菜粕替代鱼粉对大鳞副泥鳅生长性能、抗氧化能力和肠道形态的影响

潘杰, 李雅萍, 陈琪, 刘文硕, 余传启, 周秋白, 王自蕊

潘杰, 李雅萍, 陈琪, 刘文硕, 余传启, 周秋白, 王自蕊. 菜粕替代鱼粉对大鳞副泥鳅生长性能、抗氧化能力和肠道形态的影响[J]. 水生生物学报, 2025, 49(6): 062513. DOI: 10.7541/2025.2024.0463
引用本文: 潘杰, 李雅萍, 陈琪, 刘文硕, 余传启, 周秋白, 王自蕊. 菜粕替代鱼粉对大鳞副泥鳅生长性能、抗氧化能力和肠道形态的影响[J]. 水生生物学报, 2025, 49(6): 062513. DOI: 10.7541/2025.2024.0463
PAN Jie, LI Ya-Ping, CHEN Qi, LIU Wen-Shuo, YU Chuan-Qi, ZHOU Qiu-Bai, WANG Zi-Rui. RAPESEED MEAL REPLACEMENT FOR FISHMEAL ON GROWTH PERFORMANCE, ANTIOXIDANT CAPACITY, AND INTESTINAL MORPHOLOGY OF PARAMISGURNUS DABRYANUS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(6): 062513. DOI: 10.7541/2025.2024.0463
Citation: PAN Jie, LI Ya-Ping, CHEN Qi, LIU Wen-Shuo, YU Chuan-Qi, ZHOU Qiu-Bai, WANG Zi-Rui. RAPESEED MEAL REPLACEMENT FOR FISHMEAL ON GROWTH PERFORMANCE, ANTIOXIDANT CAPACITY, AND INTESTINAL MORPHOLOGY OF PARAMISGURNUS DABRYANUS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(6): 062513. DOI: 10.7541/2025.2024.0463
潘杰, 李雅萍, 陈琪, 刘文硕, 余传启, 周秋白, 王自蕊. 菜粕替代鱼粉对大鳞副泥鳅生长性能、抗氧化能力和肠道形态的影响[J]. 水生生物学报, 2025, 49(6): 062513. CSTR: 32229.14.SSSWXB.2024.0463
引用本文: 潘杰, 李雅萍, 陈琪, 刘文硕, 余传启, 周秋白, 王自蕊. 菜粕替代鱼粉对大鳞副泥鳅生长性能、抗氧化能力和肠道形态的影响[J]. 水生生物学报, 2025, 49(6): 062513. CSTR: 32229.14.SSSWXB.2024.0463
PAN Jie, LI Ya-Ping, CHEN Qi, LIU Wen-Shuo, YU Chuan-Qi, ZHOU Qiu-Bai, WANG Zi-Rui. RAPESEED MEAL REPLACEMENT FOR FISHMEAL ON GROWTH PERFORMANCE, ANTIOXIDANT CAPACITY, AND INTESTINAL MORPHOLOGY OF PARAMISGURNUS DABRYANUS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(6): 062513. CSTR: 32229.14.SSSWXB.2024.0463
Citation: PAN Jie, LI Ya-Ping, CHEN Qi, LIU Wen-Shuo, YU Chuan-Qi, ZHOU Qiu-Bai, WANG Zi-Rui. RAPESEED MEAL REPLACEMENT FOR FISHMEAL ON GROWTH PERFORMANCE, ANTIOXIDANT CAPACITY, AND INTESTINAL MORPHOLOGY OF PARAMISGURNUS DABRYANUS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(6): 062513. CSTR: 32229.14.SSSWXB.2024.0463

菜粕替代鱼粉对大鳞副泥鳅生长性能、抗氧化能力和肠道形态的影响

基金项目: 

国家现代农业产业技术体系(CARS-46-03B); 抚州市“揭榜挂帅”项目(抚科计字[2022]8号); 江西省名特优水产品产业技术体系资助

详细信息
    作者简介:

    潘杰(1998—), 男, 在读硕士; 研究方向为水产动物营养与免疫研究。E-mail: china-pj1027@outlook.com

    通信作者:

    周秋白(1965—), 男, 教授, 博士生导师; 研究方向为水产健康养殖技术。E-mail: zhouqiubai@163.com

    王自蕊(1980—), 女, 教授; 研究方向为水产动物营养与免疫。E-mail: wangzirui0406@163.com *共同通信作者

  • 中图分类号: S965.1

RAPESEED MEAL REPLACEMENT FOR FISHMEAL ON GROWTH PERFORMANCE, ANTIOXIDANT CAPACITY, AND INTESTINAL MORPHOLOGY OF PARAMISGURNUS DABRYANUS

Funds: 

Supported by the China Agriculture Research System (CARS-46-03B); Fuzhou City’s “Open Competition Mechanism to Select the Best Candidates”; JXARS-Jiangxi Province Famous, Special, and High-quality Aquatic Products Research System

    Corresponding author:
  • 摘要:

    试验旨在探寻大鳞副泥鳅饲料配方中菜粕替代鱼粉的最佳比例。用菜粕替代饲料中不同比例0 (P0)、10% (P10)、20% (P20)、30% (P30)、40% (P40)、50% (P50)的鱼粉, 配制成菜粕含量分别为6.00%、8.50%、11.00%、13.50%、16.00%和18.50%的6种等能等氮饲料, 投喂平均初始体重(5.09±0.01) g的大鳞副泥鳅8周, 分析不同替代比例的菜粕对大鳞副泥鳅生长性能、抗氧化能力及肠道形态的影响。替代组(P10—P40)的增重率和特定生长率与对照组没有显著性差异(P>0.05), P50组则显著性下降(P<0.05); 随着菜粕替代比例的上升, 肠道过氧化氢酶CAT、超氧化物歧化酶SOD、总抗氧化能力T-AOC在各组间未见显著性差异(P>0.05), 与P10组相比, P50组的丙二醛MDA含量最高且显著性增加(P<0.05), P40组与P10组相比碱性磷酸酶AKP活性呈显著性增加(P<0.05); 随着菜粕替代比例的上升肝脏总蛋白TP、CAT、SOD活性均未见显著性差异(P>0.05), 与对照组P0相比, P20组、P30组和P50组的MDA含量未见显著性差异(P>0.05), P10组和P40组的MDA含量呈现显著性差异(P<0.05), 且P40组的MDA含量最低; 随着菜粕替代比例的上升肠道的形态结构受到损伤, 绒毛高度和隐窝深度逐渐减小, P50组的绒毛高度和隐窝深度达到最低(P<0.05), 肌层厚度逐渐增大。饲料采用40%的菜粕替代鱼粉比例不会影响大鳞副泥鳅的增重率和特定生长率, 但随着菜粕替代比例的上升对大鳞副泥鳅的抗氧化能力和肠道形态结构起到了负面影响。

    Abstract:

    The purpose of this study was to determine the optimal proportion of rapeseed meal to replace fishmeal in the feed formula of Paramisgurnus dabryanus. Rapeseed meal was used to replace different proportions of 0 (P0), 10% (P10), 20% (P20), 30% (P30), 40% (P40), and 50% (P50), resulting in six experimental diets with equal nitrogen and energy. These diets with rapeseed meal content of 6.00%, 8.50%, 11.00%, 13.50%, 16.00%, and 18.50% were fed to Paramisgurnus dabryanus with an average initial weight of (5.09±0.01) g for 8 weeks. The effects of different alternative proportions of rapeseed meal on the growth performance, antioxidant capacity, and intestinal morphology of Paramisgurnus dabryanus were analyzed. The weight gain rate and specific growth rate of the replacement group (P10—P40) were not significantly different from the control group (P>0.05), while the P50 group showed a significantly decline (P<0.05). No significant differences were observed in the activity of intestinal CAT, SOD, and T-AOC among the groups (P>0.05). Compared with P10 group, the MDA content in P50 group was the highest and significantly increased (P<0.05), and the AKP activity was significantly higher in P40 and P10 groups (P<0.05). The activities of TP, CAT, and SOD in liver did not change significantly with the increase of rapeseed meal replacement ratio (P>0.05). Compared with P0 group, the MDA content in P20, P30, and P50 groups were not significantly different (P>0.05), but was significantly different from that in P10 and P40 groups (P<0.05), with the P40 group showing the lowest MDA content. With the increase of replacement ratio in rapeseed meal, the intestine morphological structure was damaged, the villus height and crypt depth gradually decreased, reaching their lowest values in the P50 group (P<0.05), while the thickness of the muscular layer gradually increased. In conclusion, replacing up to 40% of fishmeal with rapeseed meal did not affect the weight gain rate and specific growth rate of Paramisgurnus dabryanus, however, higher replacement ratios had a negative impact on the antioxidant capacity and intestinal morphological structure.

  • 裂腹鱼亚科鱼类(Schizothoracinae fishes, 以下简称裂腹鱼类)主要分布于青藏高原及其邻近地区, 我国有11属97种或亚种[1, 2]。裂腹鱼类具有生长缓慢、寿命较高、性成熟晚、繁殖力低等生物学特征, 使其对高原河流水资源的过度开发和环境退化较为敏感[2]。雅鲁藏布江流域横贯西藏, 栖息有多种裂腹鱼类。近年来, 受生境退化、过度捕捞、水电梯级开发和生物入侵等因素影响, 雅鲁藏布江流域以尖裸鲤(Oxygymnocypris stewarti)、拉萨裂腹鱼(Schizothorax waltoni)、巨须裂腹鱼(S. macropogon)和双须叶须鱼(Ptychobarbus dipogon)等为代表的裂腹鱼类资源急剧下降, 高原鱼类的资源保护问题日益突出[2]。因此, 需要对裂腹鱼类的自然种群特征及变动进行系统研究。

    雅鲁藏布江下游地处西藏东南部, 主要位于墨脱县境内, 是印度洋湿暖气流进入高原内部的主要通道。区域内雨水丰沛, 河谷深切, 河道比降大, 水流湍急。加之两岸阶地堆积松散, 泥石流、塌方、山体滑坡等自然灾害时有发生[3]。随着经济社会发展和国家“十四五”规划的实施, 雅鲁藏布江下游的水域生态环境将受到一定的干扰。作为雅鲁藏布江下游的优势物种, 弧唇裂腹鱼(Schizothorax curvilabiatus)对于维持下游河流生态系统的结构和功能具有重要的生态价值[1]。但弧唇裂腹鱼的研究仅涉及形态、分类、栖息习性和摄食等方面的简单描述, 缺少详细的基础生物学数据[4, 5]

    鱼类生长是其生活史中重要的生物学过程。年龄与生长特征是研究鱼类生物学和种群动态的基础和前提, 获取准确的年龄数据是评估鱼类生长率、种群补充量和死亡率的关键[68]。在此背景下对弧唇裂腹鱼的年龄和生长特征进行分析, 以揭示物种的生长特性和种群生长潜力, 为变化环境下雅鲁藏布江下游鱼类资源的保护提供科学依据。

    2015年12月至2016年11月逐月在雅鲁藏布江下游墨脱段开展鱼类采集工作(图 1), 获取弧唇裂腹鱼928尾。采样网具为定置刺网(网目4—8 cm)、撒网(网目6 cm)和地笼(网目1 cm)等(调查采样均在渔政主管部门备案, 禁用网具取得捕捞许可)。样本获取后测定体长、体重、内脏重和性腺重(长度精确至l mm, 重量精确至0.1 g)。根据性腺发育判断样本性别。取出微耳石、鳃盖骨和脊椎骨, 耳石用清水洗净后放入离心管中保存, 脊椎骨和鳃盖骨置于自封袋中冰冻保存。

    图  1  雅鲁藏布江下游弧唇裂腹鱼的采样区域
    Figure  1.  Sampling area of S. curvilabiatus in the lower reach of Yarlung Zangbo River

    耳石  用指甲油将微耳石包埋并固定于载波片一边, 使其凸面朝上, 随后用800—2500#的水磨砂纸依次打磨, 再用抛光纸抛光。打磨时, 不时地移至显微镜下观察耳石轮纹。当看到耳石中心较为清楚时, 利用丙酮溶解指甲油, 将耳石翻面包埋, 用相同的方法打磨和抛光直至耳石中心和外周轮纹都较清晰为止[9]

    脊椎骨  将脊椎骨置于沸水中加热约10min, 去除附着的软组织后置于1% 的H2O2中浸泡24h。晾干后用剪刀将脊椎骨从中间剖开, 置于解剖镜下观察(入射光), 并用二甲苯透明处理。

    鳃盖骨  将鳃盖骨置于沸水中加热约1min, 去除附着的软组织, 再将其置于1%的 H2O2中浸泡24h后晾干, 最后在解剖镜下观察(透射光)。

    年龄的确认和计数方法参照殷名称等[10, 11]。同一鉴定者对弧唇裂腹鱼的耳石磨片, 脊椎骨和鳃盖骨进行两次独立读数, 两次读数间隔3周以上。并对耳石、脊椎骨和鳃盖骨的年轮清晰度进行5等级评分: 1为非常好, 2为好, 3为一般, 4为很差, 5为难以辨认[12](表 1)。

    表  1  年龄材料轮纹清晰度等级划分表
    Table  1.  Readability level of annuli on different calcified structures
    评分等级
    Rank
    清晰度
    Readability level
    特征描述
    Annuli characteristic
    1非常好轮纹清晰明显, 可以准确鉴定年轮
    2轮纹基本清晰, 能较准确鉴定年轮
    3一般部分轮纹并不清晰, 或者一些轮纹并不能被准确的鉴定
    4很差多数轮纹无法准确的鉴定, 存在重复计数可能
    5难以辨别轮纹鉴别者无法进行辨别
    下载: 导出CSV 
    | 显示表格

    体长体重关系  通过幂函数(W=aSLb) 对弧唇裂腹鱼的体长体重关系进行回归分析, 式中W为体重(g), SL为体长(mm), a, b为常数, a为生长的条件因子, b为幂指数系数。同时将体长体重数据进行对数化处理, 采用协方差分析(ANCOVA)来检验不同性别体长体重的关系是否具有显著性差异[13]。并对异速生长指数(b)和3的差异性进行t检验[14], 以此推测弧唇裂腹鱼是否为匀速生长类型鱼类。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    随机选取了部分样品的三种年龄材料进行加工处理, 最终对耳石、脊椎骨和鳃盖骨都成功鉴定年龄的有236尾(体长112—508 mm, 鉴定结果见表 2)。三种年龄材料上均存在年轮, 但年轮特征各异。

    表  2  弧唇裂腹鱼各个年龄组的样本数和体长
    Table  2.  Number and standard length of S. curvilabiatus at different ages
    年龄
    Age
    耳石 Otolith脊椎骨 Vertebrae鳃盖骨 Opercular bone
    nMean±SD (mm)nMean±SD (mm)nMean±SD (mm)
    34120.5±9.756133.33±24.435124.4±12.14
    427182.96±24.5128197.39±30.7625183.84±22.33
    515222.53±22.2733236.85±41.444241.52±28.79
    618245.22±20.9722284.36±47.3414285.71±37.13
    721271.05±25.3228309.43±52.3823297.65±37.43
    829306.76±46.922358.5±47.6224354.04±45.83
    931350.48±36.9321350±39.428362.04±38.96
    1020363.15±27.5916372.69±25.2725386.08±31.33
    1115384.93±32.6621395.19±29.3422403.41±24.49
    1217401.06±34.6317420.47±36.3917425.82±31.56
    1318420±27.289420±24.526424.33±42.1
    14154198428.75±35.31
    1514232427.5±17.681440
    1614512405±56.571508
    181490
    201490
    211421
    222481.5±37.48
    431490
    下载: 导出CSV 
    | 显示表格

    微耳石有清晰轮纹。经过打磨后的微耳石中心有个核区, 在透射光下呈现出明显的由宽带和窄带(或明带和暗带)组成的轮纹。年轮间距在耳石上呈规律性分布, 靠近核区的轮纹的间距较宽大, 越往边缘延伸轮纹间距越来越窄(图 2)。

    图  2  弧唇裂腹鱼不同年龄材料轮纹特征 (圆点表示年轮)
    a. 耳石otoliths; b. 脊椎骨vertebrae; c. 鳃盖骨opercular bones
    Figure  2.  Annuli characteristics of different calcified structures of S. curvilabiatus (dots show annuli)

    脊椎骨为双凹型, 在解剖镜下可观察到明暗相间的轮纹, 轮纹呈同心椭圆排列。椎骨中央具一小孔, 小孔周围薄而透明, 轮纹少且细, 较难确认首轮的位置(图 2)。

    弧唇裂腹鱼的鳃盖骨呈不规则扇形, 鳃盖骨上的年带由乳白色宽带和暗黑色窄带组成。窄带和宽带之间有明显的界限, 这一界限为年轮标志(图 2)。

    耳石、脊椎骨和鳃盖骨的清晰度评分见表 3。耳石轮纹最为清晰, 1、2等级的耳石占总数72.03%; 脊椎骨次之, 1、2等级的耳石的脊椎骨占总数58.90%; 鳃盖骨上年轮清晰度最差, 1、2等级的鳃盖骨只有47.88%。综上可见, 耳石对弧唇裂腹鱼的年龄鉴定效果最佳, 脊椎骨次之, 鳃盖骨最差。

    表  3  弧唇裂腹鱼不同年龄材料的清晰度评分
    Table  3.  Distribution of readability scores for different calcified structures of S. curvilabiatus (n=236)
    年龄材料
    Calcified structure
    清晰度评分比例
    Proportion of readability score (%)
    12345
    耳石Otoliths8.4763.5621.195.081.69
    脊椎骨Vertebrae7.6351.2729.248.473.39
    鳃盖骨Opercular bones3.8144.0730.0816.955.08
    下载: 导出CSV 
    | 显示表格

    图 3可知, 耳石磨片两次读数一直保持较高的吻合率, 鳃盖骨差异性较大。在 9龄之前, 脊椎骨两次年龄读数能保持很好的一致性, 但随年龄的递增, 鉴定结果出现差异。整体来看, 弧唇裂腹鱼耳石精确性都要优于脊椎骨和鳃盖骨。

    图  3  同一观察者两次年龄鉴定结果偏差图
    Figure  3.  Age bias plots for pairwise age estimates from two independent readings

    表 4可以看出, 三种年龄材料所鉴定的平均年龄存在显著性差异(P<0.05)。用耳石作为年龄材料所鉴定的平均年龄最高(8.87龄), 显著高于脊椎骨(7.62龄)和鳃盖骨(7.81龄)所鉴定的平均年龄(P<0.05)。10龄以下和10龄以上样本分开统计时, 在1—10龄样本中, 耳石鉴定的平均年龄(7.01龄), 显著高于鳃盖骨(6.60龄)和脊椎骨(6.37龄)所鉴定的平均年龄 (P<0.05)。大于10龄时, 脊椎骨(11.63龄)和鳃盖骨(12.0龄)所鉴定的平均年龄较为接近, 但都显著低于耳石所鉴定的平均年龄(13.2龄; P<0.05)。

    表  4  弧唇裂腹鱼不同年龄材料所鉴定的平均年龄
    Table  4.  Mean values of age estimates from different calcified structures of S. curvilabiatus
    年龄材料
    Calcified structure
    平均年龄
    Mean values of age estimate
    总样本TotalAge 1—10Age >10
    耳石Otolith8.87±4.04a7.01±2.11a13.2±4.13a
    脊椎骨Vertebrae7.62±2.86b6.60±2.10b11.63±1.60b
    鳃盖骨Opercular bone7.81±3.10b6.37±2.0b12.0±1.56b
    n23617363
    注: 同列数字上标字母不同表示差异显著(P<0.05)Note: Values with different superscript letters in the same column are significantly different (P<0.05)
    下载: 导出CSV 
    | 显示表格

    弧唇裂腹鱼的体长为48—508 mm, 均值为(227.4±111.4) mm。65.30%的个体体长集中在100—300 mm (图 4)。在 928尾样本中, 雌性395尾, 体长为85—508 mm; 雄性474尾, 体长为81—455 mm; 性别未辨的个体59尾, 体长为48—170 mm。统计分析表明, 雌鱼和雄鱼的体长分布存在显著性差异 (Kolmogorov-Smirnov Z检验, Z=2.397, P<0.05)。

    图  4  弧唇裂腹鱼体长分布图
    Figure  4.  Frequency distribution of the standard length groups of S. curvilabiatus

    在928尾样本中, 因极少数耳石本身就不具备轮纹或者耳石在打磨处理过程中有磨损, 故成功鉴定微耳石年龄的样本为916尾。其中, 雌鱼年龄组样本量为389尾, 年龄为2—43龄; 雄鱼年龄组样本量为470尾, 年龄为2—23龄, 性别未辨个体的年龄组样本量为57尾, 年龄为1—4龄。雌雄个体大于15龄的高龄组均少见, 年龄分布主要集中在15龄以下。优势年龄组为3—5龄, 占全部样本的44%(图 5)。不同性别不同年龄组的样本数和平均体长见表 5

    图  5  弧唇裂腹鱼年龄组成图
    Figure  5.  Frequency distribution of estimated age groups of S. curvilabiatus
    表  5  弧唇裂腹鱼不同年龄组的样本数和平均体长
    Table  5.  Number of specimens and range of standard length at age of S. curvilabiatus
    年龄Age雌性Female雄性Male性别未辨Undetermined
    nMean±SD (mm)Range (mm)nMean±SD (mm)Range (mm)nMean±SD (mm)Range (mm)
    14268.0±15.348—115
    236110.1±10.285—12841107.8±16.481—1621193.4±12.148—103
    379134.5±22.5102—21666138.8±18.7103—1822103.0±9.9096—110
    452171.6±29.8130—255102169.4±22.8132—2682151.5±26.2133—170
    535203.5±22.6166—25169199.5±25.0150—265
    615235.2±16.9206—26730243.8±23.4208—302
    718263.1±29.6200—30534263.5±25.3216—343
    825300.2±52.6214—40123293.3±46.0218—405
    922352.2±39.2284—41920340.8±46.7240—419
    1016366.1±46.4257—44022358.0±33.9280—423
    1112416.1±31.7351—45317375.9±23.1331—421
    1229414.8±29.2352—47418382.0±23.7352—435
    1319424.2±18.6387—45415395.3±31.4337—436
    1420426.9±28.0382—4976396.5±12.7382—419
    156426.0±42.8362—4604389.0±24.7364—423
    161481
    171451
    181428
    191421
    211452
    2315081455
    431490
    下载: 导出CSV 
    | 显示表格

    体长体重关系  将性别未辨个体、雌性群体、雄性群体和种群总体的体长和体重数据分别进行拟合(各方程拟合时的样本量为各群体采集到的样本数量; 图 6), 结果表明弧唇裂腹鱼体长体重关系符合幂函数公式。

    图  6  弧唇裂腹鱼体长体重关系图
    Figure  6.  Length-weight relationship of S. curvilabiatus

    性别未辨个体: W=3.122×10–5SL 2.855, R2=0.983, n=59;

    雌性群体: W=2.500×10–5SL2.914, R2=0.993, n=395;

    雄性群体: W= 2.114×10–5SL 2.944, R2=0.990, n=474;

    种群总体: W=2.279×10–5SL 2.931, R2=0.993, n=928。

    弧唇裂腹鱼幼鱼的b值小于3, 为异速生长阶段, 表明此阶段体长生长快于体重生长。经协方差分析, 显示弧唇裂腹鱼雌鱼和雄鱼间的体长体重关系差异并不显著(F=0.833, P>0.05), 故将其合并为种群总体的幂函数方程。经t检验, 表明种群总体b值与3差异显著(t=8.788, P<0.05), 表明弧唇裂腹鱼为异速生长鱼类。

    生长方程  经检验, 2—4龄的雌鱼和雄鱼, 其同年龄组平均体长没有显著性差异(two-sample, P>0.05)。von Bertalanffy生长方程拟合时, 将性别未辨个体中2—4龄的样本数据(n=15)分别纳入雌鱼(n=389)和雄鱼(n=470)的年龄数据中, 以获取更为准确的t0[12](表 5)。根据实测体长拟合的体长生长方程如下:

    雌鱼: Lt=590.2[1–e–0.096(t–0.282)] (R2=0.932, n=404)

    雄鱼: Lt=575.3[1–e–0.090(t+0.011)] (R2=0.918, n=485)

    将体长体重关系式代入体长生长方程, 得到体重生长方程:

    雌鱼: Wt=3016.8[1–e–0.096(t–0.282)]2.931

    雄鱼: Wt=2798.9[1–e–0.090(t+0.011)]2.931

    雌鱼和雄鱼群体的表观生长指数(Ø)分别为4.5243和4.4740。

    弧唇裂腹鱼的年龄和体长呈现一定的关系(图 7)。在低于10龄时, 相同年龄雌雄性的体长非常相近, 之后随着年龄的增长, 差异越来越大, 相同年龄的雌性体长大于雄性。

    图  7  弧唇裂腹鱼的年龄与体长关系图
    Figure  7.  The relationship between age and standard length of S. curvilabiatus

    生长速度和加速度  将弧唇裂腹鱼的生长方程经过一阶求导得到其生长速度方程, 再通过二阶求导获得其生长加速度方程。

    雌鱼: dL/dt=56.66e–0.096(t–0.282)

    dL2/dt2= −5.44e−0.096(t–0.282)

    dW/dt=848.85e–0.096(t–0.282) [1–e–0.096(t–0.282)]1.931

    dW2/dt2=81.49e–0.096(t–0.282) [1–e–0.096(t–0.282)]0.931 [2.931e–0.096(t–0.282)–1]

    雄鱼: dL/dt=51.78e–0.090(t+0.011)

    dL2 /dt2=–4.66 e–0.090(t+0.011)

    dW /dt=738.33 e–0.090(t+0.011) [1–e–0.090(t+0.011)]1.931

    dW2/dt2=66.45e–0.090(t+0.011) [1–e–0.090(t+0.011)]0.931 [2.931e–0.090(t+0.011)–1]

    弧唇裂腹鱼雌鱼体长增长的速度和加速度的变化趋势与雄鱼相似(图 8a8b)。随着年龄的增长, 雌鱼和雄鱼的体长增长速度均呈递减趋势, 且递减速度逐渐减缓, 无限接近于0; 雌鱼和雄鱼体长增长的加速度随着年龄的增长呈递增趋势, 递增速度逐渐减缓, 无限接近于0而小于0。

    图  8  弧唇裂腹鱼的生长速度和生长加速度
    a为雌性体长生长速度和加速度; b为雄性体长生长速度和加速度; c为雌性体重生长速度和加速度; d为雄性体重生长速度和加速度
    Figure  8.  Growth rate and acceleration of S. curvilabiatus
    Growth rate and growth acceleration of the standard length and weight of female (a, c) and male (b, d)

    弧唇裂腹鱼雌鱼的体重加速度变化趋势与雄鱼相似(图 8c8d), 均呈先升后降的趋势。当体重生长加速度为0时, 体重生长速度达到最大值, 此为该鱼的体重生长拐点。弧唇裂腹鱼雌鱼拐点年龄(ti)为11.5龄, 雄鱼拐点年龄(ti)为11.9龄, 对应的体长分别为388.8和379.0 mm; 对应的体重分别为887.9和823.8 g。

    已有的研究显示, 鳞片、脊椎骨、耳石、鳍条、匙骨和鳃盖骨等钙化组织是裂腹鱼类年龄鉴定的常用材料 [1624]。不同年龄材料轮纹清晰的程度因研究物种、个体生长差异而不同。刘艳超等[23]用微耳石、星耳石、脊椎骨、鳃盖骨、臀鳞、胸鳞、侧线鳞和背鳞8种年龄材料对西藏拉萨河上游双须叶须鱼的年龄特征进行了比较, 认为微耳石最适宜用于双须叶须鱼的年龄鉴定。Sabah和Khan[24]利用耳石和脊椎骨等年龄材料对克什米尔河谷三种裂腹鱼的年龄和生长进行比较研究, 结果表明耳石用于中唇裂腹鱼S. curvifronsS. niger的年龄鉴定较脊椎骨更准确, 而用脊椎骨鉴定扁嘴裂腹鱼S. esocinus的年龄比耳石准确。Ma等 [16]和Zhou等 [22]的研究结果显示, 脊椎骨鉴定两种裂腹鱼属鱼类的年龄时, 低龄鱼的鉴定结果与耳石差异不大; 而在鉴定高龄鱼时, 其结果显著低于耳石; 相比较耳石和脊椎骨, 鳃盖骨的轮纹比较密集难以区分, 且对于高龄鱼而言, 干扰纹偏多, 容易造成误判。

    在本研究中, 鳃盖骨轮纹清晰度不及耳石和脊椎骨, 其年轮读数也显著低于耳石和脊椎骨; 而脊椎骨在低龄鱼中(低于10龄)与耳石的鉴定结果相当, 但在高龄鱼中(10龄以上)年龄判读结果的准确率和辨识度均较耳石差。综上所述, 耳石是鉴定裂腹鱼类年龄较为合适的材料[16, 1923]。采用体外标记和氯化四环素荧光标记方法也表明, 用耳石鉴定鱼类年龄比鳞片更为准确, 尤其是生长缓慢的长寿命鱼类[6]。主要原因在于耳石生长独立于机体生长, 在慢生长和高龄个体中, 耳石比其他骨质材料生长更快, 且不会存在轮纹的重吸收现象, 故其更能如实反映周期性的季节生长, 并以规律性轮纹呈现为年龄[2, 25]

    由于高原特殊的生态环境, 裂腹鱼类往往都具有较高的寿命, 且雌性个体年龄大于雄性个体。已有的报道显示, 雅鲁藏布江异齿裂腹鱼雌雄个体的最大年龄分别为50龄和40龄[26], 双须叶须鱼雌雄个体的最大年龄分别为45龄和24龄[17], 拉萨裂腹鱼雌雄个体的最大年龄分别为40龄和37龄[22]。在本研究中, 弧唇裂腹鱼雌鱼和雄鱼的最大年龄分别为43龄和23龄, 与上述研究结果接近。

    生长系数k和表观生长指数(Ø)都是评估鱼类种群生长潜力的关键参数[2]。Branstetter[28]将生长系数k分为三类: 0.05—0.10属生长缓慢型, 0.10—0.20属均速生长型, 0.20—0.50属快速生长型。生长方程的拟合结果显示, 弧唇裂腹鱼的生长系数k值低于0.1, 其中雌性为0.096, 雄性为0.090; 雌性和雄性群体的表观生长指数(Ø)分别为4.5243和4.4740。上述参数与Zhou等[22]、Ma等[26]、朱秀芳和陈毅峰[29]、Li and Chen[30]和Huo等[31]对雅鲁藏布江中上游裂腹鱼类的研究结果一致(表 6)。同时, 弧唇裂腹鱼的最大年龄和渐进体长L较高(雌性为590.2 mm, 雄性为575.3 mm)。综上可以判断, 弧唇裂腹鱼为生长缓慢, 寿命较长的鱼类, 属于典型的K-对策选择者[32]

    表  6  文献中雅鲁藏布江裂腹鱼属鱼类生长特性对比
    Table  6.  Comparison of growth characters of Schizothorax fishes in the Yurlung Zangbo River in different studies
    种类
    Species
    采样地点
    Sampling
    location
    年龄材料
    Aging
    structure
    样本数
    Sample
    体长
    Standard
    length (mm)
    年龄
    Age
    性别
    Sex
    生长参数
    Growth parameters
    文献来源
    Reference
    L (mm)kt0Ø
    异齿裂腹鱼
    Schizothorax o’connori
    雅鲁藏布江耳石17653—4922—24492.40.1133−0.54324.4389[27]
    21953—4222—18449.00.1260−0.47464.4049
    雅鲁藏布江耳石67333—5531—50576.90.081–0.9464.4307[26]
    59633—4601—40499.70.095–0.8964.3751
    拉萨裂腹鱼
    Schizothorax waltoni
    雅鲁藏布江耳石448151—6424—40668.10.0760.4814.5305[22]
    377176—4994—37560.40.0830.1614.4161
    巨须裂腹鱼
    Schizothorax macropogon
    雅鲁藏布江背鳍条1262—16656.80.053−3.3054.3591[30]
    1112—16496.20.074−4.0174.2605
    雅鲁藏布江耳石230139—4743—24500.00.123–0.3924.4878[5]
    188113—4212—17449.50.166–0.0204.5256
    弧唇裂腹鱼
    Schizothorax curvilabiatus
    雅鲁藏布江耳石40448—5111—43590.20.0960.2824.5243本研究
    48548—4551—23575.30.090–0.0114.4740
    下载: 导出CSV 
    | 显示表格

    鱼类个体生长是内源因子和外源因子共同作用的结果。除物种间的遗传差异外, 食物资源、温度、光照及其他环境因子也会影响鱼类的个体生长[2]。由于入侵水域营养生态位的空缺, 加之适口饵料丰度较大, 抚仙湖的黄颡鱼种群表现出很好的生长潜力[33]。近年来, 乌伦古湖饵料生物的数量和生物量较1987年均大为减少, 河鲈(Perca fluviatilis Linnaeus)的喜好饵料摇蚊幼虫生物量仅为1987年的1/10, 从而导致河鲈营养状况不佳, 影响河鲈生长速度[34]。雅鲁藏布江下游河谷深切, 水流湍急, 流速可达16 m/s, 加之地质活动频繁, 滑坡和泥石流时有发生, 导致干流河道水生生物饵料资源相对匮乏[1, 35, 36]。故推测弧唇裂腹鱼生长缓慢是对食物资源匮乏等恶劣环境的一种长期适应[2, 4, 35]。此外, 同为植食性的裂腹鱼亚属鱼类, 弧唇裂腹鱼的表观生长指数(Ø)高于异齿裂腹鱼, 可能与雅鲁藏布江下游海拔较低, 水温相对较高有关。水温较高使弧唇裂腹鱼具有较高的新陈代谢速率, 能量转换效率可能高于异齿裂腹鱼。弧唇裂腹鱼的表观生长指数与谢从新等[5]对拉萨裂腹鱼和巨须裂腹鱼的研究结果较为接近, 但高于朱秀芳和陈毅峰[30]对巨须裂腹鱼的研究结果, 可能与所用年龄材料不同有一定关系(表 6)。

    研究指出, K-对策选择鱼类对环境变化非常敏感, 种群一旦衰退, 其资源恢复速度缓慢[32]。近年来, 人为活动对雅鲁藏布江下游河流环境的干扰逐渐加大。一方面随着旅游开发、人口经济的快速增加、墨脱河段的渔业捕捞强度逐步增大, 导致弧唇裂腹鱼种群以3—5龄为主, 种群低龄化现象突出; 另一个方面随着国家“十四五”规划的深入推进, 涉水工程及沿江公路的实施将改变雅鲁藏布江下游的河流形态、水文情势及水体理化性质, 进而对弧唇裂腹鱼等土著鱼类的栖息产生不利影响。

    针对上述问题, 并结合弧唇裂腹鱼的生物学特性及流域鱼类的保护现状, 提出了以下措施与保护建议: (1)控制渔业捕捞是保护鱼类资源的重要手段。弧唇裂腹鱼拐点年龄为11龄, 对应的体长体重分别为380 mm和820 g。为此, 建议将其起捕规格限制在800 g以上, 同时加快完善渔业资源管理体系建设, 严厉打击非法捕捞。(2)栖息地保护是物种保护最有效的措施之一。雅鲁藏布江下游水域生态学的研究基础薄弱, 建议加强弧唇裂腹鱼产卵场、越冬场和索饵场等重要生境的调查与研究, 在此基础上选择合适的江段建设弧唇裂腹鱼水产种质资源保护区, 加强其种质资源的保护。(3)目前雅鲁藏布江中上游异齿裂腹鱼、拉萨裸裂尻鱼(Schizopygopsis younghusbandi)等主要鱼类的人工繁殖已获得成功, 形成了较为系统的规模化人工繁育技术体系[2]。相比之下, 雅鲁藏布江下游鱼类的人工繁育技术尚不成熟, 建议加强弧唇裂腹鱼的人工繁殖及苗种批量培育等关键技术的研究, 发展可持续的人工养殖, 减少对弧唇裂腹鱼野生种群资源的依赖。

  • 图  1   菜粕替代鱼粉对大鳞副泥鳅肠道形态学的影响

    VH. 绒毛高度; CD. 隐窝深度; MT. 肌层厚度

    Figure  1.   Effects of rapeseed meal replacement for fishmeal on intestinal morphology of Paramisgurnus dabryanus

    VH. Villus height; CD. Crypt depth; MT. Muscle thickness

    表  1   试验饲料配方及主要营养物质(% 干物质基础)

    Table  1   Ingredient and proximate compositions of the experimental diets (% dry matter)

    原料Ingredient 菜粕替代水平比例Proportion of rapeseed meal substitution level (%)
    0 10 20 30 40 50
    鱼粉Fish meal 25.00 22.50 20.00 17.50 15.00 12.50
    豆粕Soybean meal 20.00 20.00 20.00 20.00 20.00 20.00
    菜粕Rapeseed meal 6.00 8.50 11.00 13.50 16.00 18.50
    小麦粉Wheat starch 24.00 24.00 24.00 24.00 24.00 24.00
    鱼油Fish oil 2.50 2.50 2.50 2.50 2.50 2.50
    豆油Soybean oil 2.50 2.50 2.50 2.50 2.50 2.50
    60%胆碱60% Choline 0.40 0.40 0.40 0.40 0.40 0.40
    酪蛋白Casein 0.12 1.00 1.89 2.78 3.66 4.54
    大豆浓缩蛋白Soybean protein concentrate 10.00 10.00 10.00 10.00 10.00 10.00
    大豆卵磷脂Soybean lecithin 1.00 1.00 1.00 1.00 1.00 1.00
    磷酸二氢钙 Ca(H2PO4)2 2.00 2.00 2.00 2.00 2.00 2.00
    赖氨酸 Lys 0.00 0.03 0.05 0.07 0.10 0.12
    蛋氨酸 Met 0.00 0.01 0.01 0.01 0.01 0.01
    微晶纤维素Microcrystalline cellulose 5.48 4.56 3.65 2.74 1.83 0.93
    预混料Vitamin and mineral premix1 1.00 1.00 1.00 1.00 1.00 1.00
    合计Total 100.00 100.00 100.00 100.00 100.00 100.00
    营养水平Proximate composition2 (%)
    粗蛋白Crude protein 36.38 36.55 36.68 36.26 36.33 36.50
    粗脂肪Crude fat 6.99 6.78 7.10 6.87 7.00 7.11
    粗灰分Ash 8.03 7.92 7.74 7.50 7.44 7.57
    总能Gross energy (kJ/g) 17.04 17.08 17.13 17.17 17.21 17.25
    注: 1预混料为每千克饲料提供: VA 5000 IU; VB1 25 mg; VB2 45 mg; VB6 20 mg; VB12 0.1 mg; VK3 10 mg; VE 200 mg; VC 200 mg; VD3 2500 IU; 肌醇200 mg; 泛酸60 mg; 烟酸200 mg; 叶酸10 mg; 生物素1.5 mg; NaSeO3·5H2O 0.3 mg; CoCl2·6H2O 0.4 mg; KI 0.8 mg; CuSO4·5H2O 10 mg; MnSO4·4H2O 20 mg; ZnSO4·H2O 50 mg; FeSO4·7H2O 150 mg; MgSO4·7H2O 500 mg; NaCl 1000 mg; 2营养水平为实测值Note: 1The premix provided the followings per kg of diet: VA 5000 IU; VB1 25 mg; VB2 45 mg; VB6 20 mg; VB12 0.1 mg; VK3 10 mg; VE 200 mg; VC 200 mg; VD3 2500 IU; inositol 200 mg; pantothenic acid 60 mg; nicotinic acid 200 mg; folic acid 10 mg; biotin 1.5 mg; NaSeO3·5H2O 0.3 mg; CoCl2·6H2O 0.4 mg; KI 0.8 mg; CuSO4·5H2O 10 mg; MnSO4·4H2O 20 mg; ZnSO4·H2O 50 mg; FeSO4·7H2O 150 mg; MgSO4·7H2O 500 mg; NaCl 1000 mg; 2Nutrient levels are measured values
    下载: 导出CSV

    表  2   菜粕替代鱼粉对大鳞副泥鳅生长性能的影响

    Table  2   Effects of rapeseed meal instead of fishmeal on the growth performance of Paramisgurnus dabryanus

    指标 Index P0 P10 P20 P30 P40 P50
    初重IBW (g) 5.12±0.02 5.06±0.04 5.12±0.03 5.05±0.01 5.07±0.04 5.06±0.04
    末重FBW(g) 14.21±0.46a 14.25±0.11a 13.65±0.24a 13.79±0.19a 14.17±0.22a 12.74±0.27b
    增重率WGR (%) 177.06±10.22a 182.05±2.19a 163.79±4.17a 176.10±5.43ab 175.01±4.51a 144.32±9.47b
    特定生长率SGR (%) 1.70±0.06a 1.73±0.01a 1.62±0.03a 1.69±0.03a 1.68±0.03a 1.49±0.07b
    饲料系数FCR 1.59±0.13ab 1.56±0.04b 2.00±0.24a 1.73±0.06a 1.70±0.02ab 2.03±0.11ab
    肥满度CF (g/cm3) 0.93±0.03ab 0.88±0.01ab 0.94±0.01a 0.90±0.02ab 0.90±0.01b 0.93±0.01ab
    蛋白质效率PER 1.75±0.22a 1.76±0.08a 1.42±0.28b 1.60±0.12ab 1.62±0.03ab 1.37±0.15b
    蛋白沉积率PDR (%) 0.28±0.02a 0.26±0.01ab 0.22±0.02abc 0.23±0.01abc 0.24±0.00abc 0.21±0.01c
    脂肪沉积率FDR (%) 0.60±0.04ab 0.67±0.01b 0.53±0.04ab 0.61±0.01 ab 0.62±0.00ab 0.54±0.04b
    注: 蛋白沉积率和脂肪沉积率计算使用湿物质基础下的粗蛋白和粗脂肪占比; 同一行相同右上角含有相同英文上标字母或无上标表示无显著差异(P<0.05); 下同Note: The PDR and FDR are calculated as the proportion of crude protein and crude lipid on a wet material basis; In the same row, values with superscript letter or no superscript indicate significant differences (P<0.05); the same applies below
    下载: 导出CSV

    表  3   菜粕替代鱼粉对大鳞副泥鳅全鱼营养成分的影响 (%干物质基础)

    Table  3   Effects of rapeseed meal instead of fishmeal on whole body composition of Paramisgurnus dabryanus (% dry basic)

    成分Ingredient P0 P10 P20 P30 P40 P50
    水分Moisture 73.15±0.19 72.87±1.26 73.13±0.36 73.87±0.09 73.18±0.67 72.71±0.42
    粗蛋白Crude protein 60.39±0.54a 56.65±1.27b 59.38±0.71ab 57.24±0.54b 57.78±0.06ab 57.46±0.32ab
    粗脂肪Crude lipid 20.27±0.26b 21.18±0.22ab 21.16±0.49ab 22.15±0.83a 22.18±0.16a 21.45±0.88ab
    粗灰分Ash 9.79±0.34abc 9.86±0.07ab 9.13±0.10bc 10.06±0.18a 9.75±0.41abc 8.98±0.25c
    下载: 导出CSV

    表  4   菜粕替代鱼粉对大鳞副泥鳅血清生化指标的影响

    Table  4   Effects of rapeseed meal instead of fishmeal on serum biochemical indexes of Paramisgurnus dabryanus

    指标Index P0 P10 P20 P30 P40 P50
    甘油三酯TG (mmol/L) 2.34±0.09 3.09±0.13 3.12±0.42 2.97±0.36 3.27±0.45 2.66±0.38
    白蛋白Alb (g/L) 1.30±0.25 1.04±0.02 0.97±0.01 1.02±0.06 1.00±0.01 1.04±0.06
    葡萄糖GLU (mmol/L) 3.70±0.18c 4.29±0.22bc 4.26±0.55bc 4.64±0.21ab 4.83±0.12ab 5.36±0.19a
    血尿素氮BUN (mmol/L) 50.77±1.87b 53.55±1.49b 64.80±1.89a 52.58±2.31b 54.73±4.66b 54.00±1.32b
    补体3 C3 (U/L) 393.95±25.65abc 423.90±5.85a 363.92±6.31c 420.90±5.41ab 379.22±3.57bc 425.68±15.77a
    补体4 C4 (U/L) 305.72±21.82 316.83±5.78 321.33±10.30 309.65±8.45 327.83±6.17 328.50±7.15
    溶菌酶LZM (U/L) 13.25±0.38a 13.03±0.52ab 13.55±0.68a 13.05±0.32ab 13.15±0.33ab 11.75±0.28b
    下载: 导出CSV

    表  5   菜粕替代鱼粉对大鳞副泥鳅消化酶活性的影响

    Table  5   Effects of rapeseed meal instead of fishmeal on digestive enzyme activity of Paramisgurnus dabryanus (U/mgprot)

    消化酶Digestive enzyme P0 P10 P20 P30 P40 P50
    脂肪酶LPS 1.31±0.14b 2.49±0.26a 1.64±0.11b 1.91±0.20ab 1.77±0.21b 1.82±0.21b
    淀粉酶AMS 1.28±0.24ab 0.57±0.15b 0.99±0.15ab 1.56±0.28a 1.44±0.47ab 1.87±0.28a
    胰蛋白酶Trypsin 4836.87±189.00bc 4751.95±176.82bc 4957.16±128.76abc 4507.49±123.04c 5258.53±148.55ab 5452.12±220.94a
    下载: 导出CSV

    表  6   菜粕替代鱼粉对大鳞副泥鳅肠道生化指标和抗氧化能力的影响

    Table  6   Effects of substitution of fishmeal with rapeseed meal on intestinal biochemical indices and antioxidant capacity of Paramisgurnus dabryanus

    指标Index P0 P10 P20 P30 P40 P50
    总蛋白TP (μg/mL) 962.95±32.73 994.44±29.45 971.57±34.50 898.81±20.46 870.82±101.43 867.59±15.18
    过氧化氢酶CAT (U/g prot) 4.04±0.39 4.13±0.12 3.43±0.26 3.91±0.45 4.32±0.18 4.33±0.13
    超氧化物歧化酶SOD (U/mg prot) 25.94±2.33 30.68±1.96 29.47±1.34 27.28±0.20 33.31±3.94 26.83±1.96
    总抗氧化能力T-AOC (mmol/L) 0.31±0.04a 0.38±0.03a 0.40±0.00a 0.30±0.00a 0.18±0.02b 0.34±0.06a
    丙二醛MDA (nmol/mg prot) 5.90±0.38ab 5.08±0.26b 4.94±0.07b 6.70±0.18ab 6.46±0.82ab 7.38±1.31a
    碱性磷酸酶AKP (金氏单位/g) 7.88±0.08b 7.23±1.37b 9.41±0.41ab 11.26±2.41ab 13.99±1.77a 9.93±1.55ab
    下载: 导出CSV

    表  7   菜粕替代鱼粉对大鳞副泥鳅肝脏生化指标和抗氧化能力的影响

    Table  7   Effects of substitution of fishmeal with rapeseed meal on liver biochemical indices and antioxidant capacity of Paramisgurnus dabryanus

    指标Index P0 P10 P20 P30 P40 P50
    过氧化氢酶CAT (U/g prot) 31.83±3.53 35.22±2.22 32.26±1.03 36.41±2.06 32.29±0.86 35.96±2.12
    超氧化物歧化酶SOD (U/mg prot) 35.98±3.51a 25.32±0.38b 22.25±2.27b 27.16±2.71b 20.06±1.20b 24.33±4.20b
    谷草转氨酶GOT (U/g prot) 12.40±0.57c 14.80±1.18c 21.26±0.32b 18.81±2.02b 20.07±0.57b 43.42±1.78a
    谷丙转氨酶GPT (U/g prot) 3.83±0.27a 1.33±0.18b 1.77±0.01b 1.35±0.57b 2.14±0.53b 1.81±0.46b
    总抗氧化能力T-AOC (mmol/L) 0.29±0.02 0.17±0.02 0.14±0.03 0.25±0.06 0.22±0.09 0.14±0.02
    丙二醛MDA (nmol/mg prot) 1.51±0.08ab 1.31±0.01b 1.49±0.05ab 1.65±0.08ab 1.65±0.24ab 1.69±0.04a
    下载: 导出CSV

    表  8   菜粕替代鱼粉对大鳞副泥鳅肠道形态学的影响

    Table  8   Effects of rapeseed meal instead of fishmeal on intestinal morphology of Paramisgurnus dabryanus

    指标Index P0 P10 P20 P30 P40 P50
    绒毛高度Villus height (μm) 626.49±77.26ab 737.44±90.28a 620.46±9.93a 570.27±76.65ab 616.72±26.65ab 487.08±29.47b
    隐窝深度Crypt depth (μm) 42.88±3.83a 31.00±2.82b 44.82±3.15a 37.97±4.44b 37.61±3.96ab 26.86±2.53b
    肌层厚度Muscle thickness (μm) 178.35±10.20b 192.43±15.53b 260.65±13.97a 228.28±1.75ab 203.92±14.27b 229.89±27.17ab
    绒毛高度/隐窝深度V/C 14.69±1.52b 20.44±0.83a 13.26±0.34b 16.73±1.29ab 16.90±2.40ab 16.35±1.55ab
    下载: 导出CSV
  • [1]

    Butler E J, Pearson A W, Fenwick G R. Problems which limit the use of rapeseed meal as a protein source in poultry diets [J]. Journal of the Science of Food and Agricul ture, 1982, 33(9): 866-875. doi: 10.1002/jsfa.2740330909

    [2] 刘晓庆, 朱晓鸣, 韩冬, 等. 饲料鱼粉、菜粕比例对异育银鲫生长和饲料利用的影响 [J]. 水生生物学报, 2014, 38(4): 657-663.] doi: 10.7541/2014.93

    Liu X Q, Zhu X M, Han D, et al. Effects of dietary ratio of fish meal and rapeseed meal on the growth and feed utilization in gibel carp (Carassius auratus gibelio) [J]. Acta Hydrobiologica Sinica, 2014, 38(4): 657-663. [ doi: 10.7541/2014.93

    [3] 黄莹, 娄格格, 刘轩宇, 等. 双低菜粕替代鱼粉对克氏原螯虾幼虾生长性能、抗氧化能力和消化系统组织形态的影响 [J]. 水生生物学报, 2023, 47(12): 1918-1931.] doi: 10.7541/2023.2022.0458

    Huang Y, Lou G G, Liu X Y, et al. Replacing fish meal with rapeseed meal on growth performance, antioxidant capacity and digestive system morphology of juvenile Procambarus clarkii [J]. Acta Hydrobiologica Sinica, 2023, 47(12): 1918-1931. [ doi: 10.7541/2023.2022.0458

    [4] 伍代勇, 叶元土, 张宝彤, 等. 4种植物蛋白对凡纳滨对虾生长、非特异性免疫和体成分的影响 [J]. 上海海洋大学学报, 2009, 18(2): 2174-2180.]

    Wang D Y, Ye Y T, Zhang B T, et al. Effects of four plant proteins on the growth, non-specific immunity and body composition of Litopenaeus vannamei [J]. Journal of Shanghai Ocean University, 2009, 18(2): 2174-2180. [

    [5] 胡秀聪, 刘建高, 陈宇航, 等. 菜粕替代面粉对黄颡鱼生长性能和形体指标的影响 [J]. 广东饲料, 2021, 30(8): 23-26.] doi: 10.3969/j.issn.1005-8613.2021.08.007

    Hu X C, Liu J G, Chen Y H, et al. Effects of replacing flour with rapeseed meal on growth performance and body indexes of Pelteobagrus fulvidraco [J]. Guangdong Feed, 2021, 30(8): 23-26. [ doi: 10.3969/j.issn.1005-8613.2021.08.007

    [6] 王杰, 梁旭方, 李姣, 等. 菜粕替代鱼粉对翘嘴鳜肠道吸收和氨基酸代谢的影响 [J]. 华中农业大学学报, 2018, 37(4): 93-101.]

    Wang J, Liang X F, Li J, et al. Effect of substituting fish meal with rapeseed meal on intestinal absorption and amino acids metabolism in Chinese perch (Siniperca chuatsi) [J]. Journal of Huazhong Agricultural University, 2018, 37(4): 93-101. [

    [7] 崔存河, 杨成辉, 卜宪勇, 等. 菜粕替代鱼粉对虹鳟(Oncorhynchus mykiss)生长、体组成和血液学指标的影响 [J]. 饲料工业, 2016, 37(22): 21-25.]

    Cui C H, Yang C H, Bu X Y, et al. Effect of replacing fish meal with rapeseed meal on growth, body composition and serum biochemical parameter of rainbow trout (Oncorhynchus mykiss) [J]. Feed industry, 2016, 37(22): 21-25. [

    [8] 姚静婷. 菜粕及水解单宁对暗纹东方鲀及草鱼健康及营养代谢的影响 [D]. 上海海洋大学, 2020: 120-144.]

    Yao J T. Effects of rapeseed meal and hydrolyzed tannin on health and nutritional metabolism of Fugu obscurus and grass carp [D]. Shanghai: Shanghai Ocean University, 2020: 120-144. [

    [9] 孙述好, 胡男, 黄紫薇, 等. 大鳞副泥鳅皮肤抗氧化酶活性的昼夜节律研究 [J]. 黑龙江水产, 2023, 42(1): 19-21.] doi: 10.3969/j.issn.1674-2419.2023.01.004

    Sun S H, Hu N, Huang Z W, et al. Study on the circadian rhythm of antioxidant enzyme activity in skin of Paraphyloach dabrous [J]. Northern Chinese Fisheries, 2023, 42(1): 19-21. [ doi: 10.3969/j.issn.1674-2419.2023.01.004

    [10] 李雪, 赵建, 王玮欣, 等. 盐度对大鳞副泥鳅抗氧化酶及组织结构的影响 [J]. 水生态学杂志, 2022, 43(6): 139-145.]

    Li X, Zhao J, Wang W X, et al. Effects of salinity on antioxidant enzymes and histological structure of Paramisgurnus dabryanus [J]. Journal of Hydroecology, 2022, 43(6): 139-145. [

    [11] 李佑杰, 陈琪, 袁志文, 等. 饲料中添加丙氨酰-谷氨酰胺对大鳞副泥鳅生长性能、血清生化指标、肝脏抗氧化能力以及肠道消化酶活性和形态结构的影响 [J]. 动物营养学报, 2024, 36(5): 3219-3230.] doi: 10.12418/CJAN2024.276

    Li Y J, Chen Q, Yuan Z W, et al. Effects of dietary Alanyl-Glutamine supplementation on growth performance, serum biochemical indices, liver antioxidant capacity, intestinal digestive enzyme activities and morphological structure of Paramisgurnus dabryanus [J]. Chinese Journal of Animal Nutrition, 2024, 36(5): 3219-3230. [ doi: 10.12418/CJAN2024.276

    [12] 马成, 王文博, 张克顺, 等. 菜粕发酵及应用研究进展 [C]//中国畜牧兽医学会动物微生态学分会第五届第十三次全国学术研讨会论文集, 2018: 116-119.]

    Ma C, Wang W B, Zhang K S, et al. Research Progress on Rapeseed Meal Fermentation and Application [C]//Proceedings of the 13th National Symposium of the 5th and 13th National Academic Symposium of the Animal Microecology Branch of the Chinese Association of Animal Husbandry and Veterinary Medicine, 2018: 116-119. [

    [13] 钟晓霞, 刘志云, 周晓容, 等. 发酵菜粕在畜禽养殖中的应用研究进展 [J]. 饲料工业, 2018, 39(19): 44-48.]

    Zhong X X, Liu Z Y, Zhou X R, et al. Development status and application of fermented rapeseed meal in livestock and poultry breeding [J]. Feed industry, 2018, 39(19): 44-48. [

    [14]

    Vuorela S, Meyer A S, Heinonen M. Impact of isolation method on the antioxidant activity of rapeseed meal phenolics [J]. Journal of Agricultural and Food Chemistry, 2004, 52(26): 8202-8207. doi: 10.1021/jf0487046

    [15]

    Leslie A J, Summers J D. Amino acid balance of rapeseed meal [J]. Poultry Science, 1975, 54(2): 532-538. doi: 10.3382/ps.0540532

    [16] 张恒, 刘立鹤, 贺国龙, 等. 凡纳滨对虾饲料中菜籽粕替代鱼粉适宜比例的研究 [J]. 水产科学, 2011, 30(10): 591-596.] doi: 10.3969/j.issn.1003-1111.2011.10.001

    Zhang H, Liu L H, He G L, et al. Proper proportion of rapeseed meal substitution for fish meal in diet of pacific white leg shrimp Litopenaeus vannamei [J]. Fisheries Science, 2011, 30(10): 591-596. [ doi: 10.3969/j.issn.1003-1111.2011.10.001

    [17] 黄云, 胡毅, 肖调义, 等. 双低菜粕替代豆粕对青鱼幼鱼生长及生理生化指标的影响 [J]. 水生生物学报, 2012, 36(1): 41-48.] doi: 10.3724/SP.J.1035.2012.00041

    Huang Y, Hu Y, Xiao T Y, et al. Influence of dietary canola meal levels on growth and biochemical indices in juvenile Mylopharvngodon piceus [J]. Acta Hydrobiologica Sinica, 2012, 36(1): 41-48. [ doi: 10.3724/SP.J.1035.2012.00041

    [18] 杨耐德, 符广才. 凡纳滨对虾饲料中发酵豆粕替代鱼粉的研究 [J]. 饲料工业, 2008, 29(10): 24-26.] doi: 10.3969/j.issn.1001-991X.2008.10.008

    Yang N D, Fu G C. Study on replacing fish meal with fermented soybean meal in Litopenaeus vannamei feed [J]. Feed Industry, 2008, 29(10): 24-26. [ doi: 10.3969/j.issn.1001-991X.2008.10.008

    [19] 高贵琴, 熊邦喜, 赵振山, 等. 不同水平双低菜粕替代蛋白对鱼类生长的影响 [J]. 水利渔业, 2004, 24(3): 55-57.] doi: 10.3969/j.issn.1003-1278.2004.03.021

    Gao G Q, Xiong B X, Zhao Z S, et al. Effects of different levels of double-low rapeseed meal replacement protein on fish growth [J]. Water Conservancy and Fishery, 2004, 24(3): 55-57. [ doi: 10.3969/j.issn.1003-1278.2004.03.021

    [20] 林仕梅, 麦康森, 谭北平. 菜粕、棉粕替代豆粕对奥尼罗非鱼(Oreochromis niloticus × O. aureus)生长、体组成和免疫力的影响 [J]. 海洋与湖沼, 2007(2): 168-173.] doi: 10.3321/j.issn:0029-814X.2007.02.013

    Lin S M, Mai K S, Tan B P. Effect of soybean meal replacement by rapeseed-cottonseed compound on growth, body composition and immunity of tilapia Oreochromis niloticus × O. aureus [J]. Oceanologia Et Limnologia Sinica, 2007(2): 168-173. [ doi: 10.3321/j.issn:0029-814X.2007.02.013

    [21]

    Davies S J, McConnell S, Bateson R I. Potential of rapeseed meal as an alternative protein source in complete diets for Tilapia (Oreochromis mossambicus Peters) [J]. Aquaculture, 1990, 87(2): 145-154. doi: 10.1016/0044-8486(90)90271-N

    [22] 马利, 黄峰, 吴建开, 等. 不同菜粕水平对草鱼生长、血清生化指标和毒素残留的影响 [J]. 水产学报, 2005, 29(6): 798-803.]

    Ma L, Huang F, Wu J K, et al. Effects of different rapeseed meal levels on growth, serum biochemical indices and toxins residues in Ctenopharyngodon [J]. Journal of Fisheries of China, 2005, 29(6): 798-803. [

    [23]

    Coma J, Carrion D, Zimmerman D R. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs [J]. Journal of Animal Science, 1996, 73(2): 472-481.

    [24]

    Mori K, Nakanishi T, Suzuki T, et al. Defense mechanisms in invertebrates and fish [J]. Tanpakushitsu Kakusan Koso Protein, Nucleic Acid, Enzyme, 1989, 34(3): 214-223.

    [25] 陈晓晓, 孙琛, 刘畅, 等. LncRNA与肝脏糖脂代谢的研究进展 [J]. 生物工程学报, 2021, 37(1): 40-52.]

    Chen X X, Sun C, Liu C, et al. lncRNA in hepatic glucose and lipid metabolism: a review [J]. Chinese Journal of Biotechnology, 2021, 37(1): 40-52. [

    [26] 易军, 王淮, 王巍, 等. 菜粕日粮对育肥牛生产性能及血液生化指标的影响 [J]. 黑龙江畜牧兽医, 2014(7): 21-25.]

    Yi J, Wang H, Wang W, et al. Effects of rapeseed meal diets on productive performance and blood biochemical indicators of fattening beef cattle [J]. Heilongjiang Animal Science and Veterinary Medicine, 2014(7): 21-25. [

    [27]

    Luo G, Xu J, Teng Y, et al. Effects of dietary lipid levels on the growth, digestive enzyme, feed utilization and fatty acid composition of Japanese sea bass (Lateolabrax japonicus L.) reared in freshwater [J]. Aquaculture research, 2010, 41(2): 210-219. doi: 10.1111/j.1365-2109.2009.02319.x

    [28]

    Wan J J, Xi Q K, Tang J Q, et al. Effects of pelleted and extruded feed on growth performance, intestinal histology and microbiota of juvenile red swamp crayfish (Procambarus clarkii) [J]. Animals, 2022, 12(17): 2252. doi: 10.3390/ani12172252

    [29]

    Azarm H M, Lee S M. Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream Acanthopagrus schlegeli [J]. Aquaculture Research., 2014, 45(6): 994-1003. doi: 10.1111/are.12040

    [30]

    Zhang F, Zhang W B, Mai K S, et al. Effects of replacement of dietary fish meal by soybean meal on growth, digestive enzyme activity and digestive tract histology of juvenile large yellow croaker, Pseudosciaena crocea R [J]. Periodical of Ocean University of China, 2012(42): 75-82.

    [31] 孙敬锋, 贾艳丽. 鱼类肠道菌群与免疫调节研究进展 [J]. 水产科技情报, 2016, 43(2): 96-100.]

    Sun J F, Jia Y L. Research progress of fish intestinal flora and immune regulation [J]. Fishing Science and Technology Information, 2016, 43(2): 96-100. [

    [32]

    Hou S Q, Li J Y, Huang J, et al. Effects of dietary phospholipid and cholesterol levels on antioxidant capacity, nonspecial immune response and intestinal microflora of juvenile female crayfish, Procambarus clarkii [J]. Aquaculture Reports, 2022(25): 101245.

    [33]

    Zhao D , Zhang X N, Liu D S, et al. Cu accumulation, detoxification and tolerance in the red swamp crayfish Procambarus clarkii [J]. Ecotoxicology and Environmental Safety, 2019(175): 201-207.

    [34]

    Martínez-Álvarez R M, Morales A E, Sanz A. Antioxidant defenses in fish: biotic and abiotic factors [J]. Reviews in Fish Biology and Fisheries, 2005, 15(1-2): 75-88. doi: 10.1007/s11160-005-7846-4

    [35]

    Liu Y L, Zhong L, Chen T, et al. Dietary sanguinarine supplementation on the growth performance, immunity and intestinal health of grass carp (Ctenopharyngodon idellus) fed cottonseed and rapeseed meal diets [J]. Aquaculture, 2020(528): 735521. doi: 10.1016/j.aquaculture.2020.735521

    [36] 曹锡清. 脂质过氧化对细胞与机体的作用 [J]. 生物化学与生物物理进展, 1986, 13(2): 17-23.]

    Cao X Q. Effects of lipid peroxidation on cells and organism [J]. Progress in Biochemistry and Biophysics, 1986, 13(2): 17-23. [

    [37] 陈晨. 菜粕、发酵菜粕替代鱼粉及添加异硫氰酸酯对凡纳滨对虾(Litopenaeus vannamei)生长、生理生化和代谢的影响 [D]. 上海: 上海海洋大学, 2023: 65-81.]

    Chen C. Effect of rapeseed meal, fermented rapeseed meal substituting fishmeal and dietary isothiocyanate on growth, physiology, biochemistry and metabolism of Litopenaeus vannamei [D]. Shanghai: Shanghai Ocean University, 2023: 65-81. [

    [38]

    Epstein M D. Increased gut permeability following burn trauma [J]. Archives of Surgery, 1991, 126(2): 198. doi: 10.1001/archsurg.1991.01410260086012

    [39]

    Luo J B, Feng L, Jiang W D, et al. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine [J]. Fish & Shellfish Immunology, 2014, 40(1): 197-207.

    [40]

    Hervás G, Pérez V, Giráldez F J, et al. Intoxication of sheep with quebracho tannin extract [J]. Journal of Comparative Pathology, 2003, 129(1): 44-54. doi: 10.1016/S0021-9975(02)00168-8

    [41] 刘平, 孙林, 曾作财, 等. 菜籽粕中单宁的固态发酵降解和条件优化 [J]. 饲料研究, 2018, 41(4): 70-75.]

    Liu P, Sun L, Zeng Z C, et al. Degradation of tannin in rapeseed meal by solid-state fermentation and optimization of conditions [J]. Feed research, 2018, 41(4): 70-75. [

    [42] 姚静婷, 孔纯, 华雪铭, 等. 水解单宁对暗纹东方鲀摄食偏好、消化代谢和抗氧化能力的效应研究 [J]. 水产学报, 2019, 43(6): 1449-1462.]

    Yao J T, Kong C, Hua X M, et al. Effects of supplemental hydrolysable tannin on feeding preference, nutrition digestion and antioxidant ability of obscure puffer (Takifugu fasciatus) [J]. Journal of Fisheries of China, 2019, 43(6): 1449-1462. [

    [43]

    Varanka Z, Rojik I, Varanka I, et al. Biochemical and morphological changes in carp (Cyprinus carpio L.) liver following exposure to copper sulfate and tannic acid [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2001, 128(3): 467-477.

    [44]

    Bu X Y, Wang Y Y, Chen F Y, et al. An evaluation of replacing fishmeal with rapeseed meal in the diet of Pseudobagrus ussuriensis: growth, feed utilization, nonspecific immunity, and growth-related gene expression [J]. Journal of the World Aquaculture Society, 2017, 49(6): 1068-1080.

    [45] 黄辉龙, 邹晓庭. 菜籽饼(粕)中抗营养因子检测方法的研究进展 [J]. 中国饲料, 2010(17): 3-7.] doi: 10.3969/j.issn.1004-3314.2010.17.003

    Huang H L, Zou X T. Research advance on methods for determining anti-nutritional factors in rapeseed meal [J]. China Feed, 2010(17): 3-7. [ doi: 10.3969/j.issn.1004-3314.2010.17.003

    [46]

    Burel C, Boujard T, Escaffre A M, et al. Dietary low-glucosinolate rapeseed meal affects thyroid status and nutrient utilization in rainbow trout (Oncorhynchus mykiss) [J]. The British Journal of Nutrition, 2000, 83(6): 653-664. doi: 10.1017/S0007114500000830

    [47]

    Watanabe T, Tanemura N, Sugiura S. Effects of in vitro enzymatic digestion of rapeseed meal, soybean meal, macrophyte meal, and algal meal on in vivo digestibilities of protein and minerals evaluated using common carp (Cyprinus carpio) [J]. Aquaculture Science, 2016, 64(2): 215-222.

    [48] 夏超笃, 黄彦, 湛穗璋, 等. 博落回提取物对断奶仔猪生长性能、血清免疫指标及抗氧化指标的影响 [J]. 中国畜牧兽医, 2018, 45(11): 3070-3076.]

    Xia C D, Huang Y, Zhan S Z, et al. Effects of Macleaya cordata extracts on growth performance, serum immune indexes and antioxidant indexes of weaning piglets [J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(11): 3070-3076. [

    [49]

    Jiang W D, Wen H L, Liu Y, et al. Enhanced muscle nutrient content and flesh quality, resulting from tryptophan, is associated with anti-oxidative damage referred to the Nrf2 and TOR signalling factors in young grass carp (Ctenopharyngodon idella): avoid tryptophan deficiency or excess [J]. Food Chemistry, 2016(199): 210-219. doi: 10.1016/j.foodchem.2015.12.003

    [50]

    Hemre G I, Waagbø R, Hjeltnes B, et al. Effect of gelatinized wheat and maize in diets for large Atlantic salmon (Salmo salar L.) on glycogen retention, plasma glucose and fish health [J]. Aquaculture Nutrition, 1996, 2(1): 33-39. doi: 10.1111/j.1365-2095.1996.tb00005.x

    [51] 张明明, 文华, 蒋明, 等. 饲料菜粕水平对吉富罗非鱼幼鱼生长、肝脏组织结构和部分非特异性免疫指标的影响 [J]. 水产学报, 2011, 35(5): 748-755.]

    Zhang M M, Wen H, Jiang M, et al. Effects of dietary rapeseed meal levels on growth liver tissue structure and some nonspecific immunity indices of juvenile GIFT tilapia (Oreochromisni loticus) [J]. Journal of Fisheries of China, 2011, 35(5): 748-755. [

    [52] 吴志新, 覃江凤, 陈孝煊, 等. 双低菜籽粕对草鱼和鲤甲状腺、肝、肾组织结构的影响 [J]. 华中农业大学学报, 2006, 25(4): 426-430.] doi: 10.3321/j.issn:1000-2421.2006.04.021

    Wu Z X, Qin J F, Chen X X, et al. The effect of double-low rapeseed meal on the tissue structure of thyroid gland, liver and kidney in grass carp and common carp [J]. Journal of Huazhong Agricultural University, 2006, 25(4): 426-430. [ doi: 10.3321/j.issn:1000-2421.2006.04.021

    [53] 蒋春琴, 冷向军, 李小勤, 等. 饲料中菜粕和棉粕的不同配比对异育银鲫生长性能、血浆生化指标和棉酚残留的影响 [J]. 水产学报, 2010, 34(12): 1917-1925.]

    Jiang C Q, Leng X J, Li X Q, et al. Effects of different proportion of rapeseed meal and cottonseed meal on growth performance, plasma biochemical indicators and gossypol residues of carp (Carassius auratus gibelio) [J]. Journal of Fisheries of China, 2010, 34(12): 1917-1925. [

    [54] 何烈华, 邢廷铣, 陈惠萍, 等. 腈在肉鸡体内蓄积和分布特性及其对物质代谢的影响 [J]. 动物营养学报, 1995, 7(3): 15-20.]

    He L H, Xing T M, Chen H P, et al. Tee characteristics of accumulation and distribution of the nitrile and its effects on metabolism in broiler chickens [J]. Chinese Journal of Animal Nutrition, 1995, 7(3): 15-20. [

    [55] 刘佳, 闫子豪, 么宝兰, 等. 鱼类肠道组织结构、功能、影响因素及其保护物质的研究进展 [J]. 水产科技情报, 2023, 50(2): 121-127.]

    Liu J, Yan Z H, Yao B L, et al. Research progress on the tissue structure, function, influencing factors and protective substances of fish intestine [J]. Fisheries Science & Technology Information, 2023, 50(2): 121-127. [

    [56]

    Iqbal M, Yaqub A, Ayub M. Partial and full substitution of fish meal and soybean meal by canola meal in diets for genetically improved farmed Tilapia (O. niloticus): growth performance, carcass composition, serum biochemistry, immune response, and intestine histology [J]. Journal of Applied Aquaculture, 2022, 34(4): 829-854. doi: 10.1080/10454438.2021.1890661

    [57]

    Wu Z K, Chen J, Ahmed Pirzado S, et al. The effect of fermented and raw rapeseed meal on the growth performance, immune status and intestinal morphology of broiler chickens [J]. Journal of Animal Physiology and Animal Nutrition, 2021, 106(2): 296-307.

    [58] 韩庆炜, 梁萌青, 姚宏波, 等. 鲈鱼对7种饲料原料的表观消化率及其对肝脏、肠道组织结构的影响 [J]. 渔业科学进展, 2011, 32(1): 32-39.] doi: 10.3969/j.issn.1000-7075.2011.01.005

    Han Q W, Liang M Q, Yao H B, et al. Effects of seven feed ingredients on growth performance, and liver and intestine histology of Lateolabrax japonicas [J]. Progress in Fishery Sciences, 2011, 32(1): 32-39. [ doi: 10.3969/j.issn.1000-7075.2011.01.005

    [59]

    Shi X, Luo Z, Chen G H, et al. Replacement of fishmeal by a mixture of soybean meal and Chlorella meal in practical diets for juvenile crucian carp, Carassius auratus [J]. Journal of the World Aquaculture Society, 2017, 48(5): 770-781. doi: 10.1111/jwas.12403

    [60] 张锦秀, 周小秋, 倪学勤, 等. 分离大豆蛋白对幼建鲤生长性能及肠道的影响 [J]. 水产学报, 2008, 32(1): 84-90.]

    Zhang J X, Zhou X Q, Ni X Q, et al. Effects of soybean protein isolate on growth performance and intestine of Cyprinus carpio var. Jian juveniles [J]. Journal of Fisheries of China, 2008, 32(1): 84-90. [

图(1)  /  表(8)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  7
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-25
  • 修回日期:  2024-12-17
  • 网络出版日期:  2025-01-24
  • 刊出日期:  2025-06-14

目录

/

返回文章
返回