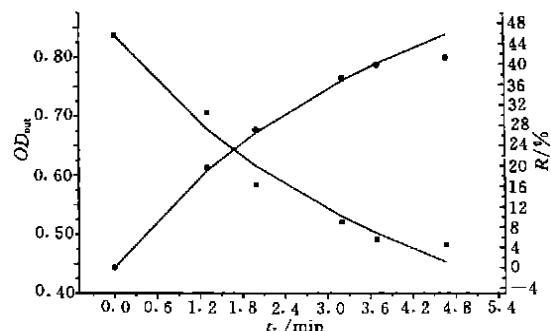


图 8 模拟拟合值与实验数据比较

Fig. 8 Comparison of the simulated values and experimental data

■ OD_{out} ● R

3 结论与讨论

细胞生物量的采收是微藻工业化生产的重要环节。本文以螺旋藻为对象, 研究了微藻细胞连续溶气气浮采收过程中回流比、藻液浓度、溶气时间和溶气压力等操作条件对采收效率的影响, 得到以下结论: ①调节藻液 pH 值为 12.0 可使藻液产生良好的絮凝性能, 有助于气浮分离过程; ②增大回流比可有效地提高气浮采收效率; ③藻液浓度较低时, 气浮采收效率较高, 表明泡载分离技术比较适用于低浓度体系的固液分离; ④提高溶气压力或延长溶气时间, 有利于提高连续气浮采收效率; ⑤提出的连续气浮采收动力学模型可较好地拟合实验结果。

此外, 从以上实验结果可以看出, 气浮法应用于微藻细胞的采收不但可行, 而且还具有其独特的优越性: ①气浮法非常适宜于处理物料浓度较稀、且密度与水体相当的体系, 如微生物细胞、纤维和油脂等。对于那些以彻底清除悬浮物为目的的操作过程(如废水处理), 通过调节气浮过程的运行参数(如添加剂量较大的絮凝剂) 可使净化率达到更高的水平; ②气浮法适宜于处理一些对剪切力敏感的生物产品的分离和浓缩; ③体系易于建立和放大; ④气浮采收后目的产物的含水量虽然与传统固液分离技术大体相当(约为 50%—80%), 但其能耗通常仅为离心法的 40%—65%, 设备维护和运行成本相对较低。因此, 作为一种新颖高效的固液分离技术, 气浮法将在生化过程等领域发挥越来越大的作用。

参考文献:

[1] Ralph J P, Wang S, Kretzmer G, et al. Decolourization and depolymerisation of solubilised low-rank coal by the white rot basidiomycete

phanerochaete chrysosporium [J]. *Applied Microbiology and Biotechnology*, 1994, 42(4): 536—542

[2] Fukushi K, Tambo N. A kinetic model for dissolved air flotation in water and wastewater treatment [J]. *Water Sci. Technol.*, 1995, 31(3—4): 37—47

[3] Vlaski A, van Breemen A N, Alaerts G J. The role of particle size and density in dissolved air flotation and sedimentation [J]. *Water Science and Technology*, 1997, 36(4): 177—189

[4] Becker E W. *Microalgal Biotechnology* [M]. London: Cambridge University Press, 1994, 9—41

[5] Malley J P. The use of selective and direct DAF for removal of particulate contaminants in drinking water treatment [J]. *Water Science and Technology*, 1995, 31(3—4): 49—57

[6] Matsui Y, Fukushi K, Tambo N. Modeling, simulation and operational parameters of dissolved air flotation [J]. *Journal of Water Supply Research and Technology*, 1998, 47(2): 9—20

HARVESTING MICROALGAL CELLS BY CONTINUOUS DISSOLVE AIR FLOTATION

ZENG Wen-Lu¹, LI Baor-Hua², CAI Zhao-Ling¹, CONG Wei¹ and OUYANG Fan²

(State key laboratory of biochemical engineering, Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing, 100080;
Beijing Huada genome research center, Beijing, 100093)

Abstract: Cell biomass harvesting is one of the key segments when culturing microalgae in large scale. Although many traditional methods such as centrifuging, filtration, flocculation and sedimentation can be applied to collect microalgal cells from culturing medium, their recovery efficiencies are all relative low due to low concentration and density of microalgal cells. Dissolved air flotation (DAF) is a novel solid-liquid separation technique, which is characterized of inducing fine gas bubbles mechanically to form bubble-cell aggregates, lowing density of agglomerates and forcing them to liquid surface thus realizing cells harvesting process. In the past decades, DAF has been applying to many biochemical separation fields such as enrichment of fermentation product, but there are little reports of its utilizations in microalgae harvesting. This paper focused mainly upon the feasibility of harvesting microalgal cell biomass by continuous dissolved air flotation with *Spirulina platensis* as model organism, and the influences of a series of operation conditions such as recycle ratio, feeding concentration, saturation pressure and detention time on harvesting efficiency were evaluated in order to provide useful guide for microalgae culturing in industrial scale. The experiment system consisted of air compressor, saturation tank and flotation tower. The saturation tank, which was made of stainless steel, has a volume of 50L, and its safety operation pressure was in the range of 0.1—0.6 MPa. The flotation tank made of acryl glass had a diameter of 3.2 cm and a length of 50.0 cm. Harvesting *Spirulina platensis* by DAF under continuous operation mode was performed as following firstly adjusting the flux rate of peristaltic pump and needle valve respectively according to set recycle ratio, after which simultaneously inducing saturated water and pre-flocculated cell suspension from the bottom and middle part of the flotation tank respectively. The concentrated and diluted cell suspensions were withdrawn from the top and bottom of flotation tower separately, the cell concentration of them were assayed until it reached steady state. The main results obtained from experiments were: ① Good flocculation behavior, which is beneficial to cell recovery, could be deduced by adjusting the pH of the algal suspension to 11.5—12.5. This method to flocculate algal cell was much superior to commonly used cationic polyelectrolyte. Flocculation percentage of *Spirulina* cells reached 80% after 30 min of treatment by pH adjustment, which corresponded to the result of treatment under 100 mg/L of Al³⁺ for 60 min. ② The recovery of *Spirulina* cell increased with the augment of recycle ratio, saturation pressure and detention time. When recycle ratio was elevated from 0.06 to 0.22, harvesting efficiency increased from 2% to 34% after 30 min of treatment. When saturation pressure was raised from 0.25 MPa to 0.35 MPa, cell recovery ascended from 26% to 36% after 30 min of treatment. ③ When feeding concentration was 0.799 and 0.211 (OD₅₆₀), Cell recovery was 14% and 36% respectively after 30 min of treatment. This phenomenon demonstrated that the diluter the feeding concentration was, the high the harvesting efficiency could be, which suggesting that the DAF would be more effective when it is applied to dilute solid-liquid systems. ④ A macro dynamic model that could well fit the experimental data was proposed.

Key words: Dissolved air flotation; *Spirulina*; Microalgae; Harvesting; Dynamics model