留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
周可欣, 文鑫, 邓成, 陈帅龙, 齐兴柱, 骆剑. 豹纹鳃棘鲈体色变异的色素细胞差异分析[J]. 水生生物学报, 2021, 45(5): 1164-1170. DOI: 10.7541/2021.2020.291
引用本文: 周可欣, 文鑫, 邓成, 陈帅龙, 齐兴柱, 骆剑. 豹纹鳃棘鲈体色变异的色素细胞差异分析[J]. 水生生物学报, 2021, 45(5): 1164-1170. DOI: 10.7541/2021.2020.291
ZHOU Ke-Xin, WEN Xin, DENG Cheng, CHEN Shuai-Long, QI Xing-Zhu, LUO Jian. ANALYSIS OF PIGMENT CELLS DIFFERENCE IN BODY COLOR VARIATION OF PLECTROPOMUS LEOPARDUS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1164-1170. DOI: 10.7541/2021.2020.291
Citation: ZHOU Ke-Xin, WEN Xin, DENG Cheng, CHEN Shuai-Long, QI Xing-Zhu, LUO Jian. ANALYSIS OF PIGMENT CELLS DIFFERENCE IN BODY COLOR VARIATION OF PLECTROPOMUS LEOPARDUS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1164-1170. DOI: 10.7541/2021.2020.291

豹纹鳃棘鲈体色变异的色素细胞差异分析

ANALYSIS OF PIGMENT CELLS DIFFERENCE IN BODY COLOR VARIATION OF PLECTROPOMUS LEOPARDUS

  • 摘要: 为了揭示豹纹鳃棘鲈(Plectropomus leopardus)体色变异机制, 研究选取了不同体色个体的样本, 利用石蜡切片、冰冻切片及体视显微镜观察等方法揭示不同皮肤部位色素细胞的类型、分布和数量的差异, 并对应激和非应激状态下色素细胞的变化进行了研究。结果显示, 黑色素细胞在背部和尾部分布比较密集, 在腹部较为稀疏, 黑色个体的黑色素细胞数量较红色个体多; 在应激状态下个体能迅速发生体色变化, 主要由于色素细胞快速扩张和收缩导致。研究为进一步揭示豹纹鳃棘鲈体色变异的分子机制和优良品种选育奠定了基础。

     

    Abstract: Body color is an unique phenotypic trait of fish, which is of great significance to the survival of species, avoiding enemy damage and preventing ultraviolet erosion. Coral reef fishes have rich species diversity and body color variation. Plectropomus leopardus, a coral reef fish, shows significantly different body colors in different environments. Its body color is gorgeous and bright, with high ornamental value and high economic value. Plectropomus leopardus is a valuable material to study the development and variation of body color. In order to reveal the mechanism of fish body color variation, Plectropomus leopardus individuals with different colors were selected. The skin color, types of pigment cells and movement state of pigment cells in different parts were observed by means of paraffin section, frozen section and stereoscopic microscope to compare the red and black Plectropomus leopardus. Then, the skin sections of the individuals with different colors were observed to analyze the influence of the number and distribution of pigment cells on the change of body color. Meanwhile, the difference of pigment cells between stress and non-stress groups was also studied. The results showed that the morphology of melanocytes and erythrocytes was mainly dendritic, and some are punctate. The size of melanocytes was 20—35 μm, and that of erythrocytes was 20—25 μm. In the black individuals, the back epidermis were mainly melanocytes, and the cells were zonal distribution. In the abdomen epidermis of the black individuals, a large number of melanocytes were observed. While in the tail of the black individuals, a large number of melanocytes were mainly distributed, the cell density was the largest, some cells were stacked distribution, and the tissue color was the deepest. In the red individuals, the dorsal epidermis was mainly composed of red pigment cells. In the abdominal epidermis, only red pigment cells were observed, with a small number of cells scattered in the tissues and the lightest color. In the tail of the red individuals, red pigment cells were widely distributed, with a block distribution, and a small number of melanocytes were observed in the tail epidermis. In the stress group, body color changed quickly and the granular pigment cells were smaller and darker than those in non-stress group, which was mainly due to the rapid expansion and contraction of pigment cells. This research will lay the foundation for further discovery of the development mechanism of body color formation of Plectropomus leopardus, and also provide theoretical guidance for the breeding.

     

/

返回文章
返回