水华蓝藻以非磷脂替代磷脂响应低磷胁迫的生态学意义及其研究进展

熊珍贵, 刘正晗, 宋春雷, 敖子强, 曹秀云

熊珍贵, 刘正晗, 宋春雷, 敖子强, 曹秀云. 水华蓝藻以非磷脂替代磷脂响应低磷胁迫的生态学意义及其研究进展[J]. 水生生物学报. DOI: 10.7541/2025.2025.0043
引用本文: 熊珍贵, 刘正晗, 宋春雷, 敖子强, 曹秀云. 水华蓝藻以非磷脂替代磷脂响应低磷胁迫的生态学意义及其研究进展[J]. 水生生物学报. DOI: 10.7541/2025.2025.0043
XIONG Zhen-Gui, LIU Zheng-Han, SONG Chun-Lei, AO Zi-Qiang, CAO Xiu-Yun. ECOLOGICAL SIGNIFICANCE AND RESEARCH PROGRESS OF CYANOBACTERIAL BLOOMS RESPONDING TO LOW PHOSPHORUS STRESS BY REPLACING PHOSPHOLIPIDS WITH NON-PHOSPHOLIPIDS[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2025.0043
Citation: XIONG Zhen-Gui, LIU Zheng-Han, SONG Chun-Lei, AO Zi-Qiang, CAO Xiu-Yun. ECOLOGICAL SIGNIFICANCE AND RESEARCH PROGRESS OF CYANOBACTERIAL BLOOMS RESPONDING TO LOW PHOSPHORUS STRESS BY REPLACING PHOSPHOLIPIDS WITH NON-PHOSPHOLIPIDS[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2025.0043
熊珍贵, 刘正晗, 宋春雷, 敖子强, 曹秀云. 水华蓝藻以非磷脂替代磷脂响应低磷胁迫的生态学意义及其研究进展[J]. 水生生物学报. CSTR: 32229.14.SSSWXB.2025.0043
引用本文: 熊珍贵, 刘正晗, 宋春雷, 敖子强, 曹秀云. 水华蓝藻以非磷脂替代磷脂响应低磷胁迫的生态学意义及其研究进展[J]. 水生生物学报. CSTR: 32229.14.SSSWXB.2025.0043
XIONG Zhen-Gui, LIU Zheng-Han, SONG Chun-Lei, AO Zi-Qiang, CAO Xiu-Yun. ECOLOGICAL SIGNIFICANCE AND RESEARCH PROGRESS OF CYANOBACTERIAL BLOOMS RESPONDING TO LOW PHOSPHORUS STRESS BY REPLACING PHOSPHOLIPIDS WITH NON-PHOSPHOLIPIDS[J]. ACTA HYDROBIOLOGICA SINICA. CSTR: 32229.14.SSSWXB.2025.0043
Citation: XIONG Zhen-Gui, LIU Zheng-Han, SONG Chun-Lei, AO Zi-Qiang, CAO Xiu-Yun. ECOLOGICAL SIGNIFICANCE AND RESEARCH PROGRESS OF CYANOBACTERIAL BLOOMS RESPONDING TO LOW PHOSPHORUS STRESS BY REPLACING PHOSPHOLIPIDS WITH NON-PHOSPHOLIPIDS[J]. ACTA HYDROBIOLOGICA SINICA. CSTR: 32229.14.SSSWXB.2025.0043

水华蓝藻以非磷脂替代磷脂响应低磷胁迫的生态学意义及其研究进展

基金项目: 国家自然科学基金(42177246; 1951119); 湖北省重点研发计划项目(2022BCA066 )资助
详细信息
    作者简介:

    熊珍贵(1998—), 男, 硕士; 主要研究方向为藻类营养响应。E-mail: 1625896482@qq.com

    通信作者:

    曹秀云(1972—), 女, 博士; 主要研究方向为蓝藻生理生态学。E-mail: caoxy@ihb.ac.cn

  • 中图分类号: X524

ECOLOGICAL SIGNIFICANCE AND RESEARCH PROGRESS OF CYANOBACTERIAL BLOOMS RESPONDING TO LOW PHOSPHORUS STRESS BY REPLACING PHOSPHOLIPIDS WITH NON-PHOSPHOLIPIDS

Funds: Supported by the National Natural Science Foundation of China (42177246; 91951119); Key Research & Development Program of Hubei Province (2022BCA066)
    Corresponding author:
  • 摘要:

    淡水蓝藻水华在全球范围内广泛发生, 磷是限制蓝藻生长繁殖的关键元素之一, 水体富营养化被认为是引发蓝藻大量增殖的主要原因。然而, 在极低的磷环境下, 蓝藻仍可维持较高的生物量, 其可能的内在机制为, 蓝藻能以非磷脂替代磷脂, 减少藻细胞这一重要磷的组分, 降低藻细胞对磷的需求, 进而克服低磷胁迫, 取得竞争优势甚至形成水华。文章综述了典型水华蓝藻在磷胁迫条件下如何调控脂质代谢, 利用硫脂(如硫代异鼠李糖甘油二酯, SQDG)和糖脂(如单半乳糖甘油二酯, MGDG, 双半乳糖甘油二酯, DGDG)替代磷脂[如磷脂酰甘油(PG)等]响应低磷胁迫的策略, 着重探讨了这一机制的生态学意义。文章从新的视角揭示了水华蓝藻的低磷响应策略, 探讨了驱动蓝藻水华发生的机制, 从而为其控制提供了新的思路, 在现有蓝藻水华防控方法主要基于控制高营养盐理论的背景下显得尤为重要。

    Abstract:

    Freshwater cyanobacterial blooms occur globally, with phosphorus (P) being a key limiting nutrient for cyanobacterial growth and proliferation. Eutrophication is widely recognized as the primary driver of cyanobacterial dominance. However, even under extremely low phosphorus conditions, cyanobacteria can maintain high biomass levels. A potential intrinsic mechanism involves their ability to substitute phospholipids with non-phosphorus lipids (e.g., sulfolipids and glycolipids), thereby reducing cellular phosphorus demand and overcoming P limitation, which grants them a competitive advantage to form blooms. This review synthesizes strategies employed by typical bloom-forming cyanobacteria to regulate lipid metabolism under phosphorus stress, particularly through replacing phospholipids (e.g., phosphatidylglycerol, PG) with sulfolipids (e.g., sulfoquinovosyldiacylglycerol, SQDG) and glycolipids (e.g., monogalactosyldiacylglycerol, MGDG; digalactosyldiacylglycerol, DGDG). The ecological implications of this adaptation mechanism are critically examined. By unveiling novel phosphorus-sparing strategies in cyanobacteria, this study provides new insights into the mechanisms driving bloom formation and proposes innovative approaches for bloom control. This is particularly significant given that current prevention and control methods primarily focus on reducing nutrient loads, underscoring the need to revisit conventional eutrophication management paradigms.

  • 图  1   蓝藻响应低磷胁迫的生理响应模式图[53, 54]

    碱性磷酸酶alkaline phosphatase (AP); 多聚磷酸盐polyphosphate (PolyP); 高亲和力磷酸盐转运系统high-affinity phosphate transport system (PsT); 多聚磷酸激酶polyphosphate kinase (PPK); 外切聚磷酸酶exophosphatase (PPX); 三磷酸腺苷adenosine triphosphate (ATP); 二磷酸腺苷adenosine diphosphate (ADP); 膦酸盐ABC转运体基因簇Phosphonate ABC transporter gene cluster (PhnCDE)

    Figure  1.   Physiological response pattern of cyanobacteria in response to low phosphorus stress

    图  2   蓝藻以非磷脂替代磷脂响应低磷胁迫

    sqdB. 用于 SQDG 合成; mgdE. 用于 MGDG 合成; sqdB. involved in SQDG synthesis; mgdE. involved in MGDG synthesis

    Figure  2.   Cyanobacteria respond to low phosphorus stress by replacing phospholipids with nonphospholipids

    图  3   非磷脂替代磷脂代谢途径示意图

    磷酸二羟基丙酮Dihydroxyacetone phosphate (DHAP); 3-磷酸甘油Glycerol phosphate (G3P); 磷脂酸Phosphatidic acid (PA); CDP甘油二酯CDP-diacylglycerol (CDP-DAG); 磷脂酰甘油磷酸酯Phosphatidylglycerolphosphate (PGP); 1, 2-二酰基-sn-甘油Diacylglycerol (DAG)

    Figure  3.   Schematic diagram of non-phospholipid substitution for phospholipid metabolism pathway

  • [1] 孔繁翔, 高光. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考 [J]. 生态学报, 2005, 25(3): 589-595.] doi: 10.3321/j.issn:1000-0933.2005.03.028

    Kong F X, Gao G. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes [J]. Acta Ecologica Sinica, 2005, 25(3): 589-595. [ doi: 10.3321/j.issn:1000-0933.2005.03.028

    [2] 秦伯强, 王小冬, 汤祥明, 等. 太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策 [J]. 地球科学进展, 2007, 22(9): 896-906.] doi: 10.3321/j.issn:1001-8166.2007.09.003

    Qin B Q, Wang X D, Tang X M, et al. Drinking water crisis caused by eutrophication and cyanobacterial bloom in Lake Taihu: cause and measurement [J]. Advances in Earth Science, 2007, 22(9): 896-906. [ doi: 10.3321/j.issn:1001-8166.2007.09.003

    [3]

    Qin B, Gao G, Zhu G, et al. Lake eutrophication and its ecosystem response [J]. Chinese Science Bulletin, 2013, 58(9): 961-970.

    [4]

    Geng M, Zhang W, Hu T, et al. Eutrophication causes microbial community homogenization via modulating generalist species [J]. Water Research, 2022(210): 118003.

    [5]

    Jochimsen E M, Carmichael W W, An J S, et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil [J]. The New England Journal of Medicine, 1998, 338(13): 873-878.

    [6]

    Lee K L, Jung K Y, et al. Effect of nitrogen and phosphorus on growth and microcystin production in three Microcystis species [J]. Journal of Environmental Biology, 2018, 39(4): 413-418.

    [7]

    Chia M A, Jankowiak J G, Kramer B J, et al. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions [J]. Harmful Algae, 2018(74): 67-77.

    [8]

    Qian Y P, Li X T, Tian R N. Effects of aqueous extracts from the rhizome of Pontederia cordata on the growth and interspecific competition of two algal species [J]. Ecotoxicology and Environmental Safety, 2019(168): 401-407.

    [9]

    Fei X, Li P, Li X, et al. Low-temperature- and phosphate deficiency-responsive elements control DGTT3 expression in Chlamydomonas reinhardtii [J]. Journal of Eukaryotic Microbiology, 2018, 65(1): 117-126.

    [10]

    Hałemejko G Z, Chróst R. The role of phosphatases in phosphorus mineralization during decomposition of lake phytoplankton blooms [J]. Archiv Fur Hydrobiologie, 1984(101): 489-502.

    [11] 朱广伟, 秦伯强, 高光, 等. 长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系 [J]. 环境科学学报, 2004, 24(3): 381-388.] doi: 10.3321/j.issn:0253-2468.2004.03.003

    Zhu G W, Qin B Q, Gao G, et al. Fractionation of phosphorus in sediments and its relation with soluble phosphorus contents in shallow lakes located in the middle and lower reaches of Changjiang River, China [J]. Acta Scientiae Circumstantiae, 2004, 24(3): 381-388. [ doi: 10.3321/j.issn:0253-2468.2004.03.003

    [12]

    Surin B P, Rosenberg H, Cox G B. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships [J]. Journal of Bacteriology, 1985, 161(1): 189-198.

    [13]

    Dyhrman S T, Jenkins B D, Rynearson T A, et al. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response [J]. PLoS One, 2012, 7(3): e33768.

    [14]

    McLaughlin K, Sohm J A, Cutter G A, et al. Phosphorus cycling in the sargasso sea: investigation using the oxygen isotopic composition of phosphate, enzyme-labeled fluorescence, and turnover times [J]. Global Biogeochemical Cycles, 2013, 27(2): 375-387.

    [15]

    Van Mooy B A S, Rocap G, Fredricks H F, et al. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23): 8607-8612.

    [16]

    Peng Z, Feng L, Wang X, et al. Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling [J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2019, 1864(12): 158522.

    [17]

    Ho J C, Michalak A M, Pahlevan N. Widespread global increase in intense lake phytoplankton blooms since the 1980s [J]. Nature, 2019, 574(7780): 667-670.

    [18]

    Sukharevich V I, Polyak Y M. Global occurrence of cyanobacteria: causes and effects (review) [J]. Inland Water Biology, 2020, 13(4): 566-575.

    [19]

    Petkuviene J, Zilius M, Lubiene I, et al. Phosphorus cycling in a freshwater estuary impacted by cyanobacterial blooms [J]. Estuaries and Coasts, 2016, 39(5): 1386-1402.

    [20]

    Huo D, Gan N, Geng R, et al. Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins [J]. Harmful Algae, 2021(109): 102106.

    [21]

    Ndlela L L, Oberholster P J, Van Wyk J H, et al. An overview of cyanobacterial bloom occurrences and research in Africa over the last decade [J]. Harmful Algae, 2016(60): 11-26.

    [22]

    Massey I Y, Al osman M, Yang F. An overview on cyanobacterial blooms and toxins production: their occurrence and influencing factors [J]. Toxin Reviews, 2022, 41(1): 326-346.

    [23] 杨柳燕, 杨欣妍, 任丽曼, 等. 太湖蓝藻水华暴发机制与控制对策 [J]. 湖泊科学, 2019, 31(1): 18-27.] doi: 10.18307/2019.0102

    Yang L Y, Yang X Y, Ren L M, et al. Mechanism and control strategy of cyanobacterial bloom in Lake Taihu [J]. Journal of Lake Sciences, 2019, 31(1): 18-27. [ doi: 10.18307/2019.0102

    [24] 许海, 陈洁, 朱广伟, 等. 水体氮、磷营养盐水平对蓝藻优势形成的影响 [J]. 湖泊科学, 2019, 31(5): 1239-1247.] doi: 10.18307/2019.0518

    Xu H, Chen J, Zhu G W, et al. Effect of concentrations of phosphorus and nitrogen on the dominance of cyanobacteria [J]. Journal of Lake Sciences, 2019, 31(5): 1239-1247. [ doi: 10.18307/2019.0518

    [25]

    Salmaso N, Capelli C, Shams S, et al. Expansion of bloom-forming Dolichospermum lemmermannii (Nostocales, Cyanobacteria) to the deep lakes south of the Alps: Colonization patterns, driving forces and implications for water use [J]. Harmful Algae, 2015(50): 76-87.

    [26]

    Sterner R W, Reinl K L, Lafrancois B M, et al. A first assessment of cyanobacterial blooms in oligotrophic Lake Superior [J]. Limnology and Oceanography, 2020, 65(12): 2984-2998.

    [27]

    Molot L A, Schiff S L, Venkiteswaran J J, et al. Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management [J]. Lake and Reservoir Management, 2021, 37(2): 120-142.

    [28]

    Reinl K L, Brookes J D, Carey C C, et al. Cyanobacterial blooms in oligotrophic lakes: shifting the high-nutrient paradigm [J]. Freshwater Biology, 2021, 66(9): 1846-1859.

    [29]

    Lefler F W, Barbosa M, Zimba P V, et al. Spatiotemporal diversity and community structure of cyanobacteria and associated bacteria in the large shallow subtropical Lake Okeechobee (Florida, United States) [J]. Frontiers in Microbiology, 2023(14): 1219261.

    [30]

    Smith V H, Wood S A, McBride C G, et al. Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand [J]. Inland Waters, 2016, 6(2): 273-283.

    [31]

    Wu P, Lu Y, Lu Y, et al. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu [J]. Water Environment Research, 2020, 92(1): 138-148.

    [32]

    Wei N, Chen A, Guo X, et al. Changes in nitrogen metabolism of phosphorus-starved bloom-forming Cyanobacterium Microcystis aeruginosa: Implications for nutrient management [J]. Science of the Total Environment, 2023(903): 166832.

    [33]

    Liang Z, Soranno P A, Wagner T. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes [J]. Water Research, 2020(185): 116236.

    [34]

    Ghaffar S, Stevenson R J, Khan Z. Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake [J]. PLoS One, 2017, 12(3): e0174349.

    [35]

    Paerl H W, Otten T G. Harmful cyanobacterial blooms: causes, consequences, and controls [J]. Microbial Ecology, 2013, 65(4): 995-1010.

    [36]

    Tonetta D, Hennemann M C, Brentano D M, et al. Considerations regarding the dominance of Cylindrospermopsis raciborskii under low light availability in a low phosphorus lake [J]. Acta Botanica Brasilica, 2015, 29(3): 448-451.

    [37]

    Paerl H W, Huisman J. Blooms like it hot [J]. Science), 2008, 320(5872): 57-58.

    [38]

    Briddon C L, Szekeres E, Hegedüs A, et al. The combined impact of low temperatures and shifting phosphorus availability on the competitive ability of cyanobacteria [J]. Scientific Reports, 2022, 12(1): 16409.

    [39]

    Qiu G W, Zheng W C, Yang H M, et al. Phosphorus deficiency alleviates iron limitation in Synechocystis cyanobacteria through direct PhoB-mediated gene regulation [J]. Nature Communications, 2024, 15(1): 4426.

    [40]

    Li J, Wang Z, Cao X, et al. Effect of orthophosphate and bioavailability of dissolved organic phosphorous compounds to typically harmful Cyanobacterium Microcystis aeruginosa [J]. Marine Pollution Bulletin, 2015, 92(1/2): 52-58.

    [41]

    Dyhrman S, Ammerman J, Van Mooy B. Microbes and the marine phosphorus cycle [J]. Oceanography, 2007, 20(2): 110-116.

    [42]

    Harke M J, Berry D L, Ammerman J W, et al. Molecular response of the bloom-forming Cyanobacterium, Microcystis aeruginosa, to phosphorus limitation [J]. Microbial Ecology, 2012, 63(1): 188-198.

    [43]

    Xiao M, Burford M A, Prentice M J, et al. Phosphorus storage and utilization strategies of two bloom-forming freshwater cyanobacteria [J]. Proceedings Biological Sciences, 2023, 290(2003): 20231204.

    [44]

    Pitt F D, Mazard S, Humphreys L, et al. Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater Cyanobacterium [J]. Journal of Bacteriology, 2010, 192(13): 3512-3523.

    [45]

    Wan L, Chen X, Deng Q, et al. Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis) and its role in their succession [J]. Harmful Algae, 2019(84): 46-55.

    [46]

    Shi X, Yang L, Niu X, et al. Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness [J]. Microbiological Research, 2003, 158(4): 345-352.

    [47]

    Wang M, Zhan Y, Chen C, et al. Amplified cyanobacterial bloom is derived by polyphosphate accumulation triggered by ultraviolet light [J]. Water Research, 2022(222): 118837.

    [48]

    Van Mooy B A S, Fredricks H F, Pedler B E, et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity [J]. Nature, 2009, 458(7234): 69-72.

    [49]

    Peng G, Lin S, Fan Z, et al. Transcriptional and physiological responses to nutrient loading on toxin formation and photosynthesis in Microcystis aeruginosa FACHB-905 [J]. Toxins, 2017, 9(5): 168. doi: 10.3390/toxins9050168

    [50]

    Peng G, Wilhelm S W, Lin S, et al. Response of Microcystis aeruginosa FACHB-905 to different nutrient ratios and changes in phosphorus chemistry [J]. Journal of Oceanology and Limnology, 2018, 36(4): 1040-1052.

    [51]

    Duan Z, Tan X, Paerl H W, et al. Ecological stoichiometry of functional traits in a colonial harmful Cyanobacterium [J]. Limnology and Oceanography, 2021, 66(5): 2051-2062.

    [52]

    Duan Z, Tan X, Shi L, et al. Phosphorus accumulation in extracellular polymeric substances (EPS) of colony-forming cyanobacteria challenges imbalanced nutrient reduction strategies in eutrophic lakes [J]. Environmental Science & Technology, 2023, 57(4): 1600-1612.

    [53]

    Lin S, Litaker R W, Sunda W G. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton [J]. Journal of Phycology, 2016, 52(1): 10-36.

    [54]

    Xiao M, Burford M A, Wood S A, et al. Schindler’s legacy: from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria [J]. FEMS Microbiology Reviews, 2022, 46(6): fuac029.

    [55]

    Thompson G A. Lipids and membrane function in green algae [J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1996, 1302(1): 17-45.

    [56]

    Jahns P, Latowski D, Strzalka K. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids [J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics, 2009, 1787(1): 3-14.

    [57]

    Singh S, Sinha R P, Haeder D P. Role of lipids and fatty acids in stress tolerance in cyanobacteria [J]. Acta Protozoologica, 2002(41): 297-308.

    [58]

    Domonkos I, Laczkó-Dobos H, Gombos Z. Lipid-assisted protein–protein interactions that support photosynthetic and other cellular activities [J]. Progress in Lipid Research, 2008, 47(6): 422-435.

    [59]

    Weier D, Müller C, Gaspers C, et al. Characterisation of acyltransferases from Synechocystis sp. PCC6803 [J]. Biochemical and Biophysical Research Communications, 2005, 334(4): 1127-1134.

    [60]

    Demé B, Cataye C, Block M A, et al. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids [J]. The FASEB Journal, 2014, 28(8): 3373-3383.

    [61]

    Bertilsson S, Berglund O, Karl D M, et al. Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea [J]. Limnology and Oceanography, 2003, 48(5): 1721-1731.

    [62]

    Shemi A, Schatz D, Fredricks H F, et al. Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi [J]. New Phytologist, 2016, 211(3): 886-898. doi: 10.1111/nph.13940

    [63]

    Peng Z, Miao X. Monoglucosyldiacylglycerol participates in phosphate stress adaptation in Synechococcus sp. PCC 7942 [J]. Biochemical and Biophysical Research Communications, 2020, 522(3): 662-668.

    [64]

    Aoki M, Sato N, Meguro A, et al. Differing involvement of sulfoquinovosyl diacylglycerol in photosystem II in two species of unicellular cyanobacteria [J]. European Journal of Biochemistry, 2004, 271(4): 685-693.

    [65]

    Nakajima Y, Umena Y, Nagao R, et al. Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in Thermosynechococcus elongatus [J]. Journal of Biological Chemistry, 2018, 293(38): 14786-14797.

    [66]

    Kobayashi K, Fujii S, Sato M, et al. Specific role of phosphatidylglycerol and functional overlaps with other thylakoid lipids in Arabidopsis chloroplast biogenesis [J]. Plant Cell Reports, 2015, 34(4): 631-642.

    [67]

    Hung C H, Endo K, Kobayashi K, et al. Characterization of Chlamydomonas reinhardtii phosphatidylglycerophosphate synthase in Synechocystis sp. PCC 6803 [J]. Frontiers in Microbiology, 2015(6): 842.

    [68]

    Song Y, Li R, Song W, et al. Microcystis spp. and phosphorus in aquatic environments: a comprehensive review on their physiological and ecological interactions [J]. The Science of the Total Environment, 2023 (878): 163136.

    [69]

    Xu X, Miao X. Glyceroglycolipid metabolism regulations under phosphate starvation revealed by transcriptome analysis in Synechococcus elongatus PCC 7942 [J]. Marine Drugs, 2020, 18(7): 360.

    [70]

    Hassan M J, Qi H, Cheng B, et al. Enhanced adaptability to limited water supply regulated by diethyl aminoethyl hexanoate (DA-6) associated with lipidomic reprogramming in two white clover genotypes [J]. Frontiers in Plant Science, 2022(13): 879331.

    [71]

    Sun Y, Song K, Liu L, et al. Sulfoquinovosyl diacylglycerol synthase 1 impairs glycolipid accumulation and photosynthesis in phosphate-deprived rice [J]. Journal of Experimental Botany, 2021, 72(18): 6510-6523.

    [72]

    Liebisch T, Başoglu M, Jäger S, et al. Influence of reduced amounts of sulfoquinovosyl diacylglycerol on the thylakoid membranes of the diatom Thalassiosira pseudonana [J]. Photosynthetica, 2023, 61(4): 425-431.

    [73]

    Liu Z, Wan L, Zhang J, et al. A novel strategy of bloom forming cyanobacteria Microcystis sp. in response to phosphorus deficiency: Using non-phosphorus lipids substitute phospholipids [J]. Harmful Algae, 2024(138): 102694.

    [74]

    Martin R M, Denney M K, Pound H L, et al. Sulfolipid substitution ratios of Microcystis aeruginosa and planktonic communities as an indicator of phosphorus limitation in Lake Erie [J]. Limnology and Oceanography, 2023, 68(5): 1117-1131.

    [75]

    Endo K, Kobayashi K, Wada H. Sulfoquinovosyldiacylglycerol has an essential role in Thermosynechococcus elongatus BP-1 under phosphate-deficient conditions [J]. Plant & Cell Physiology, 2016, 57(12): 2461-2471.

    [76]

    Bagnato C, Prados M B, Franchini G R, et al. Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway [J]. BMC Genomics, 2017, 18(1): 223.

    [77]

    Peng Z, Miao X. Monoglucosyldiacylglycerol participates in phosphate stress adaptation in Synechococcus sp. PCC 7942 [J]. Biochemical and Biophysical Research Communications, 2020, 522(3): 662-668.

    [78]

    Sato N, Ebiya Y, Kobayashi R, et al. Disturbance of cell-size determination by forced overproduction of sulfoquinovosyl diacylglycerol in the Cyanobacterium Synechococcus elongatus PCC 7942 [J]. Biochemical and Biophysical Research Communications, 2017, 487(3): 734-739.

    [79]

    Sato N, Kamimura R, Tsuzuki M. Dispensability of a sulfolipid for photoautotrophic cell growth and photosynthesis in a marine Cyanobacterium, Synechococcus sp. PCC 7002 [J]. Biochemical and Biophysical Research Communications, 2016, 477(4): 854-860. doi: 10.1016/j.bbrc.2016.06.148

    [80]

    Cumino A C, Marcozzi C, Barreiro R, et al. Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation [J]. Plant Physiology, 2007, 143(3): 1385-1397. doi: 10.1104/pp.106.091736

    [81]

    Malatinszky D, Steuer R, Jones P R. A comprehensively curated genome-scale two-cell model for the heterocystous Cyanobacterium anabaena sp. PCC 7120 [J]. Plant Physiology, 2017, 173(1): 509-523. doi: 10.1104/pp.16.01487

    [82]

    Gollan P J, Muth-Pawlak D, Aro E-M. Rapid transcriptional reprogramming triggered by alteration of the carbon/nitrogen balance has an impact on energy metabolism in Nostoc sp. PCC 7120 [J]. Life, 2020, 10(11): 297. doi: 10.3390/life10110297

    [83]

    Roumezi B, Xu X, Risoul V, et al. The Pkn22 kinase of Nostoc PCC 7120 is required for cell differentiation via the phosphorylation of HetR on a residue highly conserved in genomes of heterocyst-forming cyanobacteria [J]. Frontiers in Microbiology, 2019(10): 3140.

    [84]

    Dolman A M, Rücker J, Pick F R, et al. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus [J]. PLoS One, 2012, 7(6): e38757. doi: 10.1371/journal.pone.0038757

    [85]

    Zhang Q, Jia L, Chen Y, et al. Molecular mechanisms of the cyanobacterial response to different phosphorus sources [J]. Sustainability, 2024, 16(13): 5642. doi: 10.3390/su16135642

    [86]

    Aubriot L. Nitrogen availability facilitates phosphorus acquisition by bloom-forming cyanobacteria [J]. FEMS Microbiology Ecology, 2019, 95(2): 5195515.

    [87]

    Yang B, Li M, Phillips A, et al. Nonspecific phospholipase C4hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency [J]. The Plant Cell, 2021, 33(3): 766-780. doi: 10.1093/plcell/koaa054

图(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-12
  • 修回日期:  2025-03-10
  • 网络出版日期:  2025-04-08

目录

    /

    返回文章
    返回