EFFECTS OF BACILLUS SUBTILIS ON THE HEPATIC LIPID METABOLISM OF CTENOPHARYNGODN IDELLUS
-
摘要: 为研究益生枯草芽孢杆菌(Bacillus subtilis)对草鱼(Ctenopharyngodon idella)肝脏脂质代谢及抗氧化功能的影响, 实验设置对照组(Con组)、Aeromonas hydrophila组(Ah组)、Aeromonas hydrophila+Bacillus subtilis组(Ah+Bs组)、Bacillus subtilis+Aeromonas hydrophila组(Bs+Ah组), 三个实验组均腹腔注射1×105 CFU/fish嗜水气单胞菌(Aeromonas hydrophila), 枯草芽孢杆菌饲料含菌量为1×107 CFU/g, 实验周期为56d, 并于第28和第56天取样。结果表明, 与Ah组相比, 投喂枯草芽孢杆菌饲料后, (1)体增重率、特定生长率显著增加(P<0.05); (2) 28d时肝脏油红O染色脂滴面积及脂肪含量显著下降(P<0.05); (3)调节血脂代谢及缓解肝脏损伤: 血清胆固醇、甘油三酯、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇含量升高, 谷草转氨酶和谷丙转氨酶活性显著降低(P<0.05); (4)调节脂质代谢: 28d时乙酰辅酶A羧化酶的表达水平下调, 脂蛋白脂酶及脂肪甘油三酯脂肪酶的表达水平上调; (5)增强肝脏抗氧化能力、减少脂质过氧化的发生: 肝脏超氧化物歧化酶、过氧化氢酶、谷胱甘肽、总抗氧化能力提高; 丙二醛及过氧化氢含量降低。综上, 在饲料中添加益生枯草芽孢杆菌可以增强草鱼的抗氧化能力, 缓解机体因嗜水气单胞菌感染造成的肝脏损伤, 调节肝脏脂质代谢功能, 减少脂质在肝脏中的积累, 并促进草鱼的生长。Abstract: To investigate the effects of Bacillus subtilis on the hepatic lipid metabolism and antioxidant function, the grass carp were randomly divided into 4 groups: control group (Con), Aeromonas hydrophila group (Ah), Aeromonas hydrophila+Bacillus subtilis (Ah+Bs) group and Bacillus subtilis+Aeromonas hydrophila group (Bs+Ah), and the three experimental groups were intraperitoneally injected with 1×105 CFU/fish A. hydrophila, and B. subtilis diet contained 1×107 CFU/g for a trial of 56 days. The results showed that two groups fed with B. subtilis had higher weight gain rate and special growth rate compared with the Ah group (P<0.05). B. subtilis significantly decreased liver lipid droplet size and the hepatic lipid content at day 28 (P<0.05), increased the content of serum cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and reduced activities of aspartate aminotransferaseand alanine aminotransferase. B. subtilis downregulated the expression of acetyl-CoA carboxylase alpha and upregulated the expression of lipoprotein lipase and adipose triglyceride lipase on day 28. B. subtilis enhanced superoxide dismutase, catalase, glutathione and total antioxidant capacity, and diminished malondialdehyde and hydrogen peroxide. In conclusion, probiotic B. subtilis supplementation can promote growth, enhance the antioxidant function, reduce the liver damage caused by infection of A. hydrophila, regulate the hepatic lipid metabolism, and reduce the hepatic lipid accumulation in grass carp.
-
Keywords:
- Grass carp /
- Aeromonas hydrophila /
- Bacillus subtilis /
- Lipid metabolism /
- Antioxidant function
-
-
图 1 益生枯草芽孢杆菌对草鱼肝脏脂质沉积的影响
A—H(400×). 分别为第28天(A—D图)和第56天(E—H)的对照组、Ah组、Ah+Bs组和Bs+Ah组油红染色结果; I图. 用Image-Pro Plus 6.0软件统计的油红染色区域面积结果; J图. 肝脏的脂肪含量;图中数值(平均值±标准误)为样本的平均值(n=6);不同的上标字母表示不同处理组间差异显著(P<0.05);*表示28d和56d之间有显著差异(P<0.05), 下同
Figure 1. The effect of B. subtilis on hepatic lipid content in grass carp
A—H. The oil red O staining of the control group, Ah group, Ah+Bs group and Bs+Ah group on the 28d (A—D) and 56d (E—H); I. The relative areas of the lipid droplets after oil-red O staining analysed by Image-Pro Plus 6.0; J. The effect of the B. subtilis diet on the hepatic lipid content in grass carp. Values are the mean±SEM (n=6). Different letters indicate significant differences among groups (P<0.05). Asterisks indicate significant differences between 28d and 56d (P<0.05). The same applies below
表 1 实验饲料配方及基本成分
Table 1 Compositions of experimental diets
原料Ingredient 含量Content (g/kg) 营养成分Composition 含量Content
(% DM)鱼粉Fish meal 80 基础饲料Basal diet 豆粕Soybean meal 240 粗蛋白Crude protein 29.83 菜粕Rapeseed meal 340 粗脂肪Crude lipid 4.39 小麦粉Wheat Flour 250 水分Moisture 10.16 豆油Soybean oil 6 灰分Ash 8.32 磷酸二氢钙Ca(H2PO4)2 20 维生素预混料Vitamin premix 1 1 枯草芽孢杆菌饲料B. subtilis diet 矿物质预混料Mineral premix 2 3 粗蛋白Crude protein 29.74 氯化钠NaCl 2 粗脂肪Crude lipid 4.37 氯化胆碱Choline chloride 2 水分Moisture 10.13 纤维素Cellulose 56 灰分Ash 8.39 总量Total 1000 注: 1维生素预混料(mg/kg): 维生素A, 6500 IU; 维生素D3, 4500 IU; 维生素C, 120 mg; 维生素E, 25 mg; 维生素K3, 5 mg; 维生素B1, 12.5 mg; 维生素 B2, 12.5 mg; 维生素B6, 15.0 mg; 维生素B12, 0.025 mg; 烟酰胺, 50 mg; 泛酸, 40 mg; 肌醇, 75 mg; 叶酸, 2.5 mg; 生物素, 0.08 mg; 2矿物质预混料(mg/kg): 氯化钠, 1.0; 硫酸镁, 15.0; 磷酸二氢钠, 25.0; 六水合氯化铝, 0.06; 磷酸二氢钾, 32.0; 磷酸二氢钙, 20.0; 柠檬酸铁, 2.5; 乳酸钙, 3.5; 七水硫酸锌, 0.353; 四水硫酸锰, 0.162; 五水硫酸铜, 0.031; 六水合氯化钴, 0.001; 碘酸钾, 0.003; 纤维素, 0.39Note: 1 Vitamin premix (mg/kg): vit. A 6500 IU, vit. D3 4500 IU, vit. C 120 mg, vit. E 25 mg, vit. K3 5 mg, vit. B1 12.5 mg, vit. B2 12.5 mg, vit. B6 15.0 mg, vit. B12 0.025 mg, niacinamide 50 mg, pantothenate 40 mg, inositol 75 mg, folic acid 2.5 mg, biotin 0.08 mg; 2 Mineral premix (mg/kg): NaCl 1.0; MgSO4 15.0; NAh2PO4·2H2O 25.0; AlCl3·6H2O 0.06; KH2PO4 32.0; Ca(H2PO4)2·H2O 20.0; C6H5FeO7·10H2O 2.5; CaC6H10CaO6·5H2O 3.5; ZnSO4·7H2O 0.353; MnSO4·4H2O 0.162; CuSO4·5H2O 0.031; CoCl2·6H2O 0.001; KIO3·6H2O, 0.003; cellulose, 0.39 表 2 实验分组设计
Table 2 The experimental design
分组Group 暂养期间饲料Diet during the temporary rearing period 腹腔注射Intraperitoneal injection 注射后投喂饲料Diet after intraperitoneal injection 对照Control 基础饲料 PBS 基础饲料 Ah 基础饲料 1×105 CFU/fish A. hydrophila 基础饲料 Ah+Bs 基础饲料 1×105 CFU/fish A. hydrophila B. subtilis饲料 Bs+Ah B. subtilis饲料 1×105 CFU/fish A. hydrophila 基础饲料 表 3 RT-PCR引物序列
Table 3 Primers used for real-time PCR
基因Gene 登录号GenBank accession No. 引物序列Primer sequence(5′—3′) 退火温度Annealing temperature (℃) 脂肪酸合酶FAS HM802556.1 GTCCACAGGGTGTCGTTC 58 GAGGTCTTGGGCTCTTTATT 乙酰辅酶A羧化酶α ACCα GU908475 AGTATCGCAGTGGCATCA 58 TGTCCCCTTTGTTTTCCT 肉碱棕榈酰基转移酶Iα1a CPTIα1a KJ816747 TTTACGACGGACGGTTGC 58 GCTTGTTCTTCCCACGACT 脂蛋白脂酶LPL FJ436077 AGCCCTGTATGAACGAGA 58 CACATCCTTGCCCACTAG 脂肪甘油三酯脂肪酶ATGL HQ845211 TATTGTGGTTTAATCCCTCC 58 CAGTGCCTTGCTCAGTCT 激素敏感脂酶HSL FJ843081 CCGACAAGGACAGGACAGT 58 ATGACCAGGCAGGGAGAA 肝型脂肪酸结合蛋白L-FABP EU220990.1 GGGAAAACCATCACTAACTC 58 TCAGGGTCTCAACCATCTC 脂肪酸移位酶FAT/CD36 KU821103.1 CTTCCCCACTTCCTCTATG 58 TAATCGGTTCCACATCCA 固醇调控元件结合蛋白-1c SREBP-1c GU339498 GGATTGAGGTGAGCCGACAT 58 TGAGGAAAGCCATTGACTACATT 过氧化物酶体增殖物激活受体γ PPARγ GQ220296 AATGCACCTTTCGTTATCC 58 GAGCGTCACTTGGTCGTTC 过氧化物酶体增殖物激活受体α PPARα FJ595500 TGTCAATACTGCCGTTTCC 58 GACTGGTGCTCCTCTTTCC 肌动蛋白β-actin M25013 CCTTCTTGGGTATGGAGTCTTG T AGAGTATTTACGCTCAGGTGGG 表 4 益生枯草芽孢杆菌对草鱼生长性能及摄食量的影响
Table 4 Effects of B. subtilis on growth performance and food intake of grass carps
指标Index 对照Control Ah Ah + Bs Bs + Ah IW 50.77±0.83 50.61±0.60 50.34±0.38 50.42±1.26 28d SR 98.67±2.31 96.00±4.00 98.67±2.31 97.33±4.62 FW 68.76±1.62 67.53±2.66 70.97±1.06 70.69±2.73 WGR 35.46±3.49ab 33.42±4.16a 40.98±1.28b 40.17±1.89b SGR 1.08±0.09ab 1.03±0.11a 1.23±0.03b 1.21±0.05b FI 31.45±0.26 30.62±1.57 31.74±1.19 32.31±1.04 FCR 1.76±0.14ab 1.83±0.20b 1.54±0.01a 1.60±0.07ab 56d SR 97.31±2.57 95.98±1.09 97.37±0.54 96.71±0.61 FW 103.77±2.17ab 102.71±3.86a 115.36±6.31c 110.87±2.98bc WGR 104.37±0.98a 102.96±7.21a 129.12±11.00b 119.91±1.71b SGR 1.28±0.01a 1.26±0.06a 1.48±0.09b 1.41±0.01b FI 104.70±0.83a 105.14±7.41a 123.34±15.76b 121.30±4.92b FCR 1.98±0.05ab 2.02±0.01b 1.89±0.07a 2.01±0.03b 注: 表中数值(平均值±标准误)为样本的平均值(n=3重复缸)。每行数值后上标的不同字母表示差异显著(P<0.05); 下同Note: Values are the mean±SEM (n=3). Values within the same row with different letters are significantly different (P<0.05); The same applies below 表 5 益生枯草芽孢杆菌对草鱼形态学参数的影响
Table 5 Effects of B. subtilis on morphological parameters of grass carps
指标Index 对照Control Ah Ah + Bs Bs + Ah 28d CF 1.91±0.05 1.84±0.07 1.90±0.17 1.86±0.03 HSI 2.13±0.13 2.03±0.09 2.06±0.09 2.15±0.06 VSI 10.30±1.06 10.50±1.64 11.84±1.31 10.23±1.15 56d CF 2.00±0.09 1.90±0.16 1.94±0.06 1.96±0.18 HSI 2.49±0.23 2.39±0.11 2.53±0.17 2.43±0.10 VSI 11.83±1.05 11.15±1.48 10.93±1.19 11.10±1.43 注: 表中数值(平均值±标准误)为样本的平均值(n=6)Note: Values are the mean ± SEM (n=6) 表 6 益生枯草芽孢杆菌对草鱼血液生化参数的影响
Table 6 Effects of B. subtilis on blood biochemical parameters of grass carps
指标Index 对照Control Ah Ah+Bs Bs+Ah 28d CHO
(mmol/L)6.52±0.17ab 6.05±0.26a 6.29±0.43a 6.79±0.16b TG (mmol/L) 5.76±0.38b 5.14±0.31a 5.59±0.47ab 5.73±0.42b HDL-C (mmol/L) 2.25±0.25ab 1.89±0.16a 2.22±0.21ab 2.47±0.20b LDL-C (mmol/L) 2.39±0.40 2.27±0.13 2.43±0.28 2.29±0.25 AST (U/L) 52.83±12.69ab 67.04±9.31b 49.50±7.32a 55.93±14.13ab ALT (U/L) 6.59±0.25 6.85±0.33 6.69±0.92 6.96±0.15 56d CHO (mmol/L) 6.07±0.49b 5.39±0.49a 5.86±0.54ab 6.02±0.34b TG (mmol/L) 5.56±0.42 6.02±0.70 5.79±0.42 5.56±0.49 HDL-C (mmol/L) 2.19±0.39ab 1.94±0.16a 2.06±0.14ab 2.30±0.20b LDL-C (mmol/L) 2.54±0.25b 2.10±0.20a 2.33±0.24ab 2.46±0.21b AST (U/L) 52.52±6.32a 81.48±18.54b 50.73±9.13a 58.72±6.08a ALT (U/L) 6.78±0.39a 7.41±0.45b 6.71±0.29a 6.58±0.61a -
[1] Du Z Y, Clouet P, Zheng W H, et al. Biochemical hepatic alterations and body lipid composition in the herbivorous grass carp (Ctenopharyngodon idella) fed high-fat diets [J]. British Journal of Nutrition, 2006, 95(5): 905-915. doi: 10.1079/BJN20061733
[2] Kong W, Huang C, Tang Y, et al. Effect of Bacillus subtilis on Aeromonas hydrophila-induced intestinal mucosal barrier function damage and inflammation in grass carp (Ctenopharyngodon idella) [J]. Scientific Reports, 2017, 7(1): 1588. doi: 10.1038/s41598-017-01336-9
[3] Huang L, Cheng Y, Huang K, et al. Ameliorative effect of Sedum sarmentosum Bunge extract on tilapia fatty liver via the PPAR and P53 signaling pathway [J]. Scientific Reports, 2018, 8(1): 8456. doi: 10.1038/s41598-018-26084-2
[4] 杜震宇. 养殖鱼类脂肪肝成因及相关思考 [J]. 水产学报, 2014, 38(9): 1628-1638. Du Z Y. Causes of fatty liver in farmed fish: a review and new perspectives [J]. Journal of Fisheries of China, 2014, 38(9): 1628-1638.
[5] Tang Y, Han L, Chen X, et al. Dietary supplementation of probiotic Bacillus subtilis affects antioxidant defenses and immune response in grass carp under Aeromonas hydrophila challenge [J]. Probiotics and Antimicrobial Proteins, 2019, 11(2): 545-558. doi: 10.1007/s12602-018-9409-8
[6] Zhao H, Luo Y, Wu Z, et al. Hepatic lipid metabolism and oxidative stress responses of grass carp (Ctenopharyngodon idella) fed diets of two different lipid levels against Aeromonas hydrophila infection [J]. Aquaculture, 2019, (509): 149-158.
[7] Al-Muzafar H M, Amin K A. Probiotic mixture improves fatty liver disease by virtue of its action on lipid profiles, leptin, and inflammatory biomarkers [J]. BMC Complementary and Alternative Medicine, 2017, 17(1): 43. doi: 10.1186/s12906-016-1540-z
[8] An H M, Park S Y, Lee D K, et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats [J]. Lipids in Health and Disease, 2011, (10): 116.
[9] 李卫芬, 张小平, 宋文辉, 等. 芽孢杆菌对草鱼养殖水质的影响 [J]. 水产养殖, 2012, 33(10): 1-5. doi: 10.3969/j.issn.1004-2091.2012.10.001 Li W F, Zhang X P, Song W H, et al. Effects of Bacillus on the water quality in grass carp culture [J]. Journal of Aquaculture, 2012, 33(10): 1-5. doi: 10.3969/j.issn.1004-2091.2012.10.001
[10] Liu H, Wang S, Cai Y, et al. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus [J]. Fish and Shellfish Immunology, 2017, (60): 326-333.
[11] Wu Z X, Feng X, Xie L L, et al. Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora [J]. Journal of Applied Ichthyology, 2012, 28(5): 721-727. doi: 10.1111/j.1439-0426.2012.01968.x
[12] Zhang X, Peng L, Wang Y, et al. Effect of dietary supplementation of probiotic on performance and intestinal microflora of Chinese soft-shelled turtle (Trionyx sinensis) [J]. Aquaculture Nutrition, 2014, 20(6): 667-674. doi: 10.1111/anu.12128
[13] Sheikhlar A, Alimon A R, Daud H, et al. White mulberry (Morus alba) foliage methanolic extract can alleviate Aeromonas hydrophila infection in African catfish (Clarias gariepinus) [J]. The Scientific World Journal, 2014, (2014): 592709.
[14] Liu C H, Chiu C H, Wang S W, et al. Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides [J]. Fish and Shellfish Immunology, 2012, 33(4): 699-706. doi: 10.1016/j.fsi.2012.06.012
[15] Karimzadeh S, Amirkolaie A K, Miandehy S P. The effects of different levels of Beta Plus on growth performance, microbial flora and blood parameters of caspian trout, Salmo caspius (Kessler, 1877) [J]. International Journal of Aquatic Biology, 2014, 2(6): 292-298.
[16] Cheng W, Chiu C S, Guu Y K, et al. Expression of recombinant phytase of Bacillus subtilis E20 in Escherichia coli HMS 174 and improving the growth performance of white shrimp, Litopenaeus vannamei, juveniles by using phytase-pretreated soybean meal-containing diet [J]. Aquaculture Nutrition, 2013, 19(2): 117-127. doi: 10.1111/j.1365-2095.2012.00946.x
[17] Liu C H, Wu K, Chu T W, et al. Dietary supplementation of probiotic, Bacillus subtilis E20, enhances the growth performance and disease resistance against Vibrio alginolyticus in parrot fish (Oplegnathus fasciatus) [J]. Aquaculture International, 2017, 26(1): 63-74.
[18] Lee H Y, Park J H, Seok S H, et al. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice [J]. Biochimica et Biophysica Acta, 2006, 1761(7): 736-744. doi: 10.1016/j.bbalip.2006.05.007
[19] Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells [J]. Journal of Hepatology, 2008, 49(5): 821-830. doi: 10.1016/j.jhep.2008.05.025
[20] Xu R Y, Wan Y P, Fang Q Y, et al. Supplementation with probiotics modifies gut flora and attenuates liver fat accumulation in rat nonalcoholic fatty liver disease model [J]. Journal of Clinical Biochemistry and Nutrition, 2012, 50(1): 72-77.
[21] Banda IGDL, Lobo C, León-Rubio J M, et al. Influence of two closely related probiotics on juvenile Senegalese sole (Solea senegalensis, Kaup 1858) performance and protection against Photobacterium damselae subsp. piscicida [J]. Aquaculture, 2010, 306(1): 281-288.
[22] Tapia-Paniagua S T, Díaz-Rosales P, García de la Banda I, et al. Modulation of certain liver fatty acids in Solea senegalensis is influenced by the dietary administration of probiotic microorganisms [J]. Aquaculture, 2014, (424-425): 234-238.
[23] Falcinelli S, Picchietti S, Rodiles A, et al. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism [J]. Scientific Reports, 2015, (5): 9336.
[24] Falcinelli S, Rodiles A, Hatef A, et al. Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish [J]. Scientific Reports, 2017, 7(1): 5512. doi: 10.1038/s41598-017-05147-w
[25] Yuan X, Liang X F, Liu L, et al. Fat deposition pattern and mechanism in response to dietary lipid levels in grass carp, Ctenopharyngodon idellus [J]. Fish Physiology and Biochemistry, 2016, 42(6): 1557-1569. doi: 10.1007/s10695-016-0240-4
[26] 张莹兰, 张弢, 周祖发, 等. 急慢性肝炎、肝硬化及肝癌患者血脂检测的临床意义 [J]. 临床消化病杂志, 2008, 20(6): 369-370. Zhang Y L, Zhang T, Zhou Z F, et al. The clinical value of serum lipid in patients with acute chronic hepatitis, cirrhosis and liver carcinoma [J]. Journal of Clinical Gastroenterology, 2008, 20(6): 369-370.
[27] 周晓波, 黄燕华, 曹俊明, 等. 5种乳酸菌对罗非鱼生长性能、体成分、血清生化指标及肠道菌群的影响 [J]. 动物营养学报, 2014, 26(7): 2009-2017. Zhou X B, Huang Y H, Cao J M, et al. Effects of 5 kinds of lactobacillus on growth performance, body composition, serum biochemical indices and intestinal microflora of tilapia (Oreochromis niloticus×O. aureu) [J]. Chinese Journal of Animal Nutrition, 2014, 26(7): 2009-2017.
[28] Hassaan M S, Soltan M A, Jarmołowicz S, et al. Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of nile tilapia (Oreochromis niloticus) [J]. Aquaculture Nutrition, 2018, (24): 83-93.
[29] Chen Q L, Luo Z, Pan Y X, et al. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper [J]. Aquatic Toxicology, 2013, (136-137): 72-78.
[30] Song Y F, Luo Z, Zhang L H, et al. Endoplasmic reticulum stress and disturbed calcium homeostasis are involved in copper-induced alteration in hepatic lipid metabolism in yellow catfish Pelteobagrus fulvidraco [J]. Chemosphere, 2016, (144): 2443-2453.
[31] Eberle D, Hegarty B, Bossard P, et al. SREBP transcription factors: master regulators of lipid homeostasis [J]. Biochimie, 2004, 86(11): 839-848. doi: 10.1016/j.biochi.2004.09.018
[32] Rosen E D, Sarraf P, Troy A E, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro [J]. Molecular Cell, 1999, 4(4): 611-617. doi: 10.1016/S1097-2765(00)80211-7
[33] Tontonoz P, Hu E, Spiegelman B M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor [J]. Cell, 1994, 79(7): 1147-1156. doi: 10.1016/0092-8674(94)90006-X
[34] Morash A J, Kajimura M, McClelland G B. Intertissue regulation of carnitine palmitoyltransferase I (CPTI): Mitochondrial membrane properties and gene expression in rainbow trout (Oncorhynchus mykiss) [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008, 1778(6): 1382-1389. doi: 10.1016/j.bbamem.2008.02.013
[35] Kerner J, Hoppel C. Fatty acid import into mitochondria [J]. BBA-Molecular and Cell Biology of Lipids, 2000, 1486(1): 1-17. doi: 10.1016/S1388-1981(00)00044-5
[36] Ji H, Li J, Liu P. Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus [J]. Comparative Biochemistry and Physiology, Part B, 2011, 159(1): 49-56. doi: 10.1016/j.cbpb.2011.01.009
[37] Bonen A, Han X X, Habets D D, et al. A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin-and AICAR-stimulated fatty acid metabolism [J]. American Journal of Physiology-Endocrinology and Metabolism, 2007, 292(6): E1740-E1749. doi: 10.1152/ajpendo.00579.2006
[38] Coburn C T, Knapp F F, Febbraio M, et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice [J]. The Journal of Biological Chemistry, 2000, 275(42): 32523-32529. doi: 10.1074/jbc.M003826200
[39] Holloway G P, Lally J, Nickerson J G, et al. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle [J]. Journal of Physiology, 2010, 582(1): 393-405.
[40] Zheng X, Dai W, Chen X, et al. Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae [J]. Journal of Biomedical Science, 2015, 22(1): 105. doi: 10.1186/s12929-015-0206-3
[41] 陈启亮. 铜对黄颡鱼和矛尾复虾虎鱼脂类代谢的影响及机理研究 [D]. 武汉: 华中农业大学, 2015: 73-86 Chen Q L. Effects and mechanisms of copper on lipid metabolism in yellow catfish Pelteobagrus fulvidraco and javelin goby Synechogobius hasta [D]. Wuhan: Huazhong Agricultural University, 2015: 73-86
[42] Roberto G, Giovanni M, Maurizio C. Redox balance in the pathogenesis of nonalcoholic fatty liver disease: mechanisms and therapeutic opportunities [J]. Antioxidants and Redox Signaling, 2011, 15(5): 1325-1365. doi: 10.1089/ars.2009.3058
[43] 杜宗君, 夏晶, 骆美琳, 等. 谷氨酰胺对嗜水气单胞菌致病中华鳖的保护作用 [J]. 四川动物, 2014, 33(2): 254-260. Du Z J, Xia J, Luo M L, et al. Protective effect of Gln on Pelodiscus sinensis against Aeromonas hydrophila infection [J]. Sichuan Journal of Zoology, 2014, 33(2): 254-260.
[44] Wang W N, Zhou J, Peng W, et al. Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress [J]. Comparative Biochemistry & Physiology Part C, 2009, 150(4): 428-435.
[45] Yang S P, Wu Z H, Jian J C, et al. Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei [J]. Aquaculture, 2010, 309(1): 62-65.
[46] 孙盛明, 苏艳莉, 张武肖, 等. 饲料中添加枯草芽孢杆菌对团头鲂幼鱼生长性能、肝脏抗氧化指标、肠道菌群结构和抗病力的影响 [J]. 动物营养学报, 2016, 28(2): 507-514. Sun S M, Su Y L, Zhang W X, et al. Effects of dietary Bacillus subtilis on growth performance, liver antioxidant ability, intestinal microflora structure and disease resistance of juvenile blunt snout bream (Megalobrama amblycephala) [J]. Chinese Journal of Animal Nutrition, 2016, 28(2): 507-514.
[47] Zhang C N, Zhang J L, Guan W C, et al. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var [J]. Fish and Shellfish Immunology, 2017, (68): 84-91.