TEMPERATURE ON DIV1 INFECTION IN MACROBRACHIUM ROSENBERGII AND TRANSCRIPTOMIC ANALYSIS
-
摘要:
为探究温度对罗氏沼虾(Macrobrachium rosenbergii)感染十足目虹彩病毒1 (Decapod iridescent virus 1, DIV1)的影响及调控机制, 研究设置5组不同温度(26、28、30、32、34℃)对罗氏沼虾人工感染DIV1, 并统计其存活率, 结果显示温度34℃能够抑制罗氏沼虾体内的病毒复制, 减少死亡并延长其存活时间。对感染DIV1 24h和72h的罗氏沼虾肝胰腺、鳃及肌肉进行病毒载量测定, 结果表明感染DIV1的罗氏沼虾在72h内病毒迅速增殖, 但当水温升高至30℃及更高温度时其体内的病毒载量明显降低。此外, 采集罗氏沼虾不同温度下感染DIV1的肝胰腺进行转录组学分析, 结果表明共有8483个不同差异表达基因, 富集分析发现基因主要富集在花生四烯酸代谢(Arachidonic acid metabolism)、糖酵解/糖异生(Glycolysis / Gluconeogenesis)、α-亚油酸代谢(alpha-Linolenic acid metabolism)等与Warburg效应相关的代谢通路中, 推测这些基因和通路可能与病毒感染机制密切相关。对罗氏沼虾感染DIV1后的免疫基因CAT、Cu/ZnSOD、CTL、ACP的表达水平进行测定, 结果发现当温度为32℃时这些免疫基因的表达量显著高于其他温度, 表明高温能够促进罗氏沼虾的免疫基因表达量增加以抵御病毒入侵。研究通过分析不同温度对DIV1感染罗氏沼虾的影响, 初步揭示了温度对病毒复制的影响及调控机制, 为深入探究病毒感染的分子机制和开发抗病毒免疫技术奠定一定的基础。
Abstract:To investigate the effect and regulatory mechanism of temperature on Macrobrachium rosenbergii infected with Decapod iridescent virus 1 (DIV1), we set up five experimental groups at different temperatures (26, 28, 30, 32, and 34℃) for artificial DIV1 infection in this study, and calculated its survival rate. The results showed that the temperature of 34℃ significantly inhibited virus replication in M. rosenbergii, decreased mortality, and extended survival duration. The viral load in the hepatopancreas, gill, and muscle of M. rosenbergii infected with DIV1 was determined at 24h and 72h. The results found that the virus rapidly proliferated within 72hours, however, a notable reduction in the viral load decreased significantly when the water temperature increased to 30℃ or above. In addition, transcriptomic analysis was conducted on hepatopancreas of M. rosenbergii infected with DIV1 at different temperatures, and a total of 8483 differentially expressed genes were identified. Enrichment analysis revealed that these differentially expressed genes were mainly enriched in Arachidonic acid metabolism, Glycolysis/Gluconeogenesis, alpha-Linolenic acid metabolism and other metabolic pathways related to Warburg effect. It is speculated that these pathways and genes may be closely related to the mechanism of viral infection. Furthermore, the expression levels of immune genes CAT, Cu/ZnSOD, CTL, and ACP in M. rosenbergii infected with DIV1, revealing significantly higher expression at temperature of 32℃ compared to other temperatures. This indicates that high temperature can promote an increase in immune gene expression in M. rosenbergii to resist virus invasion. This study provides a comprehensive analysis of the temperature effects on DIV1 infection in M. rosenbergii, elucidating the effects and regulatory mechanism of temperature on virus replication. These findings lay a foundation for further exploration into the molecular mechanism of virus infection and the development of antiviral immune technology.
-
-
图 3 不同温度下感染DIV1 24h (A)和72h (B)罗氏沼虾的肝胰腺、鳃和肌肉组织中病毒载量的变化
不同字母表示组间差异显著(P<0.05)
Figure 3. Changes of viral load in hepatopancreas, gill, and muscle tissues of M. rosenbergii infected with DIV1 at different temperatures for 24h (A) and 72h (B)
Different letters indicate significant differences in groups (P<0.05)
表 1 罗氏沼虾感染DIV1的转录组测序数据(过滤后)
Table 1 Transcriptome analysis data of hepatopancreas of M. rosenbergii infected with DIV1 (after filtering)
Sample Raw read number Trimmed read number Trimmed bases Raw Q20 rate (%) Raw Q30 rate (%) Useful read (%) C1 40656152 40270600 6071846179 97.97 93.98 99.05 C2 45844954 45362930 6839330599 97.82 93.66 98.95 C3 41687698 41320418 6229797577 98.09 94.29 99.12 T26-1 50214336 49673918 7484682542 98.13 94.42 98.92 T26-2 52973998 52477322 7911017426 98.38 95.04 99.06 T26-3 48144434 47595962 7173781641 98.08 94.32 98.86 T28-1 51755682 51295874 7733108510 98.32 94.85 99.11 T28-2 57000770 56368302 8499234370 98.12 94.38 98.89 T28-3 47886244 47449286 7153565373 98.18 94.39 99.09 T30-1 53964458 53491966 8062804860 98.45 95.21 99.12 T30-2 45954522 45543808 6865548233 98.31 94.81 99.11 T30-3 52823954 52240446 7873885256 98.18 94.6 98.9 T32-1 53489536 53001530 7991157162 98.36 94.95 99.09 T32-2 56704528 56141238 8461995874 98.32 94.91 99.01 T32-3 54654938 54195174 8171456679 98.45 95.17 99.16 T34-1 50771510 50347114 7589411546 98.46 95.18 99.16 T34-2 49617766 49172430 7411627603 98.45 95.24 99.10 T34-3 49058398 48590290 7324474436 98.30 94.83 99.05 表 2 转录组测序数据与参考基因组的比对结果
Table 2 The alignment results with transcriptome analysis data and the reference genome
Sample Clean reads Total mapped
(%)Multiple mapped
(%)Uniquely
mapped (%)Mapped to
gene (%)Mapped to
InterGene (%)Mappe to
exon (%)C1 40270600 95.25 15.48 84.52 81.91 18.09 91.33 C2 45362930 95.69 15.57 84.43 81.78 18.22 91.46 C3 41320418 95.47 15.28 84.72 83.02 16.98 91.56 T26-1 49673918 94.19 14.86 85.14 68.91 31.09 87.51 T26-2 52477322 95.51 14.69 85.31 77.01 22.99 88.87 T26-3 47595962 95.23 16.36 83.64 73.20 26.80 86.50 T28-1 51295874 95.61 15.09 84.91 77.57 22.43 88.77 T28-2 56368302 95.70 17.06 82.94 77.30 22.70 89.94 T28-3 47449286 96.09 16.52 83.48 81.28 18.72 90.47 T30-1 53491966 95.36 13.22 86.78 81.49 18.51 90.10 T30-2 45543808 95.28 13.89 86.11 79.79 20.21 90.35 T30-3 52240446 95.07 20.53 79.47 72.44 27.56 88.57 T32-1 53001530 95.58 12.10 87.90 80.67 19.33 91.18 T32-2 56141238 95.92 20.38 79.62 79.01 20.99 90.01 T32-3 54195174 95.60 11.92 88.08 82.18 17.82 91.41 T34-1 50347114 95.47 11.43 88.57 81.52 18.48 90.96 T34-2 49172430 94.74 11.30 88.70 78.30 21.70 91.07 T34-3 48590290 95.00 13.84 86.16 80.25 19.75 91.06 表 3 不同温度感染组的富集通路及基因(部分)
Table 3 Enrichment pathways and genes in the infected groups at different temperatures.(Part)
Sample Up Down Total Enrichment pathway Enrichment gene C-vs-T26 499 787 1,286 Pentose and glucuronate interconversions DER、RDH、
Bco、HPSE、
art、CYP2、
ACP、Gba、
NAGA、PSAP、
CROT、Crot、
PEX、CROTRetinol metabolism Glycosaminoglycan degradation Ascorbate and aldarate metabolism Biosynthesis of unsaturated fatty acids Arachidonic acid metabolism Lysosome Peroxisome PPAR signaling pathway C-vs-T28 404 519 923 Retinol metabolism RDH、Bco、
CYP、art、
Cyp、UGP、
Gale、CAT、
SOD、Ctl、
Aga、Tspan4、
PicotBiosynthesis of unsaturated fatty acids Arachidonic acid metabolism Amino sugar and nucleotide sugar metabolism alpha-Linolenic acid metabolism Peroxisome Lysosome PPAR signaling pathway C-vs-T30 816 998 1,814 Amino sugar and nucleotide sugar metabolism PGM、Uap、
GALE、UGP、
Ctl、ANPEP、
Gclc、Casp、
GPX、SOD、
CYP、Pla、
RPS、RPLRetinol metabolism Glutathione metabolism Fructose and mannose metabolism Arachidonic acid metabolism Starch and sucrose metabolism Biosynthesis of unsaturated fatty acids Lysosome Peroxisome Ribosome C-vs-T32 1,148 1243 2,391 Ribosome AMY、TSPO、
Lrp、SLC、
CPA、PRCP、
Acp、PCK、
GMPPB、Ctl、
Gfus、PyK、Carbohydrate digestion and absorption Cholesterol metabolism Protein digestion and absorption PPAR signaling pathway Adipocytokine signaling pathway Amino sugar and nucleotide sugar metabolism Glycolysis / Gluconeogenesis Starch and sucrose metabolism Retinol metabolism C-vs-T34 1,105 964 2,069 Ribosome biogenesis in eukaryotes Rpp、UTP、
POP、REXO、
NOB、POLR、
RPI、HPSE、
Galns、LIPF、
TSPO、Tace、
NotchRNA polymerase RNA degradation Amino sugar and nucleotide sugar metabolism Arachidonic acid metabolism Glycosaminoglycan degradation Cytosolic DNA-sensing pathway Cholesterol metabolism Lysosome Notch signaling pathway -
[1] Qiu L, Chen X, Zhao R H, et al. Description of a natural infection with decapod iridescent virus 1 in farmed giant freshwater prawn, Macrobrachium rosenbergii [J]. Viruses, 2019, 11(4): 354. doi: 10.3390/v11040354
[2] 绳秀珍, 吴明顺, 叶海斌, 等. 十足目虹彩病毒1的研究进展 [J]. 水产学报, 2022, 46(5): 721-729.] Sheng X Z, Wu M S, Ye H B, et al. Research progresses on Decapoda iridescent virus 1 [J]. Journal of Fisheries of China, 2022, 46(5): 721-729. [
[3] Le Moullac G, Haffner P, Environmental factors affecting immune responses in Crustacea [J]. Aquaculture, 2000, 191 ((1/2/3): 121-131.
[4] 罗淑娅. 水温对对虾白斑综合症病毒(WSSV)感染克氏螯虾的影响 [D]. 厦门: 国家海洋局第三海洋研究所, 2010: 27-53.] Luo S Y. Effect of water temperature on the infection of White spotsyndrome virus (WSSV) in Procambarus clarki [D]. Xiamen: Third Institute of Oceanography, Ministry of Natural Resources, 2010: 27-53. [
[5] 冯亚萍, 孔杰, 罗坤, 等. 不同温度下凡纳滨对虾和中国明对虾对白斑综合征病毒(WSSV)耐受性比较 [J]. 渔业科学进展, 2018, 39(2): 120-127.] Feng Y P, Kong J, Luo K, et al. The difference of tolerance to white spot syndrome virus between litopenaeus vannamei and fenneropenaeus chinensis at different temperatures [J]. Progress in Fishery Sciences, 2018, 39(2): 120-127. [
[6] Jiravanichpaisal P, Söderhäll K, Söderhäll I. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish [J]. Fish & Shellfish Immunology, 2004, 17(3): 265-275.
[7] Guo X M, Qiu L, Gao W, et al. Radical thermal therapy against infection with decapod iridescent virus 1 (DIV1) [J]. Aquaculture, 2022, 561: 738636. doi: 10.1016/j.aquaculture.2022.738636
[8] 何子豪. 多组学联合分析揭示十足目虹彩病毒1感染下日本囊对虾肠道的应答机制 [D]. 湛江: 广东海洋大学, 2021: 5-79.] He Z H. Multiomics joint analysis reveals the response mechanism of Penaeus japonicus’s intestine infected by decapod iridovirus 1 [D]. Zhanjiang: Guangdong Ocean University, 2021: 5-79. [
[9] Xue S, Liu Y, Zhang Y, et al. Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection [J]. PLoS One, 2013, 8(10): e76718. doi: 10.1371/journal.pone.0076718
[10] 廖栩峥. 凡纳滨对虾对十足目虹彩病毒1感染的应答机制研究 [D]. 湛江: 广东海洋大学, 2020: 6-52.] Liao X Z. Study on the response mechanism of Litopenaeus vannamei to decapod iridovirus 1 infection [D]. Zhanjiang: Guangdong Ocean University, 2020: 6-52. [
[11] 刘小央. 罗氏沼虾十足目虹彩病毒感染模型的建立及抗病毒药物筛选 [D]. 长春: 吉林农业大学, 2023: 12-48.] Liu X Y. Establishment of infection model of Macrobrachium rosenbergii decapod iridovirus and screening of antiviral drugs [D]. Changchun: Jilin Agricultural University, 2023: 12-48. [
[12] 张晶晶, 陈斌, 卓玉琛, 等. 大口黑鲈头肾抗大口黑鲈虹彩病毒(LMBV)应答的转录组学分析 [J]. 中国农学通报, 2024, 40(35): 148-155.] doi: 10.11924/j.issn.1000-6850.casb2024-0440 Zhang J J, Chen B, Zhuo Y C, et al. Transcriptome Analysis of Head Kidney Anti-LMBV Responses in Largemouth Bass (Micropterus salmoides) [J]. Chinese Agricultural Science Bulletin, 2024, 40(35): 148-155. [ doi: 10.11924/j.issn.1000-6850.casb2024-0440
[13] 包志明, 邹永烽, 曹攀辉, 等. 高温胁迫对克氏原螯虾肠道组织形态与转录组的影响 [J]. 南方水产科学, 2025, 21(1): 105-117.] doi: 10.12131/20240161 Zhi M B, Yong F Z, Pan H C, et al. Effect of high temperature stress on intestinal tissues morphology and transcriptome of Procambarus clarkii [J]. South China Fisheries Science, 2025, 21(1): 105-117. [ doi: 10.12131/20240161
[14] Qiu L, Chen M M, Wan X Y, et al. Characterization of a new member of Iridoviridae, Shrimp hemocyte iridescent virus (SHIV), found in white leg shrimp (Litopenaeus vannamei) [J]. Scientific Reports, 2017, 7(1): 11834. doi: 10.1038/s41598-017-10738-8
[15] 孙卫芳, 黄小帅, 胡晓娟, 等. 广东沿海地区凡纳滨对虾EHP、VPAHPND和SHIV感染情况调查与分析 [J]. 南方农业学报, 2019, 50(10): 2343-2349.] doi: 10.3969/j.issn.2095-1191.2019.10.27 Sun W F, Huang X S, Hu X J, et al. Detection and analysis of Enterocytozoon hepatopenaei(EHP), Vibrio parahaemolyticus acute hepatopancreatic necrosis disease (VPAHPND) and shrimp hemocyte iridescent virus (SHIV)from Litopenaeus vannamei in coastal areas of Guangdong Province [J]. Journal of Southern Agriculture, 2019, 50(10): 2343-2349. [ doi: 10.3969/j.issn.2095-1191.2019.10.27
[16] 郑晓叶, 许俊榆, 郑天伦, 等. 浙江省南美白对虾苗种五种流行病病原检测与分析 [J]. 中国动物检疫, 2018, 35(8): 17-22.] doi: 10.3969/j.issn.1005-944X.2018.08.005 Zheng X Y, Xu J Y, Zheng T L, et al. Detection and analysis on five kinds of pathogens in white shrimp (Penaeus vannamei) in Zhejiang Province [J]. China Animal Health Inspection, 2018, 35(8): 17-22. [ doi: 10.3969/j.issn.1005-944X.2018.08.005
[17] 李侃, 罗淑娅, 徐丽美. 温度影响对虾白斑综合症病毒增殖机制的研究 [J]. 应用海洋学学报, 2013, 32(1): 61-66.] Li K, Luo S Y, Xu L M. A study on the mechanism of temperature impact on the proliferation of white spot syndrome virus (WSSV) [J]. Journal of Applied Oceanography, 2013, 32(1): 61-66. [
[18] Granja C B, Aranguren L F, Vidal O M, et al. Does hyperthermia increase apoptosis in white spot syndrome virus (WSSV)-infected Litopenaeus vannamei? [J]. Diseases of Aquatic Organisms, 2003, 54(1): 73-78.
[19] Ji P F, Yao C L, Wang Z Y. Immune response and gene expression in shrimp (Litopenaeus vannamei) hemocytes and hepatopancreas against some pathogen-associated molecular patterns [J]. Fish & Shellfish Immunology, 2009, 27(4): 563-570.
[20] Su M A, Huang Y T, Chen I T, et al. An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway [J]. PLoS Pathogens, 2014, 10(6): e1004196. doi: 10.1371/journal.ppat.1004196
[21] 林家俞, 秦洁洁, 蒋玲曦. 肿瘤微环境中免疫细胞的代谢研究进展 [J]. 上海交通大学学报(医学版), 2022, 42(8): 1122-1130.] Lin J Y, Qin J J, Jiang L X. Progress in metabolism of the immune cells in tumor microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1122-1130. [
[22] 杨志刚, 赵雪健, 成永旭. 镉和低pH胁迫对中华绒螯蟹免疫应答及相关基因表达的影响 [J]. 上海海洋大学学报, 2022, 31(2): 373-383.] Yang Z G, Zhao X J, Cheng Y X. Effects of cadmium and low pH stress on immune response and expression of related genes in the Chinese Mitten Crab(Eriocheir sinensis) [J]. Journal of Shanghai Ocean University, 2022, 31(2): 373-383. [
[23] 刘鹏飞, 刘庆慧, 吴垠, 等. 白斑综合征病毒感染凡纳滨对虾(Litopenaeus vannamei)TRx、LvP38、CAT、POD基因的表达 [J]. 渔业科学进展, 2015, 36(4): 89-93.] doi: 10.11758/yykxjz.20150412 Liu P F, Liu Q H, Wu Y, et al. Expression of TRx, LvP38, CAT and POD gene of litopenaeus vannamei response to WSSV infection [J]. Progress in Fishery Sciences, 2015, 36(4): 89-93. [ doi: 10.11758/yykxjz.20150412
[24] Ni D, Song L, Gao Q, et al. The cDNA cloning and mRNA expression of cytoplasmic Cu, Zn superoxide dismutase (SOD) gene in scallop Chlamys farreri [J]. Fish & Shellfish Immunology, 2007, 23(5): 1032-1042.
[25] Ren Q, Xu J, Yu Y, et al. C-type lectins containing an immunoglobulin domain have an anti-WSSV function in Procambarus clarkii [J]. Aquaculture, 2025, 595: 741620. doi: 10.1016/j.aquaculture.2024.741620
[26] 李红岩, 张祥敏, 杨帅奇. 海洋生物C型凝集素研究进展 [J]. 中国海洋大学学报(自然科学版), 2020, 50(9): 113-119.] Hong Y i, Xiang M Z, Shuai Q Y. Research Progress of C-Type Lectin in Marine Organisms [J]. Periodical of Ocean University of China, 2020, 50(9): 113-119. [
[27] 黄萌萌, 雷宇桐, 王高杨, 等. 三疣梭子蟹(Portunus trituberculatus)含新型关键识别基序DPY/WTD单结构域C型凝集素PtCTL-6的免疫功能研究 [J]. 海洋与湖沼, 2019, 50(6): 1302-1308.] doi: 10.11693/hyhz20190700131 Huang M M, Lei Y T, Wang G Y, et al. Characterization of single crd containing c-type lectin with novel motif DPY/WTD from Portunus trituberculatus [J]. Ocean and Lake, 2019, 50(6): 1302-1308. [ doi: 10.11693/hyhz20190700131
[28] 敖士齐, 翟乾, 纪鹏, 等. 亚甲基蓝对罗氏沼虾组织结构、抗氧化系统及免疫能力的影响 [J]. 淡水渔业, 2023, 53(1): 49-56.] doi: 10.3969/j.issn.1000-6907.2023.01.007 Ao S Q, Zhai Q, Ji P, et al. Effects of methylene blue on histological structure, antioxidant system and immune capacity in Macrobrachium rosenbergii [J]. Freshwater Fisheries, 2023, 53(1): 49-56. [ doi: 10.3969/j.issn.1000-6907.2023.01.007
[29] 张明明, 王雷, 王宝杰, 等. 凡纳滨对虾碱性磷酸酶和酸性磷酸酶基因的克隆、表达及盐度应答效应 [J]. 海洋科学, 2017, 41(1): 83-95.] doi: 10.11759//hykx20160112002 Zhang M M, Wang L, Wang B J, et al. cDNA cloning and gene expressionin response to salinity of alkaline phosphatase and acid phosphatase from Litopenaeus vannamei [J]. Marine Sciences, 2017, 41(1): 83-95. [ doi: 10.11759//hykx20160112002
-
期刊类型引用(40)
1. 周旭东,李其林,罗俊,殷德勇,李尚科. 人工湿地净化技术在微污染河流生态修复中的应用研究. 环境科学与管理. 2024(09): 78-82 . 百度学术
2. 陈尧,倪金雷,汤文艳,章昱斌. 人工湿地对封闭水体净化的研究. 中国新技术新产品. 2023(05): 135-137 . 百度学术
3. 刘岚昕,于素晗,李娜,王赫,冷雪飞,包震宇,李崇. 内电解-沉水植物-微生物耦合体系处理黑臭水体效能及机制研究. 环境污染与防治. 2023(06): 796-804 . 百度学术
4. 陈亮东,江达均,关歆,杨金兰,谷阳光. 华南地区尾水治理设施养殖场水质综合评价. 淡水渔业. 2023(04): 106-112 . 百度学术
5. 朱欣乐,陈思宇,杨正,刘晶,黄元昊,彭英杰,兰时乐. 一株氨化芽孢细菌的分离鉴定及氨化培养基优化. 湖南生态科学学报. 2022(01): 34-43 . 百度学术
6. 杨玲丽,马琳,刘伟,褚一凡,谭启洋,周巧红,吴振斌,贺锋. 铜和磺胺甲唑复合污染下人工湿地对禽畜养殖尾水的处理效果. 水生生物学报. 2022(10): 1484-1493+1592 . 本站查看
7. 戴天杰,魏攀龙,潘杨,司壮壮,王静. 苏州市景观水体表观污染类型识别及特征指标筛选. 水资源保护. 2021(02): 141-147 . 百度学术
8. 赵诣. 有机磷灭蚊剂投放浓度和时间对水体总磷的影响. 水资源保护. 2021(04): 117-120+126 . 百度学术
9. 王翔,朱召军,张金菊,张瑜倩,李鸿,张红川. 异位组合人工湿地用于河流水质净化. 中国给水排水. 2021(14): 137-141 . 百度学术
10. 潘超群,胡齐福,牛会星,黄立波,张元赏,葛春亮. 曝气生物膜反应器处理受污染河道水体实验研究. 水处理技术. 2020(10): 124-127 . 百度学术
11. 莫斌,余谦. 桂林乌金河黑臭水体河道末端砾间接触氧化和人工快滤联合治理技术研究. 大众科技. 2020(07): 23-26 . 百度学术
12. 刘国臣,王福浩,梁家成,佘宗莲. 不同水位垂直流人工湿地中植物及微生物特征. 中国海洋大学学报(自然科学版). 2019(02): 98-105 . 百度学术
13. 王红,阮爱东,徐洁. 太湖氨化功能菌群的分布及其有机氮降解条件. 河南科学. 2019(03): 439-446 . 百度学术
14. 房金秀,谢文霞,朱玉玺,沈雷,马玉坤,李佳,姜智绘,李叙勇,赵洪涛. 合流制面源污染传输过程与污染源解析. 环境科学. 2019(06): 2705-2714 . 百度学术
15. 王红,徐洁,阮爱东,徐耀飞,韦琪,李思言. 两株氨化菌的筛选及降解效果初步研究. 地球环境学报. 2019(05): 487-495 . 百度学术
16. 谭小川,肖婧,洪雅,覃建军. 3种不同填料对城市黑臭水体的修复效果比较. 环境科学与技术. 2018(S1): 178-183 . 百度学术
17. 宁梓洁,王鑫. 黑臭水体治理技术研究进展. 环境工程. 2018(08): 26-29+73 . 百度学术
18. 柏珊珊,韩超,韩帮军,姚杰,韩雅红. 哈尔滨信义沟水环境污染现状及治理研究. 哈尔滨商业大学学报(自然科学版). 2018(03): 307-310 . 百度学术
19. 盛建海,韩涛,王骥腾,郑普强,杨敏,徐含颖. 源自生物絮团产絮凝剂的异养硝化-好氧反硝化菌xt1的鉴定及其脱氮特性. 海洋与湖沼. 2018(02): 375-383 . 百度学术
20. 万博阳,王全金,戚晓波. 多级人工湿地-塘组合系统去除污染物研究. 长江科学院院报. 2017(03): 25-29 . 百度学术
21. 王昱,王浩. 不同生态修复手段对硝态氮和铵态氮脱除机制的影响. 环境科技. 2017(05): 1-5 . 百度学术
22. 刘亚樵,韩学军,谭好臣,陆洪省. 一株高效氨氮降解菌的分离及其氨氮去除能力分析. 山东科技大学学报(自然科学版). 2017(02): 70-75 . 百度学术
23. 蔺凌云,尹文林,潘晓艺,袁雪梅,姚嘉赟,徐洋,王超,沈锦玉. 自然微生物挂膜处理水产养殖废水的效果及微生物群落分析. 水生生物学报. 2017(06): 1327-1335 . 本站查看
24. 付新喜,吴晓芙,陈永华,奚成业,周鑫. 季节变化对组合湿地污水处理系统净化力的影响. 中南林业科技大学学报. 2017(09): 124-128 . 百度学术
25. 魏佳明,崔丽娟,李伟,雷茵茹,于菁菁,秦鹏,穆泳林,梁钊瑞. 表流湿地细菌群落结构特征. 环境科学. 2016(11): 4357-4365 . 百度学术
26. 王全金,万博阳,戚晓波. 污水停留时间对多级人工湿地塘组合系统除氮的影响. 科学技术与工程. 2016(05): 245-249 . 百度学术
27. 刘志伟,周美修,宋俊玲,郭志伟. 复合垂直流人工湿地污染物去除特征及微生物群落多样性分析. 环境工程. 2014(06): 38-42 . 百度学术
28. 翁益松,刘朝飞,陈钺. PKA人工湿地技术在生活污水处理中的试验研究. 环境污染与防治. 2014(06): 47-50 . 百度学术
29. 杜彩艳,段宗颜,雷宝坤,胡万里,陈拾华,金桂梅. 我国人工湿地处理污染水体技术研究进展(英文). Agricultural Science & Technology. 2014(02): 310-320 . 百度学术
30. 朱文涛,王永向,刘龙龙. 复合垂直流人工湿地污染物去除特点及微生物群落多样性PCR-TGGE分析. 上海环境科学. 2014(02): 73-77+83 . 百度学术
31. 郑佳佳,张小平,胡彩虹,李卫芬. 斯氏假单胞菌对草鱼养殖水体水质的调控作用. 渔业现代化. 2013(03): 5-9 . 百度学术
32. 陈石,陈翔,李月,王吟,吴凡. 可生物降解改性填料的制备及其对养殖废水处理效果研究. 渔业现代化. 2013(05): 18-22+68 . 百度学术
33. 赵艳,李锋民,王昊云,李扬,王震宇. 不同结构好氧/厌氧潜流人工湿地微生物群落代谢特性. 环境科学学报. 2012(02): 299-307 . 百度学术
34. 董金凯,贺锋,肖蕾,黄丹萍,吴振斌. 人工湿地生态系统服务综合评价研究. 水生生物学报. 2012(01): 109-118 . 本站查看
35. 郑佳佳,沈涛,傅罗琴,邓斌,李卫芬. 一株硝化反硝化菌的筛选鉴定及反硝化特性研究. 水生生物学报. 2012(01): 161-167 . 本站查看
36. 郑喜春,郭晓军,姚娜,曹晓璐,李潞滨,朱宝成. 反硝化芽孢杆菌的筛选鉴定及反硝化特性. 生态学杂志. 2012(06): 1447-1452 . 百度学术
37. 盛辛辛,赵凤岐,曹谨玲,刘青. 不同级配基质垂直流人工湿地对中水的净化效果分析. 山西农业大学学报(自然科学版). 2012(01): 63-69 . 百度学术
38. 赵艳,李锋民,王昊云,李扬,张明全,王震宇. 好氧/厌氧潜流湿地微生物多样性与净化能力的关系. 环境科学学报. 2011(11): 2423-2431 . 百度学术
39. 周元清,李秀珍,李淑英,唐莹莹,辛在军,贾悦. 不同类型人工湿地微生物群落的研究进展. 生态学杂志. 2011(06): 1251-1257 . 百度学术
40. 王娟,戴习林,宋增福,潘迎捷,张庆华. 一株氨化细菌的分离、鉴定及氨氮降解能力的初步分析. 水生生物学报. 2010(06): 1198-1201 . 本站查看
其他类型引用(40)