EFFECTS OF DIETARY VITAMIN D3 ON THE GROWTH AND EXPRESSION OF TLR18, TLR19 AND TLR21 IN THE JUVENILE YELLOW CATFISH PELTEOBAGRUS FULVIDRACO
-
摘要: 为了探讨饲料中维生素D3添加水平对黄颡鱼(Pelteobagrus fulvidraco)生长和Toll样受体的影响, 研究设计了5个不同浓度梯度的维生素D3饲料(1120、2260、3950、8030和16600 IU/kg), 对体重为(5.0±0.2) g的黄颡鱼进行了为期12周的生长实验, 并在生长实验结束后进行鮰爱德华氏菌(Edwardsiella ictaluri)攻毒72h。于攻毒前(0)和攻毒后(72h)采样, 每个饲料组分别取6尾鱼的脾脏、头肾、肝脏和前肠四个组织, 检测不同浓度维生素D3处理对攻毒前和攻毒后TLR18、TLR19和TLR21基因表达量的影响。同时另取6条新鲜黄颡鱼的肌肉、头肾、肾脏、皮肤、脑、鳃、脾脏、胃上皮、小肠和肝脏, 检测TLR18、TLR19和TLR21基因在黄颡鱼中的组织分布。结果表明: 不同的维生素D3添加水平会显著影响黄颡鱼幼鱼的生长性能; TLR18、TLR19和TLR21基因在所检测的组织中均有表达, 但在脾脏中表达量最高; 饲料中不同维生素D3含量在攻毒前后均会显著影响TLR18、TLR19和TLR21在头肾、脾脏、肝脏和前肠中的表达, 攻毒后基因的表达显著高于攻毒前; TLR18、TLR19和TLR21在不同组织中的表达和饲料中维生素D3的浓度相关, 研究结果表明饲料中添加合适剂量的维生素D3, 可以促进相关免疫基因的表达, 从而增强黄颡鱼对病原微生物的抵抗力。Abstract: This experiment was conducted to study the effects of dietary vitamin D3 levels on the growth performance and the expression of TLR18, TLR19 and TLR21 in Pelteobagrus fulvidraco. A total of 800 healthy Pelteobagrus fulvidraco with an average body weight of (5.0±0.2) g were randomly assigned to 5 groups with 4 replicates per group and 40 fishes per replicate. Juvenile yellow catfish were fed with the basal diet supplemented with 1120, 2260, 3950, 8030 and 16600 IU/kg vitamin D3. After a 12-week growth trial, 50 fish from each treatment were injected with Edwardsiella ictaluri, and the fish were challenged for 72h. The spleen, head kidney, liver and anterior intestine from fish in each group were collected at 0 and 72h after the Edwardsiella ictaluri challenge and were used to detect the expression of three toll-like receptors, i.e., TLR18, TLR19 and TLR21. Meanwhile, the muscles, head kidney, kidney, skin, brain, gill, spleen, stomach, anterior intestine and liver were collected from fresh nonexperimental yellow catfish to detect the tissue distribution of TLR18, TLR19 and TLR21. The results showed that different levels of dietary vitamin D3 can significantly affect growth performance. The TLR18, TLR19 and TLR21 genes were expressed in all tested tissues, but the highest expression was found in the spleen. The Edwardsiella ictaluri challenge significantly increased the expression of TLR18, TLR19 and TLR21. Different levels of dietary vitamin D3 had a significant influence on TLR18, TLR19 and TLR21 gene mRNA expression in the head kidney, spleen, liver and anterior intestine both before and after the pathogen challenge. These results showed that appropriate supplementation with dietary vitamin D3 can stimulate the growth and pathogen resistance of juvenile yellow catfish.
-
Keywords:
- Pelteobagrus fulvidraco /
- Vitamin D3 /
- TLR18 /
- TLR19 /
- TLR21
-
-
图 1 黄颡鱼TLR18 (A)、TLR19 (B)和TLR21 (C)基因mRNA组织表达分布
Muscle. 肌肉; Head kidney. 头肾; Kidney. 肾脏; Skin. 皮肤; Brain. 脑; Gill. 鳃; Spleen. 脾脏; Stomach. 胃; Anterior intestine. 前肠; Liver. 肝脏. 字母代表显著性差异(Duncan检验, P<0.05). Letters indicate significant difference (Duncan test, P<0.05)
Figure 1. Tissue distribution of TLR18(A), TLR19(B), and TLR21(C) mRNA in Pelteobagrus fulvidraco
表 1 实验饲料组成和营养成分
Table 1 Formulation and proximate composition of experimental diets
项目Item 饲料Ⅰ Diet I 饲料Ⅱ Diet II 饲料Ⅲ Diet III 饲料Ⅳ Diet IV 饲料Ⅴ Diet V 原料(%饲料干重)Ingredients (% dry matter) 血粉 10 10 10 10 10 脱脂奶粉 5 5 5 5 5 玉米蛋白粉 2 2 2 2 2 面粉 10 10 10 10 10 酪蛋白 30 30 30 30 30 豆粕 10 10 10 10 10 菜粕 10 10 10 10 10 大豆油 10 10 10 10 10 赖氨酸 1 1 1 1 1 蛋氨酸 0.1 0.1 0.1 0.1 0.1 氯化胆碱 0.5 0.5 0.5 0.5 0.5 维生素C 0.5 0.5 0.5 0.5 0.5 三氧化二钇 0.1 0.1 0.1 0.1 0.1 抗氧化剂 0.02 0.02 0.02 0.02 0.02 矿物盐 2 2 2 2 2 无VD3-维生素预混料 0.5 0.5 0.5 0.5 0.5 维生素D3 0.2 0.4 0.8 1.6 3.2 麸皮 8.08 7.88 7.48 6.68 5.08 营养成分(%饲料干重)Proximate composition (% dry matter) 水分 5.45 6.00 5.23 5.52 5.55 粗蛋白 47.60 47.25 46.44 46.96 46.12 粗脂肪 4.53 4.57 4.56 4.40 4.48 灰分 3.30 3.45 3.47 3.36 3.37 维生素D 1120 2260 3950 8030 16600 注: (1) 矿物盐预混料(每千克饲料): 氯化钠198 mg; 硫酸镁2995 mg; 硫酸钠4560 mg; 硫酸钾4098.5 mg; 氯化钙2340 mg; 硫酸亚铁499.5 mg; 乳酸钙700.5 mg; 硫酸锌70.6 mg; 硫酸镁32.5 mg; 硫酸铜6.2 mg; 硫酸钴0.2 mg; 碘化钾0.6 mg; 麸皮4498.4 mg; (2) 无VD3的维生素预混物(每千克饲料): 维生素A 2750 IU, 维生素E 25 IU; 维生素K3 5 mg, 维生素B1 10 mg; 维生素B6 10 mg; 维生素B12 10 mg; 尼克酸50 mg; 核黄素10 mg; 泛酸钙25 mg; 叶酸5 mg; 肌醇50 mg; 抗坏血酸50 mg; 脱脂米糠1757.43 mg. 由广州市联鲲生物科技有限公司定制; (3) 维生素D3预混物: 包膜饲料级别的维生素D3 (500000 IU/kg). 由广州市联鲲生物科技有限公司提供Note: (1) Mineral premix (mg per kg diet): NaCl 198 mg; MgSO4·7H2O 2995 mg; Na2SO4 4560 mg; K2SO4 4098.5 mg; CaCl2·2H2O 2340 mg; FeSO4 499.5 mg; Calcium lactate 700.5 mg; ZnSO4·7H2O 70.6 mg; MnSO4·4H2O 32.5 mg; CuSO4·5H2O 6.2 mg; CoSO4 0.2 mg; KI 0.6 mg; Bran 4498.4 mg; (2) Vitamin premix (per kg diet): Vitamin A 2750 IU; Vitamin E 25 IU; Vitamin K3 15 mg; Vitamin B1 20 mg; Vitamin B6 20 mg; Vitamin B12 20 mg; Niacin 50 mg; Riboflavin 10 mg; D-calcium pantothenate 25 mg; Biotin 5 mg; Inositol 100 mg; Ascorbic acid 500 mg; Bran 1757.43 mg. This premix was specially made by Nutriera; (3) Vitamin D3 premix: Coated vitamin D3 (500000 IU/kg), which was provided by Nutriera 表 2 Real-time PCR所用引物
Table 2 Primers used for real-time PCR
名称Name 序列Sequence (5′-3′) TLR18 Forward GGCACAGCTAAGGAGTGTCATGG TLR18 Reverce GGCCAGCTCAATCACAGACAGAG TLR19 Forward TCCGAGGCTGGAGGAACAAGG TLR19 Reverce GCACCAGTCGCTTCGCAGATAC TLR21 Forward CCAGGCCGCAACATAGTCGATAAC TLR21 Reverce AGCACCACTCACTACGGAGGAAG β-actin Forward GGATTCGCTGGAGATGATG β-actin Reverce TCGTTGTAGAAGGTGTGATG 表 3 在饲料中添加维生素D3对黄颡鱼幼鱼生长的影响
Table 3 Effects of dietary vitamin D3 levels on the growth performance of juvenile P.fulvidraco
指标Index 饲料维生素D3含量Dietary vitamin D3 level (IU/kg) 1120 2260 3950 8030 16600 初始体重IBW (g) 5.53±0.08 5.51±0.07 5.55±0.03 5.56±0.06 5.32±0.15 终末体重FBW (g) 26.15±0.63 24.00±0.66 24.93±0.60 25.91±0.99 26.99±1.37 增重率WG (%) 373.2±9.2ab 335.9±12.6b 349.2±11.6ab 365.5±16.0ab 408.3±27.0a 热积温生长系数TGC (%) 0.060±0.001 0.056±0.001 0.058±0.001 0.060±0.002 0.063±0.003 饲料效率FE (%) 0.63±0.02ab 0.58±0.01b 0.62±0.02ab 0.65±0.35ab 0.71±0.42a 饲料系数FCR 1.60±0.05ab 1.74±0.28b 1.63±0.05ab 1.55±0.08ab 1.43±0.09a 存活率SUR (%) 93.33±1.36 95.00±0.96 95.00±0.96 95.84±0.84 95.84±0.84 注: 同一行中数值后的上标字母不同代表差异显著(P<0.05)Note: Means with different letters in the same row are significantly different (P<0.05) 表 4 在饲料中维生素D3添加水平对黄颡鱼疾病抗性的影响
Table 4 Effects of vitamin D3 supplementation on the disease resistance of P. fulvidraco
项目Item 时间Time (d) 饲料维生素D3含量Dietary vitamin D3 level (IU/kg) 1120 2260 3950 8030 16600 攻毒后死亡数(尾)Death number after challenge tail 1 12 10 9 8 9 2 5 5 5 4 3 3 2 2 1 2 1 累积死亡总数(尾)Cumulative death number tail 19 17 15 14 13 累积死亡率Cumulative mortality (%) 34.54 30.90 27.27 25.45 23.63 免疫保护率Immune protective rate (%) 10.54 21.05 26.32 31.59 -
[1] 张铜, 徐奇友. 鱼类对维生素D需要量的研究进展 [J]. 饲料研究, 2010, (11): 62-65. Zhang T, Xu Q Y. Advances in research on vitamin D requirements in fish [J]. Feed Research, 2010, (11): 62-65.
[2] Mostafa W Z, Hegazy R A. Vitamin D and the skin: focus on a complex relationship: A review [J]. Journal of Advanced Research, 2015, 6(6): 793-804. doi: 10.1016/j.jare.2014.01.011
[3] Lock E J, Waagb R, Bonga S W, et al. The significance of vitamin D for fish: a review [J]. Aquaculture Nutrition, 2010, 16(1): 100-116. doi: 10.1111/j.1365-2095.2009.00722.x
[4] Calton E K, Keane K N, Newsholme P, et al. The impact of vitamin D levels on inflammatory status: a systematic review of immune cell studies [J]. PLoS One, 2015, 10(11): 141-147.
[5] Schwartz Z, Ehland H, Sylvia V L, et al. 1α, 25-dihydroxyvitamin D3 and 24 R, 25-dihydroxyvitamin D3 modulate growth plate chondrocyte physiology via protein kinase C-dependent phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase [J]. Endocrinology, 2002, 143(7): 2775-2786. doi: 10.1210/endo.143.7.8889
[6] Fleet J C. Rapid, membrane-initiated actions of 1,25-dihydroxyvitamin D: what are they and what do they mean [J]? Journal of Nutrition, 2004, 134(12): 3215-3218. doi: 10.1093/jn/134.12.3215
[7] Beard J A, Bearden A, Striker R. Vitamin D and the antiviral state [J]. Journal of Clinical Virology, 2011, 50(3): 194-200. doi: 10.1016/j.jcv.2010.12.006
[8] 范泽军, 邹鹏飞, 姚翠鸾. 鱼类Toll样受体及其信号传导的研究进展 [J]. 水生生物学报, 2015, 39(1): 173-184. doi: 10.7541/2015.22 Fan Z J, Zou P F, Yao C L. Advances in fish Toll-like receptors and signal transduction [J]. Acta Hydrobiologica Sinica, 2015, 39(1): 173-184. doi: 10.7541/2015.22
[9] Kwmar H, Kuwai T, Akwa S. Toll-like receptors and innate immunity [J]. Biochemical and Biophysical Research Communications, 2009, 388(4): 621-625. doi: 10.1016/j.bbrc.2009.08.062
[10] Rebl A, Goldammer T, Seyfert H. Toll-like receptor signaling in bony fish [J]. Veterinary Immunology and Immunopathology, 2010, 134(3-4): 139-150. doi: 10.1016/j.vetimm.2009.09.021
[11] Taro K, Shizuo A. Pathogen recognition with Toll-like receptors [J]. Current Opinion in Immunology, 2005, 17(4): 338-344. doi: 10.1016/j.coi.2005.02.007
[12] 李春艳, 黄贝, 熊静, 等. 日本鳗鲡TLR21基因的鉴定、免疫应答与启动子分析 [J]. 水生生物学报, 2017, 41(2): 296-305. Li C Y, Huang B, Xiong J, et al. Molecular cloning and characterization of TLR21 gene from japanese eel, Anguilla japonica [J]. Acta Hydrobiologica Sinica, 2017, 41(2): 296-305.
[13] Takano T, Hwang S D, Kondo H, et al. Evidence of molecular Toll-like receptor mechanisms in teleosts [J]. Fish Pathology, 2010, 245(1): 1-16.
[14] 沈建忠. 黄颡鱼的生物学特性及其养殖技术 [J]. 养殖与饲料, 2002, (3): 25-28. Shen J Z. Biological characteristics and farming technology of Pelteobagrus fulvidraco [J]. Aquaculture and Feed, 2002, (3): 25-28.
[15] 隗黎丽, 吴华东, 阮记明. 黄颡鱼鮰爱德华氏菌的分离及鉴定 [J]. 江西农业大学学报, 2014, 36(1): 187-192. doi: 10.3969/j.issn.1000-2286.2014.01.029 Kui L L, Wu H D, Ruan J M, et al. Isolation and identification of the Edwardsiella ictaluri in Pelteobagrus fulvidraco [J]. Journal of Jiangxi Agricultural University, 2014, 36(1): 187-192. doi: 10.3969/j.issn.1000-2286.2014.01.029
[16] Zuo R T, Ai Q H, Mai K S, et al. Effects of dietary N3- highly unsaturated fatty acids on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans) [J]. Fish & Shellfish Immunology, 2012, 32(2): 249.
[17] Zhao F, Li Y W, Pan H J, et al. Expression profiles of toll-like receptors in channel catfish (Ictalurus punctatus) after infection with Ichthyophthirius multifiliis [J]. Fish & Shellfish Immunology, 2013, 35(6): 993-997.
[18] Lee P T, Zou J, Holland J W, et al. Identification and characterization of TLR18-21 genes in Atlantic samlon (Salmo salar) [J]. Fish & Shellfish Immunology, 2014, 41(2): 549-555.
[19] Wang W, Shen Y, Pandit N P, et al. Molecular cloning characterization and immunological response analysis of Toll-like receptor (TLR21) gene in grass carp, Ctenopharyngodon idella [J]. Developmental and Comparative Immunology, 2013, 40(3-4): 227-231. doi: 10.1016/j.dci.2013.03.003
[20] Wang K L, Ji W, Wei K J, et al. Molecular characterization and expression analysis of three TLR genes in yellow catfish (Pelteobagrus fulvidraco): Responses to stimulation of Aeromonas hydrophila and TLR ligands [J]. Fish & Shellfish Immunology, 2017, (66): 466-479.
[21] Osamu T, Shizuo A. Pattern recognition receptors and inflammation [J]. Cell, 2010, 140(6): 805-820. doi: 10.1016/j.cell.2010.01.022
[22] Palti Y. Toll-like receptors in bony fish: from genomics to function [J]. Developmental and Comparative Immunology, 2011, 35(12): 1263-1272. doi: 10.1016/j.dci.2011.03.006
[23] Zhang J, Kong X H, Zhou C J, et al. Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways [J]. Fish & Shellfish Immunology, 2014, 41(2): 380-388.
[24] Wang J L, Zhang Z, Fu H, et al. Structural and evolutionary characteristics of fish specific TLR19 [J]. Fish & Shellfish Immunology, 2015, 47(1): 271-279.
[25] Huang W J, Shen Y, Xu X Y, et al. Identification and characterization of the TLR18 gene in grass carp, Ctenopharyngodon idella [J]. Fish & Shellfish Immunology, 2015, (47): 681-688.
[26] Zhao F, Li Y W, Pan H J, et al. Expression profiles of toll-like receptors in channel catfish (Ictalurus punctatus) after infection with Ichthyophthirius multifiliis [J]. Fish & Shellfish Immunology, 2013, 35(3): 993-997.
[27] Gao H, Wu L, Sun J S, et al. Molecular characterization and expression analysis of Toll-like receptor 21 cDNA from Paralichthys olivaceus [J]. Fish & Shellfish Immunology, 2013, (35): 1138-1145.
[28] Li Y W, Luo X C, Dan X M, et al. Molecular cloning of orange-spotted grouper (Epinephelus coioides) TLR21 and expression analysis post Cryptocaryon irritans infection [J]. Fish & Shellfish Immunology, 2012, 32(3): 476-481.
[29] Bell J K, Mullen G E D, Leifer C A, et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors [J]. Trends in immunology, 2003, 24(10): 528-533. doi: 10.1016/S1471-4906(03)00242-4
[30] Zhang J, Liu S, Liu Z, et al. Pathogen recognition receptors in channel catfish: Ⅲ phylogeny and expression analysis of Toll-like receptors [J]. Developmental and Comparative Immunology, 2013, 40(1): 185-194.
[31] Naim M, Maalouf M D. The noncalciotropic actions of vitamin D3 recent clinial developments [J]. Current Opinion in Nephrology and Hypentension, 2008, 17(4): 408-415. doi: 10.1097/MNH.0b013e3283040c99
[32] Rebeca C, Alberto C, Lee J, et al. Effects of dietary vitamin D3 administration on innate immune parameters of seabream (Sparus aurata L) [J]. Fish & Shellfish Immunology, 2009, 26(2): 243-248.
[33] 黎德兵, 李超, 周定刚, 等. 饲料中维生素D3水平对黄鳝抗菌肽hepcidin基因表达的影响 [J]. 动物营养学报, 2014, 24(8): 1520-1526. Li D B, Li C, Zhou D G, et al. Effects of dietary vitamin D3 level on expression of antimicrobial peptide hepcidin gene in Monopterus albus [J]. Chinese Journal of Animal Nutrition, 2014, 24(8): 1520-1526.
[34] Cerezuela R, Cuesta A, Meseguer J, et al. Effects of dietary vitamin D3 administration on innate immune parameters of seabream (Sparus aurata L) [J]. Fish & Shellfish Immunology, 2008, 26(2): 243-245.