AHLs对小球藻PS 光化学活性与光合作用关键酶的影响

EFFECTS OF AHLS ON PS PHOTOCHEMISTRY ACTIVITY AND PHOTOSYNTHESIS CRUCIAL ENZYMES OFCHLORELLA VULGARIS

  • 摘要: 采用批次培养的方法,研究了100、200和300 nmol/LC10-HSL(N-癸酰-L-高丝氨酸内酯)对普通海水小球藻(Chlorella vulgaris)PSⅡ光化学活性与光合作用关键酶的影响。结果显示:在C10-HSL作用下,小球藻生长受到促进,细胞密度显著升高,而且存在着随C10-HSL浓度上升促进作用增强的剂量-效应关系;小球藻PSⅡ光化学活性指标——最大光能转化效率Fv/Fm、实际光能转化效率Yeild及表观光合电子传递效率ETR明显提高,而且C10-HSL对Yeild的作用强于对Fv/Fm的影响;小球藻光合作用关键限速酶——核酮糖-1,5-二磷酸羧化酶/加氧酶Rubisco、磷酸丙糖异构酶TPI、焦磷酸:果糖-6-磷酸-1-磷酸转移酶PFP、果糖-1,6-二磷酸醛缩酶FDA活性均不同程度上升,表明小球藻光合固碳及合成糖类的能力有所增强。

     

    Abstract: As an excellent resource microalgae, Chlorella has wide applications for aquaculture, production of biofuel and development of functional food, which requires to develop the intensive cultivation pattern and optimize the breeding environment of Chlorella. AHLs(N-acyl-homoserine lactones)are known as the quorum sensing signal molecule produced by commensalism bacteria in phycosphere to regulate the biological function of bacteria and life activities of algae. This study was conducted to evaluate the effects of 100, 200, 300 nmol/LC10-HSL (N-decanoyl-L-homoserine lactones) on PSⅡ photochemistry activity and photosynthesis crucial enzymes of the marine microalgae Chlorella vulga-ris in the photoautotrophic culture process. The results indicated that C10-HSL significantly increased the growth of C. vulgaris by enhanced cell density in dosage-dependent pattern. PSⅡ photochemistry activity indicators—Fv/Fm (maxi-mal photochemical efficiency), Yeild (actual photochemical efficiency) and ETR (apparent photosynthetic electron transport ratio) increased obviously by C10-HSL. C10-HSL had higher effect on Yeild than Fv/Fm. The photosynthesis crucial enzymes—Rubisco (ribulose bisphosphate carboxylase oxygenase), TPI (triose-phosphate isomerase), PFP (pyrophosphate: fructose-6-phosphate-1-phosphoric acid transferase) and FDA (fructose-1,6-bisphosphate aldolase) induced significantly by C10-HSL, indicating enhanced photosynthetic carbon fixation and carbohydrate synthesis.

     

/

返回文章
返回