三峡库区两种耐水淹植物的存活率和碳水化合物储备关系
SURVIVAL AND CARBOHYDRATE STORAGE IN TWO TOLERANT PLANT SPECIES EXPOSED TO PROLONGED FLOODING IN THE THREE GORGES RESERVOIR REGION
-
摘要: 野古草和秋花柳是三峡库区消落带两种强水淹耐受能力的植物物种。以往研究显示植物的水淹耐受性和体内碳水化合物储备有关。为了探明野古草和秋花柳水淹下的高存活率是否和碳水化合物储备有关, 研究了在室外6个月的模拟水淹条件下两个物种在不同水淹时间(40、90、120和180d)和不同水淹深度下(不水淹、根部水淹和完全淹没)的生物量积累、存活率和碳水化合物含量和分布。结果表明: (1)野古草和秋花柳对长期水淹具有很高的耐受性, 根部水淹植物6个月处理后完全存活; 而完全淹没条件下, 野古草仅在4个月, 秋花柳仅在6个月处理后才开始死亡; (2)碳水化合物主要储备在野古草的茎和秋花柳的茎与主根中, 野古草的根和秋华柳的细根中碳水化合物含量很低; (3)水淹深度和水淹时间对植物生物量积累和碳水化合物含量影响显著(P 0.05):与未水淹植株相比, 根部水淹仅略微降低了生物量积累以及可溶性糖和淀粉含量 (P 0.05), 且保持基本稳定或增加的趋势, 而完全淹没的植株生物量随水淹时间逐渐降低, 碳水化合物含量在前90天快速下降 (P 0.05), 之后缓慢下降或保持不变。研究结果表明, 野古草和秋花柳强的水淹耐受性是和它们高的碳水化合物储备以及水淹条件下对碳水化合物的动用能力有关, 后期的死亡率增加与碳水化合物储备消耗殆尽有关, 野古草和秋花柳对碳水化合物储备对水淹的响应的差异可能和它们的碳水化合物储备在不同组织中的分配模式有关。Abstract: High survival rate of long-term flooding was observed in Arundinella anomala and Salix variegata, two riparian plant species in the Yangtze River water fluctuation zone. Survival of flooding is supposed to be associated with carbohydrate utilization. Survival rate and carbohydrate (soluble sugar and starch) concentration of these two plants were investigated in a simulated flooding experiment lasting up to six months. Three water level treatments (waterlogging, 2 m deep water submergence, and non-flooded control) and four flooding durations (40, 90, 120 and 180 days) were set. Plants death only occurred to A. anomala after 120 days and S. variegata after 180 days which were submerged in 2 m deep water, while all the waterlogged plants of both species survived after 180 days. Carbon storage was found mainly in stems of A. anomala and stems and coarse roots of S. variegata plants. Carbohydrate concentration was very low in roots of A. anomala and in fine roots of S. variegata plants. Waterlogging slightly decreased biomass production and soluble sugar and total starch concentration compared with non-flooded plants. In contrast, 2 m submergence treatments lead to a gradually decrease in biomass while a sharp decrease in soluble sugar and starch concentration in all tissues within 90 days in both species; and then the carbohydrate mobilization slowed down. The results suggested that mortality of long-term submergence might be caused by disabled carbon storage mobilization in the later stages of prolonged flooding. The high flooding tolerance in the two species can be explained by the ability to mobilize carbohydrate storage in the beginning and later when exposed to carbon starvation. Differences of the responses to flooding between A. anomala and S. variegata could be ascribed to their different carbohydrate storage distribution patterns.
-
-
[1] Luo F L, Wang L, Zeng B, et al. Photosynthetic responses of the riparian plant Arundinella anomala steud. in Three Gorges Reservoir region as affected by simulated flooding[J]. Acta Ecologica Sinica, 2006, 26(11): 3602-3609[罗芳丽, 王玲, 曾波, 等. 三峡库区岸生植物野古草(Arundinella anomala steud.)光合作用对水淹的响应. 生态学报, 2006, 26(11): 3602-3609]
[2] Jackson M B. Ethylene and responses of plants to soil waterlogging and submergence[J]. Annual Review of Plant Physiology, 1985, (36): 145-174
[3] Cheng S P, Wu Z B, Xia Y C. Review on gas exchange and transportation in macrophytes[J]. Acta Hydrobiologica Sinica, 2003, 27(4): 413-417[成水平, 吴振斌, 夏宜琤. 水生植物的气体交换与输导代谢. 水生生物学报, 2003, 27(4): 413-417]
[4] Bradford K J. Effects of soil flooding on leaf gas exchange of tomato plants[J]. Plant Physiology, 1983, 73(2): 475-479
[5] Chen H J, Qualls R G, Blank R R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium[J]. Aquatic Botany, 2005, (82): 250-268
[6] Vervuren P J A, Beurskens S M J H, Blom C W P M. Light acclimation, CO2 response and long-term capacity of underwater photosynthesis in three terrestrial plant species[J]. Plant Cell and Environment, 1999, 22(8): 959-968
[7] Mommer L, Visser E J W. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity[J]. Annals of Botany, 2005, 96(4): 581-589
[8] Gibbs J, Greenway H. Mechanisms of anoxia tolerance in plants. ?. Growth, survival and anaerobic catabolism[J]. Functional Plant Biology, 2003, 30(1): 1-47
[9] Greenway H, Gibbs J. Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenances and energy distribution to essential processes[J]. Functional Plant Biology, 2004, 30(10): 999-1036
[10] Vartapetian B B, Jackson M B. Plant adaptation to anaerobic stress[J]. Annals of Botany, 1997, 79(supplement A): 3-20
[11] Barclay A M, Crawford R M M. The effec32t of anaerobiosis on carbohydrate levels in storage tissues of wetland plants[J]. Annals of Botany, 1983, 51(2): 255-259
[12] Schlter U, Crawford R M M. Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L.[J]. Journal of Experimental Botany, 2001, 52(364): 2213-2225
[13] ??kov-Kon?alov H, Květ J, Thompson K. Carbon starvation: a key to reed decline in eutrophic lakes[J]. Aquatic Botany, 1992, 43(2): 105-113
[14] Laan P, Blom C W P M. Growth and survival responses of Rumex species to flooded and submerged conditions: the importance of shoot elongation, underwater photosynthesis and reserve carbohydrates[J]. Journal of Experimental Botany, 1990, 41(7): 775-783
[15] Ram P C, Singh B B, Singh A K, et al. Submergence tolerance in rainfed lowland rice: physiological basis and prospects for cultivar improvement through marker-aided breeding[J]. Field Crops Research, 2002, 76(2-3): 131-152
[16] Das K K, Sarkar R K, Ismail A M. Elongation ability and non-structural carbohydrates levels in relation to submergence tolerance in rice[J]. Plant Science, 2005, 168(1): 131-136
[17] Wang H F, Zeng B, Li Y, et al. Effects of long term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir region, China[J]. Chinese Journal of Plant Ecology, 2008, 32(5): 977-984[王海锋, 曾波, 李娅, 等. 长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响. 植物生态学报, 2008, 32(5): 977-984]
[18] Chen F Q, Xie Z Q. Survival and growth responses of Myricaria laxiflora seedlings to summer flooding[J]. Aquatic Botany, 2009, 90(4): 333-338
[19] Tan S D, Zhang S J, Zhang K R, et al. Effect of long-time and deep submergence on recovery growth and photosynthesis of three grass species in Three Gorges Reservoir area[J]. Journal of Wuhan Botanical Research, 2009, 27(4): 391-396[谭淑端, 张守君, 张克荣, 等. 长期深淹对三峡库区三种草本植物的恢复生长及光合特性的影响. 武汉植物学研究, 2009, 27(4): 391-396]
[20] Zhang Y H, Zeng B, Fu T F, et al. Effects of long-term flooding on non-structural carbohydrates content in roots of Salix variegata Franch[J]. Journal of Southwest China Normal University (Natural Science), 2006, 31(3): 153-156[张艳红, 曾波, 付天飞, 等. 长期水淹对秋华柳(Salix variegata Franch) 根部非结构性碳水化合物含量的影响. 西南师范大学学报(自然科学版), 2006, 31(3): 153-156]
[21] Miller G L. Use of dinitrosalicylic acid regent for determination of reducing sugars[J]. Analytic Chemistry, 1959, 31: 426-428
[22] van Eck W H J M, Lenssen J P M, Rengelink R H J, et al. Water temperature instead of acclimation stage and oxygen concentration determines responses to winter floods[J]. Aquatic Botany, 2005, 81(3): 253-264
[23] van Eck W H J M, van de Steeg H M, Blom C W P M, et al. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? a comparative study of 20 ter-restrial grassland species[J]. Oikos, 2004, 107(2): 393-405
[24] Pierik R, van Aken J M, Voesenek L A C J. Is elongation-induced leaf emergence beneficial for submerged Rumex species[J]? Annals of Botany, 103(2): 353-357
[25] Chen T, Zeng B, Ye, X Q, et al. Effect of flooding on adventitious root formation of Arundinella anomala Steud. and Salix variegata Franch[J]. Journal of Anhui Agricultural Science (China), 2007, 35(19): 5703-5704, 5712[陈婷, 曾波, 叶小齐, 等. 水淹对野古草和秋华柳不定根形成的影响. 安徽农业科学, 2007, 35(19): 5703-5704, 5712]
[26] Singla N K, Jain V, Sawhney S K. Activities of glycoltic enzymes in leaves and roots of contrasting cultivars of sorghum during flooding[J]. Biology Plantarum, 2003, 47(4): 555-560
[27] Gravatt D A, Kirby C J. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding[J]. Tree Physiology, 1998, 18(6): 411-417
[28] Zhang X Y, Fan D Y, Xie Z Q, et al. Clonal integration enhances performance of Cynodon dactylon subjected to submergence[J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1075-1083[张想英, 樊大勇, 谢宗强, 等. 克隆整合有助于狗牙根抵御水淹. 植物生态学报, 2010, 34(9): 1075-1083]
[29] Chen F Q, Li Y, Qie G W, et al. The morphological responses and endurance of Polygonum hydropiper to flooding stress[J]. Journal of Wuhan Botanical Research, 2008, 26(2): 142-146[陈芳清, 李永, 郄光武, 等. 水寥对水淹胁迫的耐受能力和形态学响应. 武汉植物学研究, 2008, 26(2): 142-146]
[30] Li Y, Zeng B, Ye X Q, et al. The effects of flooding on survival and recovery growth of the riparian plant Salix variegata Franch. in Three Gorges reservoir region[J]. Acta Ecologica Sinica, 2008, 28(5): 1923-1930[李娅, 曾波, 叶小齐, 等. 水淹对三峡库区岸生植物秋华柳(Salix variegata Franch.)存活和恢复生长的影响. 生态学报, 2008, 28(5): 1923-1930]
[31] Chen G F, Cai K Y, Li Z J, et al. Flooding effect on growth and physiology of Distylium chinesis[J]. Journal of Southwest Forestry College, 2008, 28(5): 42-44[陈桂芳, 蔡孔瑜, 李在军, 等. 淹水对中华蚊母树生长及生理的影响. 西南林学院学报, 2008, 28(5): 42-44]
[32] van Dongen J T, Schurr U, Pfister M, et al. Phloem metabolism and function have to cope with low internal oxygen[J]. Plant Physiology, 2003, 131(4): 1529-1543
计量
- 文章访问数: 1395
- HTML全文浏览量: 0
- PDF下载量: 974