不同糖源及糖水平对大菱鲆糖代谢酶活性的影响

聂琴, 苗惠君, 苗淑彦, 陈尘悦, 李静, 张文兵, 麦康森

聂琴, 苗惠君, 苗淑彦, 陈尘悦, 李静, 张文兵, 麦康森. 不同糖源及糖水平对大菱鲆糖代谢酶活性的影响[J]. 水生生物学报, 2013, 37(3): 425-433. DOI: 10.7541/2013.39
引用本文: 聂琴, 苗惠君, 苗淑彦, 陈尘悦, 李静, 张文兵, 麦康森. 不同糖源及糖水平对大菱鲆糖代谢酶活性的影响[J]. 水生生物学报, 2013, 37(3): 425-433. DOI: 10.7541/2013.39
NIE Qin, MIAO Hui-Jun, MIAO Shu-Yan, CHEN Chen-Yue, LI Jing, ZHANG Wen-Bing, MAI Kang-Sen. EFFECTS OF DIETARY CARBOHYDRATE SOURCES AND LEVELS ON THE ACTIVITIES OF CARBOHYDRATE METABOLIC ENZYMES IN TURBOT[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(3): 425-433. DOI: 10.7541/2013.39
Citation: NIE Qin, MIAO Hui-Jun, MIAO Shu-Yan, CHEN Chen-Yue, LI Jing, ZHANG Wen-Bing, MAI Kang-Sen. EFFECTS OF DIETARY CARBOHYDRATE SOURCES AND LEVELS ON THE ACTIVITIES OF CARBOHYDRATE METABOLIC ENZYMES IN TURBOT[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(3): 425-433. DOI: 10.7541/2013.39

不同糖源及糖水平对大菱鲆糖代谢酶活性的影响

基金项目: 

国家自然科学基金项目(编号:31072219,30901108)资助

EFFECTS OF DIETARY CARBOHYDRATE SOURCES AND LEVELS ON THE ACTIVITIES OF CARBOHYDRATE METABOLIC ENZYMES IN TURBOT

  • 摘要: 采用34双因素实验设计, 以初始质量为(8.060.08) g的大菱鲆幼鱼(Scophthalmus maximus L.)为对象, 研究在饲料中添加3种糖源(葡萄糖、蔗糖和糊精)及4个水平(0、5%、15%、28%)对大菱鲆肝脏糖酵解关键酶己糖激酶(HK)、葡萄糖激酶(GK)、磷酸果糖激酶(PFK)、丙酮酸激酶(PK)和糖异生关键酶磷酸烯醇式丙酮酸羧激酶(PEPCK)、1, 6-二磷酸果糖酶(FBPase)活性的影响。结果表明: 饲料糖添加量从0升高到15%时, 大菱鲆的糖酵解酶GK和PK活性随饲料葡萄糖或糊精含量的增加而增加; 当饲料中葡萄糖或糊精含量为28%时, GK和PK活性有下降的趋势。3种糖源的4个添加水平对HK和PFK活性均无显著影响(P 0.05)。添加不同水平的葡萄糖对大菱鲆糖异生途径的PEPCK活性无显著影响(P 0.05), 但在饲料中葡萄糖添加量为5%时显著促进了FBPase活性(P 0.05), 当葡萄糖添加量升高为15%或28%时, FBPase活性与对照组无显著差异(P 0.05)。糊精作为饲料糖源时抑制了大菱鲆肝脏FBPase和PEPCK的活性, 而添加不同水平的蔗糖对FBPase和PEPCK活性的影响均不显著(P 0.05)。总的来说, 从大菱鲆幼鱼肝脏糖代谢角度而言, 在饲料中添加15%的葡萄糖或糊精时, 可以有效促进大菱鲆肝脏糖酵解能力; 较添加葡萄糖, 糊精在促进大菱鲆肝脏糖酵解的同时对糖异生存在一定程度的抑制。蔗糖作为饲料糖源时, 仅在添加量为28%时显著促进糖酵解酶GK活性, 糖酵解其他酶活性以及糖异生酶活性均不受蔗糖水平的显著影响。
    Abstract: A 34 two-factorial experiment was conducted to investigate the effects of dietary carbohydrate sources (glucose, sucrose and dextrin) and levels (0, 5%, 15% and 28%) on the activities of glycolytic and gluconeogenic enzymes in turbot (Scophthalmus maximus L.). The initial weight of the turbot was (8.060.08) g. Each diet was fed to triplicate groups of turbot in a flow-through water system for 9 weeks. Activities of hexokinase (HK), glucokinase (GK), 6-phosphofructokinase-1 (PFK), pyruvate kinase (PK), phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1, 6-bisphosphatase (FBPase) were examined. The results showed that hepatic GK and PK activity significantly increased with the increase of dietary carbohydrate level from 0 to 15%. However, there was a lack of further increase of them with 28% of dietary glucose or dextrin. HK and PFK activities were not significantly affected by dietary carbohydrate levels (P 0.05). Activities of FBPase, not PEPCK, were significantly increased by 5% of dietary glucose. Diets supplemented with dextrin depressed hepatic FBPase and PEPCK activity in comparison to that without carbohydrate supplements. Activities of these two enzymes were not significantly affected by dietary sucrose levels (P 0.05). The data suggested that diets supplemented with 15% of glucose or dextrin was effective in enhancing liver glycolytic enzyme activity. Dietary dextrin was more effective than glucose in depressing liver gluconeogenic enzyme activities. Only GK activity was significantly promoted by 28% of dietary sucrose, and no significant effect of dietary sucrose levels on the other enzymes was found.
  • [1]

    Meton I, Mediavilla D, Caseras A, et al. Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata)[J]. British Journal of Nutrition, 1999, 82: 223-232

    [2]

    Fernndez F, Anna G M, Crdoba M, et al. Effects of diets with distinct protein-to-carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurata L.) fingerlings[J]. Journal of Experimental Marine Biology and Ecology, 2007, 343: 1-10

    [3]

    Wilson R P. Utilization of dietary carbohydrate by fish[J]. Aquaculture, 1994, 124: 67-80

    [4]

    Dabrowski K, Guderley H. Intermediary metabolism[A]. In: Halver J E, Hardy R W (Eds.), Fish Nutrition, 3rd edn[C]. Academic Press, London. 2002, 309-365

    [5]

    Aikins K F, Hung S S O, Hughes S G, et al. Effects of feeding a high level of D-glucose on liver function in juvenile white sturgeon (Acipenser transmontanus)[J]. Fish Physiology and Biochemistry, 1993, 12(4): 317-325

    [6]

    Ma A J, Chen S Q, Lei J L, et al. Influences of the main energy matter in feed on the growth of young turbot, Scophthalmus maximus[J]. Oceanologia Etlimnologia Sinica, 2001, 32(5): 527-533[马爱军, 陈四清, 雷霁霖, 等. 饲料中主要能量物质对大菱鲆幼鱼生长的影响. 海洋与湖沼, 2001, 32(5): 527-533]

    [7]

    Enes P, Peres H, Couto A, et al. Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles[J]. Fish Physiology and Biochemistry, 2010, 36: 903-910

    [8]

    Enes P, Panserat S, Kaushik S, et al. Rapid metabolic adaptation in European sea bass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress[J]. Comparative Biochemistry and Physiology, Part A, 2006, 145: 73-81

    [9]

    Lin J H, Shiau S Y. Hepatic enzyme adaptation to different dietary carbohydrates in juvenile tilapia Oreochromis niloticus O. aureus[J]. Fish Physiology and Biochemistry, 1995, 14(2): 165-170

    [10]

    Shiau S Y, Lin Y H. Utilization of glucose and starch by the grouper Epinephelus malabaricus at 23℃[J]. Fisheries Science, 2002, 68: 991-995

    [11]

    Shikata T, Iwanaga S, Shimeno S. Effects of dietary glucose, fructose, and galactose on hepatopancreatic enzyme activities and body composition in carp[J]. Fisheries Science, 1994, 60(5): 613-617

    [12]

    Shiau S Y, Peng C Y. Protein-sparing effect by carbohydrates in diets for tilapia, Oreochromis niloticusO. aureus[J]. Aquaculture, 1993, 117: 327-334

    [13]

    Lee S M, Kim K D, Lall S P. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus)[J]. Aquaculture, 2003, 221: 427-438

    [14]

    Tan Q, Xie S Q, Zhu X, et al. Effect of dietary carbohydrate sources on growth performance and utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Gnther)[J]. Aquaculture Nutrition, 2006, 12: 61-70

    [15]

    Panserat S, Capilla E, Gutierrez J, et al. Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose[J]. Comparative Biochemistry and Physiology, Part B, 2001, 128: 275-283

    [16]

    Bergot F. Carbohydrate in rainbow trout diets: effects of the level and source of carbohydrate and the number of meals on growth and body composition[J]. Aquaculture, 1979, 18: 157-167

    [17]

    Buhler D R, Halver J E. Nutrition of salmonid fishes[J]. The Journal of Nutrition, 1961, 74: 307-318

    [18]

    Hung S S O, Storebakken T. Carbohydrate Utilization by Rainbow Trout Is Affected by Feeding Strategy[J]. Journal of Nutrition, 1994, 124: 223-230

    [19]

    Enes P, Panserat S, Kaushik S, et al. Hepatic glucokinase and glucose-6-phosphatase responses to dietary glucose and starch in gilthead sea bream (Sparus aurata) juveniles reared at two temperatures[J]. Comparative Biochemistry and Physiology, Part A, 2008, 149: 80-86

    [20]

    Hung S S O, Fynn A K, Lutes P, et al. Ability of juvenile white sturgeon (Acipenser transmontanus) to different carbohydrate sources[J]. Journal of Nutrition, 1989, 119: 727-733

    [21]

    Tian L X, Liu Y J, Hung S S O. Utilization of glucose and corn starch by juvenile grass carp[J]. North American Journal of Aquaculture, 2004, 66: 141-145

    [22]

    Couto A, Enes P, Peres H, et al. Effect of water temperature and dietary starch on growth and metabolic utilization of diets in gilthead sea bream (Sparus aurata) juveniles[J]. Comparative Biochemistry and Physiology, Part A, 2008, 151: 45-50

    [23]

    Enes P, Panserat S, Kaushik S. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles[J]. Comparative Biochemistry and Physiology, Part A, 2006, 143: 89-96

    [24]

    Kumar V, Sahu N P, Pal A K, et al. Modulation of key enzymes of glycolysis, gluconeogenesis, amino acid catabolism, and TCA cycle of the tropical freshwater fish Labeo rohita fed gelatinized and non-gelatinized starch diet[J]. Fish Physiology and Biochemistry, 2010, 36: 491-499

    [25]

    Hanson R W, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression[J]. Annual Review of Biochemistry, 1997, 66: 581-611

    [26]

    Li X N. Effects of dietary carbohydrate levels on growth performance, physiological status and body composition of turbot (Scophthalmus maximus L) and Japanese flounder (Paralichthys olivaceus)[D]. Thesis for Master of Science. Ocean University of China, Qingdao. 2011[李晓宁. 饲料糖水平对大菱鲆和牙鲆生长、生理状态参数及体组成的影响. 硕士学位论文, 中国海洋大学. 青岛. 2011]

    [27]

    He J H. Analyse and Check of Feedstuff[M]. Beijing: China Agricultural Press. 2005, 47[贺建华. 饲料分析与检测. 北京: 中国农业出版社. 2005, 47]

    [28]

    Polakof S, Mguez J M, Soengas J L. Dietary carbohydrates induce changes in glucosensing capacity and food intake of rainbow trout[J]. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 2008, 295: 478-489

    [29]

    Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254

    [30]

    Hamid N K A, Mahayat M, Hashim R. Utilization of different carbohydrate sources and starch forms by bagrid catfish (Mystus nemurus) (CuvVal)[J]. Aquaculture Nutrition, 2011, 17: 10-18

    [31]

    Lin X Z, Luo Y P, Xie X J. Effects of dietary carbohydrate level on glycolytic enzymes and serum glucose concentrations in the juvenile southern catfish, Silurus meridionalis Chen after feeding[J]. Acta Hydrobiologica Sinica, 2006, 30(3): 304-310[林小植, 罗毅平, 谢小军. 饲料碳水化合物水平对南方鲇幼鱼餐后糖酵解酶活性及血糖浓度的影响. 水生生物学报, 2006, 30(3): 304-310]

    [32]

    Panserat S, Medale F, Blin C, et al. Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead sea bream, and common carp[J]. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 2000, 278: 1164-1170

    [33]

    Zhang S L, Ai Q H, Xu W, et al. Effects of dietary carbohydrate to lipid ratio on growth, feed utilization, plasma glucose and glycolytic enzyme activities of juvenile darkbarbel catfish, Pelteobagrus vachelli[J]. Acta Hydrobiologica Sinica, 2012, 36(3): 466-473[张世亮, 艾庆辉, 徐玮, 等. 饲料中糖/脂肪比例对瓦氏黄颡鱼生长、饲料利用、血糖水平和肝脏糖酵解酶活力的影响. 水生生物学报, 2012, 36(3): 466-473]

    [34]

    Moreira I S, Peres H, Couto A, et al. Temperature and dietary carbohydrate level effects on performance and metabolic utilisation of diets in European sea bass (Dicentrarchus labrax) juveniles[J]. Aquaculture, 2008, 274: 153-160

    [35]

    Borrebaek B, Christophersen B. Hepatic glucose phosphorylating activities in perch (Perca fluviatilis) after different dietary treatments[J]. Comparative Biochemistry and Physiology, Part B, 2000, 125: 387-393

    [36]

    Panserat S, Mdale F, Brque J E, et al. Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss)[J]. The Journal of Nutritional Biochemistry, 2000, 11: 22-29

    [37]

    Ge X P. Effects of different carbohydrate and lipid levels in diets on carbohydrate metabolic enzymes in Topmouth Culter (Eryghroculter ilishaeformis bleeker)[D]. Thesis for Doctor of Science. Nanjing Agricultural University, Nanjing. 2006[戈贤平. 不同糖、脂含量日粮对翘嘴红鲌相关糖代谢酶的调节研究. 博士学位论文, 南京农业大学, 南京. 2006]

    [38]

    Kirchner S, Panserat S, Lim P L, et al. The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout[J]. Journal of Comparative Physiology B, 2008, 178: 429-438

    [39]

    Panserat S, Plagnes-Juan E, Kaushik S. Gluconeogenic enzyme gene expression is decreased by dietary carbohydrates in common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata)[J]. Biochimica et Biophysica Acta, 2002, 1579: 35-42

    [40]

    Panserat S, Perrin A, Kaushik S. High dietary lipids induce liver glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss)[J]. Biochemical and Molecular Action of Nutrients, 2002, 132(2): 137-141

  • 期刊类型引用(25)

    1. 王纪如,王旋,刘成栋,周慧慧,麦康森,何艮. 饲料中碳水化合物类型对大菱鲆幼鱼生长性能以及糖脂代谢的影响. 中国海洋大学学报(自然科学版). 2025(03): 133-144 . 百度学术
    2. 常丹萍,刘观忠,杨博文,赵国先,张东远,冯志华,李茜,张海华,王珏. 玉米-杂粕型饲粮中添加复合纤维素酶对蛋鸡生产性能、肝脏糖代谢、内源消化酶活性和肠道中葡萄糖转运载体基因表达的影响. 动物营养学报. 2024(02): 935-945 . 百度学术
    3. 宋淑青,张月星,马强,徐后国,卫育良,梁萌青. 饲料中淀粉和糊精对红鳍东方鲀生长和低氧耐受性的影响. 渔业科学进展. 2023(05): 21-32 . 百度学术
    4. 赵楠楠,崔彦婷,王忠凯,王聪,张志豪,邓之通,赵瑞阳,孙金凤,王仁杰,李玉全. 投喂频率对凡纳滨对虾(Litopenaeus vannamei)PI3K信号通路及糖代谢相关酶基因表达的影响. 海洋与湖沼. 2022(05): 1189-1196 . 百度学术
    5. 瞿子惠,刘丽宅,梁浩,赵晓东,李柏浩,闫晓刚,王丹,吴莉芳. 饲料碳水化合物水平对鱼类生长、免疫及糖代谢酶活性的研究进展. 饲料研究. 2022(20): 137-141 . 百度学术
    6. 任萍,梁旭方,方刘,何珊,肖倩倩,史登勇. 鳜对葡萄糖和糊精利用差异比较研究. 水生生物学报. 2020(02): 364-371 . 本站查看
    7. 瞿子惠,吴莉芳,周锴,杨兰,祖岫杰,段晶,王婧瑶. 饲料碳水化合物水平对洛氏鱥消化酶和糖代谢酶活性的影响. 西北农林科技大学学报(自然科学版). 2019(02): 25-32 . 百度学术
    8. 吴桐强,胡毅,钟蕾,陈团,陈云飞,曹晓莉,戴振炎. 高碳水化合物水平膨化饲料对大规格草鱼糖代谢相关指标的影响. 饲料工业. 2019(06): 44-49 . 百度学术
    9. 鲁耀鹏,张秀霞,李军涛,王冬梅,郑佩华,汪蕾,冼健安,王安利. 饲料糖源对红螯螯虾幼虾生长、肌肉组成、消化酶活力和免疫力的影响. 饲料研究. 2019(10): 48-52 . 百度学术
    10. 范泽,王安琪,孙金辉,程镇燕,白东清,乔秀亭,张宝龙,翟胜利. 不同木薯变性淀粉对鲤鱼生长及糖代谢的影响. 水产科学. 2018(01): 1-7 . 百度学术
    11. 杨品贤,贾高旺,夏辉,齐国山,李雪鹤,路晶晶,张宇,郭冉. 投喂频率和糖源组成对凡纳滨对虾糖代谢的影响. 大连海洋大学学报. 2018(05): 583-588 . 百度学术
    12. 马红娜,王猛强,陆游,袁野,孙蓬,周歧存. 碳水化合物种类和水平对大黄鱼生长性能、血清生化指标、肝脏糖代谢相关酶活性及肝糖原含量的影响. 动物营养学报. 2017(03): 824-835 . 百度学术
    13. 郝甜甜,王丽丽,王际英,李宝山,马晶晶,王世信,张燕,谭青,张利民. 维生素C对急性低温胁迫下珍珠龙胆石斑鱼HPI轴及生理生化的调控. 水产学报. 2017(03): 428-437 . 百度学术
    14. 黄岩,李建,王学习,王琨,叶继丹. 饲料中不同蛋白质和淀粉水平对斜带石斑鱼生长性能和肝脏相关代谢酶活性的影响. 水产学报. 2017(05): 746-756 . 百度学术
    15. 李弋,邱红,侯迎梅,陆游,申屠基康,周歧存. 腹腔注射葡萄糖对大黄鱼血液生化指标及糖代谢关键酶表达量的影响. 水产学报. 2017(05): 723-733 . 百度学术
    16. 马红娜,周飘苹,陆游,袁野,侯迎梅,孙蓬,丁立云,周歧存. 不同脂肪和葡萄糖水平对大黄鱼生长性能、肝脏糖酵解和糖异生关键酶活性的影响. 动物营养学报. 2016(10): 3110-3122 . 百度学术
    17. 董兰芳,张琴,程光平,许明珠,童潼,熊向英. 不同糖源饲料对卵形鲳鲹(Trachinotus ovatus)生长、体组成、血糖水平和肝脏糖酵解酶活力的影响. 渔业科学进展. 2016(05): 22-29 . 百度学术
    18. 房子恒,田相利,董双林. 低盐驯化对半滑舌鳎幼鱼生长、渗透生理及糖代谢酶活力影响的研究. 中国海洋大学学报(自然科学版). 2016(08): 19-27 . 百度学术
    19. 高妍,李静辉,方珍珍,程镇燕,乔秀亭,白东清. 饲料中糊精水平对乌克兰鳞鲤生长及糖代谢的影响. 动物营养学报. 2015(05): 1401-1410 . 百度学术
    20. 王猛强,周飘苹,黄文文,周歧存. 不同蛋白质水平下葡萄糖添加水平对大黄鱼生长性能、糖酵解和糖异生关键酶活性的影响. 动物营养学报. 2015(08): 2431-2442 . 百度学术
    21. 王猛强,黄文文,周飘苹,金敏,邱红,周歧存. 不同蛋白质和小麦淀粉水平对大黄鱼生长性能、糖酵解和糖异生关键酶活性的影响. 水产学报. 2015(11): 1690-1701 . 百度学术
    22. 迟淑艳,王学武,谭北平,杨奇慧,董晓慧,刘泓宇,章双. 饲料蛋氨酸对斜带石斑鱼生长性能、抗氧化及糖异生相关酶活性的影响. 水生生物学报. 2015(04): 645-652 . 本站查看
    23. 杨丽萍,秦超彬,郑文佳,卢荣华,聂国兴. 鱼类的葡萄糖感知与糖代谢调节研究进展. 水产学报. 2014(09): 1639-1649 . 百度学术
    24. 王际英,李培玉,宋志东,臧元奇,李宝山,乔洪金,柳旭东,马晶晶,张利民. 饲料中添加丝兰提取物对大菱鲆幼鱼生长和生理及水环境的影响. 水生生物学报. 2014(06): 1117-1126 . 本站查看
    25. 唐小红,樊佳佳,于凌云,白俊杰. 鱼类糖酵解关键酶的研究进展. 中国农学通报. 2014(02): 69-75 . 百度学术

    其他类型引用(30)

计量
  • 文章访问数:  1251
  • HTML全文浏览量:  0
  • PDF下载量:  811
  • 被引次数: 55
出版历程
  • 收稿日期:  2012-10-08
  • 修回日期:  2013-02-18
  • 发布日期:  2013-05-24

目录

    /

    返回文章
    返回