饲料蛋白水平对低温应激下吉富罗非鱼血清生化指标和HSP70 mRNA表达的影响

强俊, 杨弘, 王辉, 徐跑, 何杰

强俊, 杨弘, 王辉, 徐跑, 何杰. 饲料蛋白水平对低温应激下吉富罗非鱼血清生化指标和HSP70 mRNA表达的影响[J]. 水生生物学报, 2013, 37(3): 434-443. DOI: 10.7541/2013.40
引用本文: 强俊, 杨弘, 王辉, 徐跑, 何杰. 饲料蛋白水平对低温应激下吉富罗非鱼血清生化指标和HSP70 mRNA表达的影响[J]. 水生生物学报, 2013, 37(3): 434-443. DOI: 10.7541/2013.40
QIANG Jun, YANG Hong, WANG Hui, XU Pao, HE Jie. EFFECTS OF DIFFERENT DIETARY PROTEIN LEVELS ON SERUM BIOCHEMICAL INDICES AND EXPRESSION OF LIVER HSP70 mRNA IN GIFT TILAPIA (OREOCHROMIS NILOTICUS) UNDER LOW TEMPERATURE STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(3): 434-443. DOI: 10.7541/2013.40
Citation: QIANG Jun, YANG Hong, WANG Hui, XU Pao, HE Jie. EFFECTS OF DIFFERENT DIETARY PROTEIN LEVELS ON SERUM BIOCHEMICAL INDICES AND EXPRESSION OF LIVER HSP70 mRNA IN GIFT TILAPIA (OREOCHROMIS NILOTICUS) UNDER LOW TEMPERATURE STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(3): 434-443. DOI: 10.7541/2013.40

饲料蛋白水平对低温应激下吉富罗非鱼血清生化指标和HSP70 mRNA表达的影响

基金项目: 

国家科技支撑计划(2012BAD26B00)

现代农业产业技术体系建设专项资金罗非鱼产业技术体系(CARS-49)

江苏省普通高校研究生科研创新计划(CXLX11-0708)

中央公益性科研业务费专项资金(2011jbfa09)

广东省海洋渔业科技推广专项(A201009C02、A2010002-010(b))

广东省科技计划项目(2010B090500032)资助

EFFECTS OF DIFFERENT DIETARY PROTEIN LEVELS ON SERUM BIOCHEMICAL INDICES AND EXPRESSION OF LIVER HSP70 mRNA IN GIFT TILAPIA (OREOCHROMIS NILOTICUS) UNDER LOW TEMPERATURE STRESS

  • 摘要: 在水温27℃条件下, 分别对吉富罗非鱼(27.642.79) g投喂3组不同蛋白水平的饲料, 养殖周期56d。饲养结束后, 进行14℃低温应激实验, 研究低温应激后0-24h内, 鱼体血清生化指标与肝脏HSP70 mRNA表达量的变化。结果表明, 短期投喂50%蛋白水平的饲料可以提高罗非鱼血清中葡萄糖、总蛋白、甘油三酯与胆固醇水平以及血清谷丙转氨酶与谷草转氨酶活力。在低温应激后, 50%蛋白组血清葡萄糖、总蛋白、甘油三酯与胆固醇水平呈下降趋势, 而血清皮质醇水平与谷草转氨酶活力表现为先上升后下降变化。25%和38%蛋白组血清葡萄糖水平与谷丙转氨酶活力在应激期间呈上升趋势, 而谷草转氨酶与碱性磷酸酶活力和总蛋白与胆固醇水平呈先上升后下降变化。各实验组溶菌酶活力与肝脏HSP70 mRNA的表达量呈先上升后下降的变化。由此可知, 短期投喂高蛋白饲料可以提高罗非鱼血液中蛋白、血糖与脂肪含量, 增强鱼体抗应激能力, 同时, 高蛋白水平的饲料也会引起肝脏产生分解压力以及增加饲料成本。在生产中, 需要根据实际需要合理确定饲料的蛋白含量。
    Abstract: Three Groups of GIFT tilapias (Oreochromis niloticus) were fed with protein levels at 25%, 38% and 50%, respectively at 27℃ in 56 days. The initial body weights were (27.642.79) g. Uniform sizes of fish were selected for low temperature stress test at the end of rearing management. Tilapias in the experiment group were subjected to 14℃, and some biochemical indices in their serum and the expression of HSP70 mRNA in liver were examined over 0-24h. The results showed that, before low temperature stress, the 50% protein level group had highest serum glucose (GLU), total protein (TP), triglycride and cholesterol level; Serum glutamic-pyruvic transaminase (ALT) and glutamic-oxaloacetic transaminase (AST) activities was also increased. After low temperature stress, in the 50% protein level group, serum glucose (GLU), total protein (TP), triglyceride and cholesterol level decreased within 24h, while glutamic-pyruvic transaminase (ALT) and glutamic-oxaloacetic transaminase (AST) activities increased at first and then gradually declined. In 25% and 38% protein groups, serum glucose (GLU) level and glutamic-pyruvic transaminase (ALT) activity increased within 24h, whereas serum ALT, alkaline phosphatase (AKP), TP and cholesterol level increased at first and then decreased. Serum lysozyme activity and expression level of HSP70 mRNA in liver of all groups also increased at first and then gradually declined. In conclusion, diet supplemented with high protein level could improve serum protein, blood sugar and lipid level and enhance resistance to low temperature, but could cause liver damage due to decomposition pressure; and could increase feed cost. Therefore, in production, the proportion of protein in the feed should be arranged according to the practical need of tilapia.
  • [1]

    Xu S W, Li T, Wu J Y, et al. Cloning and expression of white cloud mountain minnow (Tanichthys albonubes) Caspase-3 and Caspase-9 cDNAs[J]. Acta Hydrobiologica Sinica, 2011, 35(1): 138-144[徐胜威, 李恬, 吴金英, 等. 唐鱼Caspase-3和Caspase-9 cDNA全长克隆及胁迫表达分析. 水生生物学报, 2011, 35(1): 138-144]

    [2]

    Li W X, Xie J, Song R, et al. Effects of pH stress on cortisol and non-specific immunity of Carassius auratus gibelio[J]. Acta Hydrobiologica Sinica, 2011, 35(2): 256-261[李文祥, 谢骏, 宋锐, 等. 水体pH胁迫对异育银鲫皮质醇激素和非特异性免疫的影响. 水生生物学报, 2011, 35(2): 256-261]

    [3]

    Di Marco P, Priori A, Finoia M G, et al. Physiological responses of European sea bass Dicentrarchus labrax to different stocking densities and acute stress challenge[J]. Aquaculture, 2008, 275(1/4): 319-328

    [4]

    Paperna L. Parasites, Infections and Diseases of Fshes in Africa[M]. CIFA Technical Paper 31, FAO, Rome, Italy. 1996, 220

    [5]

    Chavijo A M, Conary G, Santander J, et al. First report of E. tarda from tilapia in Venezuela[J]. Bulletin of the European Association of Fish Pathologists, 2002, 22(4): 280-282

    [6]

    Liu B, Wang M Y, Xie J, et al. Effects of acute cold stress on serum biochemical and immune parameters and liver HSP70 gene expression in GIFT strain of Nile tilapia (Oreochromis niloticus)[J]. Acta Ecologica Sinica, 2011, 31(17): 4866-4873[刘波, 王美垚, 谢骏, 等. 低温应激对吉富罗非鱼血清生化指标及肝脏HSP70 基因表达的影响. 生态学报, 2011, 31(17): 4866-4873]

    [7]

    Prymaczok N C, Chaulet A, Medesani D A, et al. Survival, growth, and physiological responses of advanced juvenile freshwater crayfish (Cherax quadricarinatus), reared at low temperature and high salinities[J]. Aquaculture, 2012, 334(7): 176-181

    [8]

    Atwood H L, Tomasso J R, Webb K, et al. Low-temperature tolerance of Nile tilapia, Oreochromis niloticus, effects of environmental and dietary factors[J]. Aquaculture Research, 2003, 34(3): 241-251

    [9]

    Abdel-Tawwab Mousa. Effect of crowding stress on some physiological functions of Nile tilapia, Oreochromis niloticus (L.), fed different dietary protein levels[J]. International Journal of Zoological Research, 2005, 1(1): 41-47

    [10]

    Kiron V, Watanabe T, Fukuda H, et al. Protein nutrition and defense mechanisms in rainbow trout Oncorhynchus mykiss[J]. Comparative Biochemistry and Physiology, part A, 1995, 111 (3): 351-359

    [11]

    Fast A. Pond Production Systems: Water Quality Management Practices[M]. In: Lannan J E, Smitherman R O, Tchobanoglous G (Eds.), Principles and practices of pond aquaculture. Corvallis, Oregon: Oregon State University. 1986, 67-141

    [12]

    Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-Time quantitative PCR and the2-△△CT method[J]. Methods, 2001, 25(4): 402-408

    [13]

    Qiang J, Ren H T, Xu P, et al. Synergistic effects of water temperature and salinity on the growth and liver antioxidant enzyme activities of juvenile GIFT Oreochromis niloticus[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 255-263[强俊, 任洪涛, 徐跑, 等. 温度与盐度对吉富品系尼罗罗非鱼幼鱼生长和肝脏抗氧化酶活力的协同影响. 应用生态学报, 2012, 23(1): 255-263]

    [14]

    Tort L, Sunyer J O, Gmez E, et al. Crowding stress induced changes in serum haemolytic and agglutinating activity in the gilthead sea bream Sparus aurata[J]. Veterinary Immunology and Immunopathology, 1996, 51(1/2): 179-188

    [15]

    Barton B A, Iwama G K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids[J]. Annual Review of Fish Diseases, 1991, 1: 3-26

    [16]

    Sun L T, Chen G R, Chang C F. The physiological responses of tilapia exposed to low temperatures[J]. Journal of Thermal Biology, 1992, 17(3): 149-15

    [17]

    King W V, Buckley L J, Berlinsky D L. Effect of acclimation temperature on the acute stress response in juvenile Atlantic cod, Gadus morhua L., and haddock, Melanogrammus aeglefinus L[J]. Aquaculture Research, 2006, 37(16), 1685-1693

    [18]

    Davis K B. Temperature affects physiological stress responses to acute confinement in sunshine bass (Morone chrysopsMorone saxatilis)[J]. Comparative Biochemistry and Physiology, 2004, 139(4A): 433-440

    [19]

    Lankford S E, Adams T E, Cech J J Jr. Time of day and water temperature modify the physiological stress response in green sturgeon, Acipenser medirostris[J]. Comparative Biochemistry and Physiology, 2003, 135(2A): 291-302

    [20]

    Mommsen T P, Vijayan M M, Moon T W. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation[J]. Reviews in Fish Biology and Fisheries, 1999, 9(3): 211-268

    [21]

    Abdel-Tawwab M, Ahmad M H, Khattab Y A E, et al. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.)[J]. Aquaculture, 2010, 298(3/4): 267-274

    [22]

    Caipang C M A, Brinchmann M F, Kiron V. Short-term overcrowding of Atlantic cod, Gadus morhua: Effects on serum-mediated antibacterial activity and transcription of glucose transport and antioxidant defense related genes[J]. Comparative Biochemistry and Physiology, 2008, 151(4A): 560-565

    [23]

    Vijayan M M, MoonT W. Acute handling stress alters hepatic glycogen metabolism in food-deprived rainbow trout (Oncorhynchus mykiss)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(11): 2260-2266

    [24]

    Trenzado C E, Morales A E, De La Higuera M. Physiological effects of crowding in rainbow trout, Oncorhynchus mykiss, selected for low and high stress responsiveness[J]. Aquaculture, 2006, 258(1/4): 583-593

    [25]

    Adham K, Khairalla A, Abu-Shabana M. Environmental stress in lake maryut and physiological response of Tilapia zilli Gerv[J]. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering and Toxicology, 1997, 32(9/10): 2585-2598

    [26]

    Melo J F B, Lundstedt L M, Metn I, et al. Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae)[J]. Comparative Biochemistry and Physiology, 2006, 145(2A): 181-187

    [27]

    Cai C F, Wu K, Pan X F, et al. the effects of protein nutrition on growth and immunoloical activity of allogynogenetic silver crucian carp[J]. Acta Hydrobiologica Sinica, 2001, 25(6): 590-596[蔡春芳, 吴康, 潘新法, 等. 蛋白质营养对异育银鲫生长和免疫力的影响. 水生生物学报, 2001, 25(6): 590-596]

    [28]

    Adham K, Khairalla A, Abu-Shabana M. Environmental stress in lake maryut and physiological response of Tilapia zilli Gerv[J]. Journal of Environmental Science and Health, 1997, 32(9/10A): 2585-2598

    [29]

    Collazos M E, BarrigaC, De-Sande F, et al. Seasonal variations and influence of gender on several haematologlcal parameters in the cyprinid fish Tinca tinca[M]. Actas del IV Congreso Nacional de Acuicultura. Cervino A, Landin A, De-Coo, Guerra A, Torte M (Eds.), Pontevexlra, Spain. 1993, 173-178

    [30]

    Ji D W, Li M Y, Wang T Z, et al. Effects of low temperature stress periods on serum biochemical indexes in large yellow croaker Pseudosciaena crocea[J]. Fisheries Science, 2009, 28(1): 1-4[冀德伟, 李明云, 王天柱, 等. 不同低温胁迫时间对大黄鱼血清生化指标的影响. 水产科学, 2009, 28(1): 1-4]

    [31]

    Zhang L, Fan Q X, Zhao Z G, et al. The effects of chronic crowding stress on growth and blood biochemical indexes in common carp Cyprinus carpio[J]. Journal of Dalian Fisheries University, 2007, 22(6): 465-469[张磊, 樊启学, 赵志刚, 等. 慢性拥挤胁迫对鲤生长及血液生化指标的影响. 大连海洋大学学报, 2007, 22(6): 465-469]

    [32]

    Richard J, Strance C B, Schreck B. Corticoid stress response to handling and temperature in salmonids[J]. Transactions of the American Fisheries Society, 1977, 106(3): 213-218

    [33]

    Ming J H, Xie J, Xu P, et al. Effects of emodin, vitamin c and their combination on crowding stress resistance of wuchang bream (Megalobrama amblycephala yih)[J]. Acta Hydrobiologica Sinica, 2011, 35(3): 400-413[明建华, 谢骏, 徐跑, 等. 大黄素、维生素 C 及其配伍对团头鲂抗拥挤胁迫的影响. 水生生物学报, 2011, 35(3): 400-413]

    [34]

    Lermen C L, Lappe R, Crestani M, et al. Effect of different temperature regimes on metabolic and blood parameters of silver catfish Rhamdia quelen[J]. Aquaculture, 2004, 239(1/4): 497-507

    [35]

    Ellis A E. Immunity to bacteria in fish[J]. Fish Shell fish Immunology, 1999, 9(4): 291-308

    [36]

    M?ck A, Peters G. Lysozyme activity in rainbow trout, Oncorhynchus mykiss (Walbaum), stressed by handling, transport and water pollution[J]. Journal of Fish Biology, 1990, 37(6): 873-885

    [37]

    Salas-Leiton E, Anguis V, Martn-Antonio B, et al. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): Potential effects on the immune response[J]. Fish Shell fish Immunology, 2010, 28(2), 296-302

    [38]

    Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones[J]. Molecular and Cellular Endocrinology, 2007, 275(1/2): 2-12

    [39]

    Kazumi N, George K I. The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp70 and thermal tolerance[J]. Comparative Biochemistry and Physiology, 2002, 133(1): 79-94

    [40]

    Takle H, Baeverfjord G, Lunde M, et al. The effect of heat and cold exposure on HSP70 expression and development of deformities during embryogenesis of Atlantic salmon (Salmo salar)[J]. Aquaculture, 2005, 249(1/4): 515-524

计量
  • 文章访问数:  1539
  • HTML全文浏览量:  0
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-14
  • 修回日期:  2012-12-15
  • 发布日期:  2013-05-24

目录

    /

    返回文章
    返回