基于线粒体基因组特征揭示南海长足螺系统进化关系

UNRAVELING THE PHYLOGENETIC RELATIONSHIP OF OXYNOE NANHAIENSIS SP. NOV. FROM THE SOUTH CHINA SEA BASED ON MITOCHONDRIAL GENOMIC CHARACTERISTICS

  • 摘要: 本研究通过解析南海长足螺(Oxynoe nanhaiensis sp. nov.)线粒体基因组特征并构建系统发育树, 旨在确定其分类学地位, 以丰富我国囊舌目物种多样性的记录。通过二代基因测序技术获得该物种线粒体全基因组, 并对其序列进行了结构分析, 分别利用近缘物种的线粒体基因组和cox1基因构建系统发育树, 确定其进化地位; 利用植物叶绿体基因保守片段序列设计引物, 通过PCR技术扩增该物种体内叶绿体基因, 分析其是否存在“盗食质体”现象。该物种线粒体基因组全长16189 bp, 包含13个蛋白编码基因、22个转运RNA (tRNA); 2个核糖体RNA (rRNA)基因及2个非编码区; 碱基组成表现出高A+T、低G+C含量的偏向性; 在蛋白质编码基因中共有4种起始密码子(AUG、GUG、UUG、AUA)、3种终止密码子(TAG、TAA和T); 碱基组成存在明显的AT偏向和弱AT负偏斜现象; tRNA二级结构预测中有8个能形成典型的三叶草结构, 其余14个三叶草图缺失DHU臂或TΨC臂等关键元件; 与序列比对相似度较高、大小相接近的物种以最大似然法(ML)构建线粒体基因组系统发育树, 但由于其相近种线粒体基因组信息缺少, 结果显示该物种与 Ascobulla fragilis 聚为一支。选取非囊舌目物种南海小叶海蛞蝓(Phyllidiella nanhaiensis)及囊舌目无壳类物种绒毛海天牛(Elysia tomentosa)作为外群, 采用ML法构建cox1进化树, 结果显示, 该物种与长足螺属(Oxynoe)物种归为一支, 其与三个长足螺属物种 O. kylie、O. jordani、O. viridiscox1基因遗传距离分别为5.00、3.93和5.15。结合形态特征与分子鉴定结果表明, 该物种为长足螺属新种, 将之命名为南海长足螺。与PCR扩增所获该物种体内叶绿体基因片段序列经比对后, 发现其与多种藻类相似度都高达94%以上, 疑似存在“盗食质体”现象, 这与部分囊舌目物种的特征相符。本研究解析了一种长足螺属新物种——南海长足螺的线粒体基因组序列及其结构特征, 并通过系统发育分析了南海长足螺的分类地位, 结果为囊舌目的物种多样性、系统发育与演化研究提供科学数据。

     

    Abstract: Oxynoe nanhaiensis sp. nov., a small green sea slug discovered in the coastal waters of the South China Sea, was investigated in this study. By analyzing the mitochondrial genomic characteristics and constructing phylogenetic trees, this research aims to determine its taxonomic status and contribute to the documentation of sacoglossan species diversity in China. The complete mitochondrial genome, obtained using next-generation sequencing (NGS) technology, is 16189 bp in length and comprises 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and 2 non-coding regions. The nucleotide composition exhibited high A+T and low G+C content bias. Among the protein-coding genes, four types of start codons (AUG, GUG, UUG, AUA) and three types of stop codons (TAG, TAA, and T) were identified, with an overall AT bias and weak negative AT skew. In the predicted secondary structures of tRNAs, eight could form the typical cloverleaf structure, while the remaining 14 lacked key elements such as the DHU arm or TΨC arm. A maximum likelihood (ML) phylogenetic tree was constructed using mitochondrial genomes of species with high sequence similarity and comparable genome sizes placed O. nanhaiensis in a clade with Ascobulla fragilis, though limited availability of mitochondrial genomic data from closely related species. In a cox1-based phylogeny using Phyllidiella nanhaiensis (a non-sacoglossan species) and Elysia tomentosa (a shell-less sacoglossan species) as outgroups, O. nanhaiensis clustered with other members of the genus Oxynoe. Genetic distances of the cox1 gene between O. nanhaiensis and three species—O. kylie, O. jordani, and O. viridis—were 5.00, 3.93, and 5.15, respectively. Combined with morphological characteristics and molecular identification, the results confirm the establishment of Oxynoe nanhaiensis, sp. nov. as a new species. PCR amplification of chloroplast gene fragments within the species showed over 94% similarity to multiple algal species, suggesting the presence of kleptoplasty, a feature consistent with some sacoglossan species. This study presents the first mitochondrial genome characterization of a new species in the genus Oxynoe and clarifies the phylogenetic position of Oxynoe nanhaiensis sp. nov., providing important data for research on the diversity, phylogeny, and evolution of sacoglossan species.

     

/

返回文章
返回