DEVELOPMENT OF EST-SSR MARKERS AND ANALYSIS OF GROWTH TRAIT IN SILVER CARP
-
摘要: 研究采用Illumina高通量测序技术对鲢(Hypophthalmichthys molitrix)卵组织进行转录组测序分析, 筛选多态EST-SSR标记并与生长性状进行关联性分析。研究结果显示: (1)测序组装总Unigene 77129个, SSR共24458个, 占所测EST数据的31.7%。鲢包含SSR的EST序列主要有二碱基、三碱基、四碱基和五碱基组成。二碱基中, AC含量最丰富; (2)随机挑选175条EST序列设计SSR引物, 筛选出多态EST-SSR标记36个, Blast结果显示有10条已知基因功能; (3)全同胞家系检测结果显示有两个标记与鲢的生长性状相关。SCE26与体长和体重显著相关(P<0.05), SCE65与肥满度显著相关(P<0.05)。研究结果将为鲢的分子标记辅助育种的应用提供基础理论指导。Abstract: Silver carp is one of important breeding fish in China. It is necessary to study the growth traits markers to accelerate the molecular marker-assisted breeding techniques. The simple sequence repeat (SSR) from the transcriptome of egg in silver carp were characterized by high-throughput Illumina sequencing, and genotypes associated growth traits were analyzed. The main results are as follows: (1) 77129 unigenes were detected by assembly, 31.7% of 24458 ESTs contained repeat motifs of various types (dinucleotide, trinucleotide, tetranucleotide and pentanucleotide) and lengths with AC being the most abundant dinucleotides one. (2) 175 EST-SSR primers were randomly characterized and 36 polymorphic EST-SSR were developed in silver carp. The results of Blast indicated that 10 EST-SSR genes are known. (3) The results showed that two loci were significantly correlated with growth traits in full-sibling family in silver carp. One locus SCE26 was significantly (P<0.05) correlated with body length and body weight, and SCE65 was significantly (P<0.05) correlated with condition factor. This study will provide theoretical basis and technical methods for the development of the marker-assisted breeding system in silver carp.
-
Keywords:
- Hypophthalmichthys molitrix /
- EST-SSR /
- Molecular marker /
- Family /
- Growth traits
-
鲢(Hypophthalmichthys molitrix), 是我国“四大家鱼”之一, 是老百姓重要的动物蛋白来源之一。近年来, 人工近亲繁殖和亲本选育等问题已导致鲢的主要经济性状退化、生长速度减慢、性成熟个体变小、抗逆性下降等问题, 环境污染导致鲢天然种群数量明显下降和种质资源破坏较严重[1, 2]。然而利用传统的育种技术培育优良品种或品系需要进行多代选育, 费时费力。分子标记辅助育种技术可快速、准确地检测到与性状基因紧密连锁的分子标记, 在亲子鉴定、回交育种、杂种优势预测和品种鉴定等各个育种阶段发挥重要作用, 从而加速育种进程, 提高育种效率[3]。开展鲢功能基因组学研究, 筛选鉴定鲢生长相关的分子标记及QTL, 对鲢的分子标记辅助育种体系具有重要的理论意义和生产价值。
分子标记可按有无基因功能分为Type Ⅰ与Type Ⅱ标记两大类。Type Ⅰ标记指来源于基因编码区, 与功能基因相联系的标记; Type Ⅱ标记则指与未知功能片段关联的标记。Type Ⅰ标记在群体遗传研究、比较基因组学研究、基因组进化研究、候选基因鉴定、数量性状位点定位、分子标记辅助育种等方面比Type Ⅱ标记更具优势[4]。
来自EST的SSR标记通常被称作EST-SSR标记, 属于Type Ⅰ标记, 它结合了SSR和EST标记的优点: (1)如果发现某个EST-SSR标记与某个遗传性状相连锁, 这个EST可能是直接影响这个性状的基因片段。(2)EST来自基因编码区, 具有一定的保守性, 因此在近缘种中有良好的通用性。(3)利用EST-SSR标记进行种群遗传多样性分析时, 所揭示的是在不同群体中基因的功能多样。
在遗传连锁图谱构建和分子标记辅助育种研究中, Liu等[5]报道了15个二碱基重复的EST-SSR标记用于斑点叉尾鮰(Ictalurus punctatus)的图谱构建。Wang等[6]用数据挖掘的方法得到25个鲤(Cyprinus carpio L.)的EST-SSR标记, 其中有23条EST-SSR序列与已知基因功能相关, 如编码新陈代谢的酶、抗病因子、结构蛋白、以及转录因子等。Fuji等[7]得到牙鲆(Paralichthys olivaceus)抗淋巴囊肿病的微卫星标记, 利用这个位点辅助培育的牙鲆品种在日本市场的占有率为35%。鲁翠云等[8]找到4个QTL位点与镜鲤的体质量、体长性状具有相关性, 可作为指导镜鲤家系选配的首选标记用于新品系培育。郭薇等[9]研究筛选出与鲫(Carassius auratus)体重、体厚、生长相关的EST-SSRs标记及基因型, 为鲫的分子标记辅助育种及目标性状的遗传改良提供依据。
在种质资源研究中, Vasemg等[10]将EST-SSR标记用于分析波罗的海五个大西洋鲑(Salmo salar L.)自然群体和四个人工养殖群体的遗传多样性和遗传分化, 结果发现人工养殖群体中有一个等位基因丢失。鲁翠云等[11]用鲤的EST-SSR引物分析了长江鲤和黑龙江鲤的种群结构, 找到2个位点在长江鲤的多态信息含量明显高于黑龙江鲤, 可以作为两个群体的鉴别。赫崇波等[12]用EST-SSR标记对我国斑点叉尾鮰种质资源进行评估, 认为斑点叉尾鮰的遗传分化程度很弱。郑国栋等[13]利用EST-SSR标记对不同地域草鱼(Ctenopharyngodon idellus)群体进行鉴定和遗传多样性分析, 对草鱼的种质资源保存、种群鉴定和良种选育具有重要意义。
迄今, 有关鲢在遗传连锁图谱构建[14-16]和种质资源遗传结构[1, 2, 17]的研究中已取得重要进展, 但是缺乏分子标记辅助育种的研究。本实验通过鲢的卵组织转录组数据挖掘EST-SSR标记, 从中筛选出与生长性状相关或连锁的位点, 探讨其用于分子标记辅助育种的应用潜力, 为鲢遗传育种的亲本选择提供理论基础。
1. 材料与方法
1.1 实验
用于检测引物多态的鲢采自石首老河野生群体共16尾。转录组测序材料和构建全同胞家系的实验鱼由中国水产科学研究院长江水产研究所窑湾试验场提供。转录组测序材料取自鲢的卵组织。TaKaRa试剂盒提取总RNA, 反转录得到cDNA, 对cDNA片段进行末端修复并连接测序接头, 进行Illumina HighSeq 2000高通量测序。本实验构建鲢的全同胞家系, 随机挑选子代共计144尾。采集的鳍条置于95%的酒精中。基因组DNA的提取参照盐析法[18]。对144尾鲢的外观性状体长和体重进行测量, 并计算肥满度(K=100W/L3, W为体重, L为体长)。
1.2 实验方法
转录组测序和微卫星的查找 将测序原始数据进行初步拼接, 去除低质量和短序列, 获得高质量的序列, 然后进行参考序列组装和de novo组装。基于转录组SSR检测是以组装出来Unigene作为参考序列, 用SSR软件MicroSatellite (MISA)来找出所有的SSR。Primer 6设计鲢EST-SSR引物。
PCR反应条件 94℃预变性5min; 94℃变性35s, 退火温度为35s, 72℃延伸50s, 循环35次; 最后72℃终延伸10min。PCR反应体系: 总体积25 μL, 包括大约20 ng总DNA, 上、下游引物各1 μL(5 μmol/L), 1 μL dNTP(10 mmol/L), 0.6U Taq聚合酶(TIANGEN), 2.5 μL缓冲液(含Mg2+1.5 mmol/L)。本实验参照Schuelke[19]发明的单管巢式PCR扩增方法进行基因型分型研究, GeneMapper4.0分析基因型数据。
数据处理与分析 多态位点和生长性状指标的关联性分析用SPSS软件中的广义线性模型(General linear model)处理。显著性检验用新复极差法(Duncan’s new multiple range test)[20]。
2. 结果
2.1 鲢转录组序列特征
通过Illumina Hiseq2000平台测序, 总计产出28691557200nt数据。组装结果总Unigene77129个, 总长98834445nt, 平均长度1281nt, N50达到2228nt。Unigene功能注释, 注释到NR、NT、Swiss-Prot、KEGG、COG、GO库的Unigene分别是46540个、64879个、41522个、35574个、16426个、30224个, 所有注释上的Unigene是66985个。预测编码蛋白框(CDS), 比对到蛋白库的CDS有46113个, 预测出的CDS有1512个, 共47625个。SSR共24458个, 占所测EST数据的31.7%。
鲢转录组微卫星类型特征如图 1所示。鲢包含SSR的EST序列主要有二碱基、三碱基、四碱基和五碱基组成。二碱基中, AC/GT含量最丰富, CG含量最少。三碱基重复的序列最多类型是ATC和ATG。
2.2 鲢EST-SSR多态筛选
我们从所测序列挑选175条鲢的EST进行SSR引物设计。PCR检测结果显示, 共有148对引物有扩增产物, 其中单态有60对, 杂带有52对, 多态有36对。36对多态引物的核心重复类型、退火温度、引物序列和Blast结果见表 1。
表 1 鲢36对EST-SSR引物特征Table 1. Characterization of 36 EST-SSR in silver carp引物位点Locus 退火温度Tm 片段大小
Size (bp)核心重复类型
Motif引物序列Primer (5′-3′) 基因Gene SCE26 55 148 (GGA)8 CAATGAAGGTGCAAATATTCCTC
ACTCTCTGTCTTCAAAATGGCTGUnknown SCE29 55 178 (TTC)5 CATGGGGATATTTGTGACTTCTT
ACTACAGAGCAAGGACACCTCTGUnknown SCE41 50 185 (ATG)5 CATATATGAGCAGAGCTGAGGCT
AAGTGACGATGGTCTCTGTGAGTUncharacterized protein isoform X1 SCE42 60 168 (TCC)7 AGTACTTTTTGACTGCTCCTTCG
CGGAGATTTTCAGTGTACAGGACTranscription factor 3C polypeptide 2 SCE58 48 173 (TAT)5 AAAATGCACCTGAATCTTTCGTA
AACGTTGATGGTGATGATAATTTGUnknown SCE60 50 176 (CA)10 CTCATATCAGGGCAGCTACAATC
CGTATTAGCATCTCTTCCCGTCSugar phosphate exchanger 2 SCE65 50 157 (TG)10 TGAACTGGATCAGAAGACACTCA
GCAAACTGCAAAAATGATTCTGUnknown SCE77 50 165 (AT)8 GTGATCGCTCCCTAAAGTTAAGA
GGCCTCTATGATCAGCTTCTGTUnknown SCE78 60 386 (TGC)6 ATCTACGCGTCTGCCAGTATC
ACTTCACGTGATCTTTACGAACGSolute carrier family 12 member SCE79 50 158 (TG)11 GCAGCTGTTTTCATAGTTACACG
GGAATTTACAGAATCACACAGCCUnknown SCE84 50 350 (TCCCAT)4 GAAATCGTTTGATGCACCATCT
GGATGTATTCGAGCTTTCATCACUnknown SCE86 55 167 (AAAGA)4 TGGGATTTTGTAGTTCAGTGGAT
ACTTGCTGCTGCATTTGTAGTTTUnknown SCE91 50 170 (GCC)6 GCAGGGTGAAAACATTGATTC
AGCAGGGCAGATCGAACCAbelson tyrosine-protein kinase 2 SCE92 50 186 (CA)8 AACACAACGATCCAACAGAGAAT
GGGTCTATGGATTCTTCCTTGTCUnknown SCE94 50 175 (GCT)5 TCACAGGGATCTAGGTGTTTTTC
AAACCAGCAAAGGTTAAAAGGACUnknown SCE97 55 178 (GAA)5 GCATCCAGAGTCTGAAAGAGAAG
TTCTCTCCGTCTGTCTTTTTGGUnknown SCE101 52 172 (CCA)5 TTATCCAGTCCATGTCCCTCTAC
CTCTTTTAGTGCCCTTTCCACTCSerine/threonine-protein kinase X1 SCE102 55 182 (TAT)6 GTCCAGTGCCAACTGAGTAGTTT
ATCAAGTGGCACAACCAAGTATTUnknown SCE109 50 170 (CT)10 TGGTGATGGAGCTCATCTTCTAC
ACAGCTTTCAGGCTCTTTGAAGTUnknown SCE111 55 173 (GAG)5 AGCGTACGTGCTCTTCTACCAG
CTGCTCGTTGTCGTTGAGATUbiquitin carboxy1-terminal hydrolase SCE118 50 252 (TGA)8 CAGAGCTGGTTGTGTTTGTGTTA
CAGACAGATGTGTCAGAGGGAACBifunctional lysine-specific emethylase SCE128 55 175 (TTC)7 AACCCACAGTTGTCAAGATTGTT
TGACAAGTGAACTGTTGAAGTGCUnknown SCE132 50 158 (TTTC)5 CAAGTGTTTGTGACACTCATTCC
TGGTTTTTCATTCTTATCAACCTTCUnknown SCE133 50 171 (ATT)5 TGAATCTAAAGAGGGAATGATGC
CCAGTGTGCTGTTGTATAAGTCGUnknown SCE136 55 190 (GAAA)5 GTGATAGTTTACCACCCCCTGTT
ATGGCCTTATCATAGGCTTCTTTUnknown SCE142 48 173 (TGA)6 TCTCCTTATTCTGCTGTGGTTGT
ATATGTTCAGCCTTGAGATCGAAUnknown SCE145 48 168 (GAT)8 GGATAATCTGGGGGTGTTAAGTT
CTTCCATCGATGTCTCATTTCATUnknown SCE155 52 170 (CAT)5 ATACAGAAGAGCCAAAACCATCA
AGTTTGATCACCATTCCAAACACUnknown SCE161 55 280 (TCTGA)4 TCAAACCCTCGTGTGATTAATGT
CGTGTGCGAGTGTCTAATATCTGUnknown SCE162 50 171 (CAA)5 GCTCGACTTGTGCCTAATTATTG
AAAATGACAATGTTTGGTCTTGGUnknown SCE163 60 176 (GT)10 AGGACTGTTTGATTGTCTGATGG
ATGAGTGAGAGGTTGTTGAGCAGInterleukin-12 subunit alpha SCE167 50 167 (ATG)6 CACAGCATGAGCTGAAGTGTAAC
AGTTCAAACCGCACACATGTAAUnknown SCE170 55 170 (GAT)6 AATCAAGAAACAATGTGGCCTT
GGTTTGTCGTAGTGGTCTTTCAGZinc finger SCE171 50 175 (ACA)6 GAAGAACAAAAAGAGAATAGGAAAAGA
CTGAAATGAGCAGAATGGAAAATUnknown SCE174 55 163 (TGAT)5 GTTGAAGATCCAGCTCTTCTCTG
TTGTTAATTTGGGTTCACCAGTTUnknown SCE175 50 169 (TCC)6 TGTTATTTTCCTTCAGCTTCTGG
TAGAAGACACCAACAAGCCAAATUncharacterized protein C9orf85 2.3 与生长性状相关的关联性分析
我们一共测量了144尾鲢。体长最大值为17.0 cm, 最小值为11.2 cm, 平均值为14.1 cm;体重最大值是82.3 g, 最小值为25.8 g, 平均值为49.4 g; 肥满度最大值为2.07, 最小值为1.41, 平均值为1.7(表 2)。
表 2 144尾鲢测量指标Table 2. Measurements from 144 silver carp individuals项目Item 体长Body length
BL (cm)体重Body
weight BW (g)肥满度K 最小值Min 11.2 25.8 1.41 最大值Max 17 82.3 2.07 平均值Average 14.1 49.4 1.7 本研究共筛选得到两个与鲢生长性状有关的SCE位点, SCE26和SCE65。如表 3所示, 2个SCE位点按基因型分类, SCE26位点有3种基因型, A148-148、A148-154和A154-154。其中A148-154为优势基因型, 基因频率为0.68。基因型A148-154和A154-154与体长和体重性状差异显著, 而与肥满度性状无相关性。
表 3 鲢生长性状有关的EST-SSR多态位点信息Table 3. Effects of EST-SSR polymorphisms on growth traits of silver carp位点Locus 基因型Genotype 数目No. 基因型频率Genotype frequency 体长Body length (cm) 体重Body weigh (g) 肥满度K SCE26 A148-148 3 0.02 14.47±0.50ab 52.03±4.89ab 1.75±0.63 A148-154 98 0.68 14.21±0.51a 50.28±4.89a 1.74±0.64 A154-154 43 0.30 13.89±0.49b 47.17±4.98b 1.73±0.61 SCE65 A149-157 36 0.25 14.12±0.48 49.55±5.05 1.74±0.60 ab A157-159 48 0.33 14.20±0.52 49.89±5.10 1.73±0.56 ab A149-159 32 0.22 13.96±0.50 48.63±5.23 1.77±0.58a A159-159 28 0.19 14.18±0.44 49.21±4.79 1.71±0.62b 注: 平均值±标准误; a, b (P<0.05)Note: Mean±SD; a, b (P<0.05) SCE65有四种基因型, A149-157、A157-159、A149-159和A159-159, 与体长和体重性状均无显著相关性, 但基因型A149-159和A159-159与肥满度性状差异显著。
3. 讨论
3.1 鲢卵组织转录组的微卫星分布特点
Serapion等[21]的方法从斑点叉尾鮰开发Type Ⅰ标记(EST-SSR), 首次报道鱼类用此方法研究的先例。随后, 在其他鱼类[22-24]、虾类[25, 26]和贝类[27]中也有EST-SSR标记开发报道。本研究, 我们得到的结果有31.7%的鲢EST序列包含SSR, 这个比例远远高于斑节对虾(13.7%)[26]、河豚(11.5%)[28]和斑点叉尾鮰(11.2%)[21]、中国对虾(2.2%)[29]、海湾扇贝(4%)[27]和真鲷(4%)[24]。植物包含SSR的EST序列百分比在1%—5%[30, 31]。可见, 水生生物包含SSR的EST序列是非常丰富的。本研究中SSR丰富度较高, 可能是因为测序方法、序列拼接方式和计算法则更优化, 去除了更多的冗余数据, 提高了SSR的百分比。也有可能是鲢卵组织EST序列的一个自身特点, 有待我们进一步研究。
3.2 鲢转录组微卫星分布类型和多态率
大多数动物的EST数据库中SSR核心重复类型以二碱基居多数, 而植物则是三碱基重复最丰富[30, 31]。在鲤科鱼中, 包括非编码区SSR和编码区SSR中的研究[28, 32], 二碱基CA重复的序列最多[6, 33, 34]。也有少数学者提出相反观点, 认为AT二碱基重复次数最常见[22]。在本研究中, 鲢EST数据中二碱基CA重复次数最多, 与大部分鲤科鱼类研究相同。
多态位点不仅仅依赖于核心重复次数, 有些二碱基重复五次检测结果是多态, 而重复六次甚至更多却是单态[35, 36]。编码区的突变概率要小于非编码区, 源于基因受选择压力的影响[35]。与Type Ⅱ标记的SSR(来自非编码区)相比, EST-SSR的多态比例略低[25, 37]。本研究的结果, 共设计了175对EST-SSR引物, 有148对有扩增产物, 说明测序的EST质量是可靠的。多态有36对, 占总比例24.3%; 单态有60对, 占40.1%, 可能是源于基因的保守性。有27对无扩增产物, 可能是因为引物设计位点跨外显子扩增[37]。
3.3 鲢生长性状相关的功能基因标记
本研究共筛选得到两个与鲢生长性状有关的EST-SSR位点, SCE26和SCE65。如表 3所示, 两个位点按基因型分类, SCE26位点A148-154为优势基因型, 基因型频率为0.68。A148-154与A154-154的体长和体重差异显著, 而肥满度无相关性。SCE65的基因型A149-159和A159-159的肥满度差异显著, 体长和体重则无显著相关。群体的等位基因频率受人工选择、亲本数目及随机遗传漂变的影响较大[38]。本研究的实验材料144尾鲢不受这些情况的影响。因此, 可以排除上述可能干扰等位基因频率的因素。
候选基因的效应可能只存在某个群体或者特定世代, 即这种数量性状的连锁关系需要在该群体子代、同品种不同群体及不同品种中进行验证[39]。因此本研究对鲢微卫星的多态位点与外观性状的关系将进一步验证, 以期得到更准确的结果。这两个标记有可能作为生长有关的候选基因, 进行鲢分子标记辅助育种研究。
有关鲢EST-SSR标记的报道比较少。Wang等[6]用鲤的EST-SSR引物对鲢进行跨种扩增研究, 得到的EST-SSR多态率偏低。Guo等[16]构建鲢的微卫星文库, 筛选的大部分EST-SSR引物以GT二碱基核心重复为主。本研究直接从鲢的转录组测序产物中寻找SSR进行验证, 属于测序的副产品研究, 省时省力, 且涉及的引物核心重复序列覆盖二碱基、三碱基、四碱基和五碱基。
Blast结果显示, 36条鲢EST-SSR序列中有10条序列确定已知基因功能, 如转运蛋白、蛋白激酶、去甲基化酶及白细胞介素等, 有助于已知功能基因的定位。在目前的研究中, 关于鲢生长、繁殖、抗病等分子标记的相关报道较少。可根据不同的生产目的选择相应的基因型标记进行标记辅助育种研究, 重点研究生长速度快、耐低氧、抗病性强的基因, 全基因组测序工作的开展, 将加快研究进程。
-
表 1 鲢36对EST-SSR引物特征
Table 1 Characterization of 36 EST-SSR in silver carp
引物位点Locus 退火温度Tm 片段大小
Size (bp)核心重复类型
Motif引物序列Primer (5′-3′) 基因Gene SCE26 55 148 (GGA)8 CAATGAAGGTGCAAATATTCCTC
ACTCTCTGTCTTCAAAATGGCTGUnknown SCE29 55 178 (TTC)5 CATGGGGATATTTGTGACTTCTT
ACTACAGAGCAAGGACACCTCTGUnknown SCE41 50 185 (ATG)5 CATATATGAGCAGAGCTGAGGCT
AAGTGACGATGGTCTCTGTGAGTUncharacterized protein isoform X1 SCE42 60 168 (TCC)7 AGTACTTTTTGACTGCTCCTTCG
CGGAGATTTTCAGTGTACAGGACTranscription factor 3C polypeptide 2 SCE58 48 173 (TAT)5 AAAATGCACCTGAATCTTTCGTA
AACGTTGATGGTGATGATAATTTGUnknown SCE60 50 176 (CA)10 CTCATATCAGGGCAGCTACAATC
CGTATTAGCATCTCTTCCCGTCSugar phosphate exchanger 2 SCE65 50 157 (TG)10 TGAACTGGATCAGAAGACACTCA
GCAAACTGCAAAAATGATTCTGUnknown SCE77 50 165 (AT)8 GTGATCGCTCCCTAAAGTTAAGA
GGCCTCTATGATCAGCTTCTGTUnknown SCE78 60 386 (TGC)6 ATCTACGCGTCTGCCAGTATC
ACTTCACGTGATCTTTACGAACGSolute carrier family 12 member SCE79 50 158 (TG)11 GCAGCTGTTTTCATAGTTACACG
GGAATTTACAGAATCACACAGCCUnknown SCE84 50 350 (TCCCAT)4 GAAATCGTTTGATGCACCATCT
GGATGTATTCGAGCTTTCATCACUnknown SCE86 55 167 (AAAGA)4 TGGGATTTTGTAGTTCAGTGGAT
ACTTGCTGCTGCATTTGTAGTTTUnknown SCE91 50 170 (GCC)6 GCAGGGTGAAAACATTGATTC
AGCAGGGCAGATCGAACCAbelson tyrosine-protein kinase 2 SCE92 50 186 (CA)8 AACACAACGATCCAACAGAGAAT
GGGTCTATGGATTCTTCCTTGTCUnknown SCE94 50 175 (GCT)5 TCACAGGGATCTAGGTGTTTTTC
AAACCAGCAAAGGTTAAAAGGACUnknown SCE97 55 178 (GAA)5 GCATCCAGAGTCTGAAAGAGAAG
TTCTCTCCGTCTGTCTTTTTGGUnknown SCE101 52 172 (CCA)5 TTATCCAGTCCATGTCCCTCTAC
CTCTTTTAGTGCCCTTTCCACTCSerine/threonine-protein kinase X1 SCE102 55 182 (TAT)6 GTCCAGTGCCAACTGAGTAGTTT
ATCAAGTGGCACAACCAAGTATTUnknown SCE109 50 170 (CT)10 TGGTGATGGAGCTCATCTTCTAC
ACAGCTTTCAGGCTCTTTGAAGTUnknown SCE111 55 173 (GAG)5 AGCGTACGTGCTCTTCTACCAG
CTGCTCGTTGTCGTTGAGATUbiquitin carboxy1-terminal hydrolase SCE118 50 252 (TGA)8 CAGAGCTGGTTGTGTTTGTGTTA
CAGACAGATGTGTCAGAGGGAACBifunctional lysine-specific emethylase SCE128 55 175 (TTC)7 AACCCACAGTTGTCAAGATTGTT
TGACAAGTGAACTGTTGAAGTGCUnknown SCE132 50 158 (TTTC)5 CAAGTGTTTGTGACACTCATTCC
TGGTTTTTCATTCTTATCAACCTTCUnknown SCE133 50 171 (ATT)5 TGAATCTAAAGAGGGAATGATGC
CCAGTGTGCTGTTGTATAAGTCGUnknown SCE136 55 190 (GAAA)5 GTGATAGTTTACCACCCCCTGTT
ATGGCCTTATCATAGGCTTCTTTUnknown SCE142 48 173 (TGA)6 TCTCCTTATTCTGCTGTGGTTGT
ATATGTTCAGCCTTGAGATCGAAUnknown SCE145 48 168 (GAT)8 GGATAATCTGGGGGTGTTAAGTT
CTTCCATCGATGTCTCATTTCATUnknown SCE155 52 170 (CAT)5 ATACAGAAGAGCCAAAACCATCA
AGTTTGATCACCATTCCAAACACUnknown SCE161 55 280 (TCTGA)4 TCAAACCCTCGTGTGATTAATGT
CGTGTGCGAGTGTCTAATATCTGUnknown SCE162 50 171 (CAA)5 GCTCGACTTGTGCCTAATTATTG
AAAATGACAATGTTTGGTCTTGGUnknown SCE163 60 176 (GT)10 AGGACTGTTTGATTGTCTGATGG
ATGAGTGAGAGGTTGTTGAGCAGInterleukin-12 subunit alpha SCE167 50 167 (ATG)6 CACAGCATGAGCTGAAGTGTAAC
AGTTCAAACCGCACACATGTAAUnknown SCE170 55 170 (GAT)6 AATCAAGAAACAATGTGGCCTT
GGTTTGTCGTAGTGGTCTTTCAGZinc finger SCE171 50 175 (ACA)6 GAAGAACAAAAAGAGAATAGGAAAAGA
CTGAAATGAGCAGAATGGAAAATUnknown SCE174 55 163 (TGAT)5 GTTGAAGATCCAGCTCTTCTCTG
TTGTTAATTTGGGTTCACCAGTTUnknown SCE175 50 169 (TCC)6 TGTTATTTTCCTTCAGCTTCTGG
TAGAAGACACCAACAAGCCAAATUncharacterized protein C9orf85 表 2 144尾鲢测量指标
Table 2 Measurements from 144 silver carp individuals
项目Item 体长Body length
BL (cm)体重Body
weight BW (g)肥满度K 最小值Min 11.2 25.8 1.41 最大值Max 17 82.3 2.07 平均值Average 14.1 49.4 1.7 表 3 鲢生长性状有关的EST-SSR多态位点信息
Table 3 Effects of EST-SSR polymorphisms on growth traits of silver carp
位点Locus 基因型Genotype 数目No. 基因型频率Genotype frequency 体长Body length (cm) 体重Body weigh (g) 肥满度K SCE26 A148-148 3 0.02 14.47±0.50ab 52.03±4.89ab 1.75±0.63 A148-154 98 0.68 14.21±0.51a 50.28±4.89a 1.74±0.64 A154-154 43 0.30 13.89±0.49b 47.17±4.98b 1.73±0.61 SCE65 A149-157 36 0.25 14.12±0.48 49.55±5.05 1.74±0.60 ab A157-159 48 0.33 14.20±0.52 49.89±5.10 1.73±0.56 ab A149-159 32 0.22 13.96±0.50 48.63±5.23 1.77±0.58a A159-159 28 0.19 14.18±0.44 49.21±4.79 1.71±0.62b 注: 平均值±标准误; a, b (P<0.05)Note: Mean±SD; a, b (P<0.05) -
[1] 王长忠, 梁宏伟, 邹桂伟, 等. 长江中上游两个鲢群体遗传变异的微卫星分析 [J]. 遗传, 2008, 30(10): 1341-1348. doi: 10.3321/j.issn:0253-9772.2008.10.016 Wang C Z, Liang H W, Zou G W, et al. Genetic variation analysis of two silver carp populations in the middle and upper Yangtze River by microsatellite [J]. Hereditas, 2008, 30(10): 1341-1348. doi: 10.3321/j.issn:0253-9772.2008.10.016
[2] 庞美霞, 俞小牧, 童金苟. 三峡库区5个鲢群体遗传变异的微卫星分析 [J]. 水生生物学报, 2015, 39(5): 869-876. doi: 10.7541/2015.115 Pang M X, Yu X M, Tong J G. The microsatellite analysis of genetic diversity of five silver carp populations in the three gorges reservoir of the Yangtze River [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 869-876. doi: 10.7541/2015.115
[3] Ribaut J M, Hoisington D A. Marker-assisted selection: new tools and strategies [J]. Trends in Plant Science, 1998, 3(6): 236-239.
[4] Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics [J]. Aquaculture, 2004, 238(1-4): 1-37. doi: 10.1016/j.aquaculture.2004.05.027
[5] Liu Z J, Tan G, Li P, et al. Transcribed dinucleotide microsatellites and their associated genes from channel catfish Ictalurus punctatus [J]. Biochemical and Biophysical Research Communications, 1999, 259(1): 190-194. doi: 10.1006/bbrc.1999.0751
[6] Wang D, Liao X, Cheng L, et al. Development of novel EST-SSR markers in common carp by data mining from public EST sequences [J]. Aquaculture, 2007, 271(1-4): 558-574. doi: 10.1016/j.aquaculture.2007.06.001
[7] Fuji K, Hasegawa O, Honda K, et al. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus) [J]. Aquaculture, 2007, 272(1): 291-295.
[8] 鲁翠云, 曹顶臣, 李超, 等. 生长相关的微卫星标记在镜鲤繁殖群体中的验证 [J]. 天津农学院学报, 2012, 19(3): 13-18. Lu C Y, Cao D C, Li C, et al. Verification of microsatellite markers correlated with growth trait in mirror carp Cyprinus carpio L. [J]. Journal of Tianjin Agricultural College, 2012, 19(3): 13-18.
[9] 郭薇, 郑先虎, 匡友谊, 等. 鲫体重和体厚相关的EST-SSRs标记筛选及同源基因分析 [J]. 淡水渔业, 2013, 43(2): 9-15. doi: 10.3969/j.issn.1000-6907.2013.02.002 Guo W, Zheng X H, Kuang Y Y, et al. Screening and homology analysis of EST-SSRs makers related to body weight and body width in Carassius auratus [J]. Freshwater Fisheries, 2013, 43(2): 9-15. doi: 10.3969/j.issn.1000-6907.2013.02.002
[10] Vasemgi A, Nilsson J, Primmer C R. Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.) [J]. Molecular Biology & Evolution, 2005, 22(4): 1067.
[11] 鲁翠云, 全迎春, 李大宇, 等. 用鲤鱼EST-SSRs分子标记分析长江黑龙江鲤种群结构 [J]. 农业生物技术学报, 2007, 15(6): 947-952. doi: 10.3969/j.issn.1674-7968.2007.06.007 Lu C Y, Quan Y C, Li D Y, et al. Population structure analysis of common carp of Yangtze River and Heilongjiang River using EST-SSRs markers [J]. Journal of Agriculture Biotechnology, 2007, 15(6): 947-952. doi: 10.3969/j.issn.1674-7968.2007.06.007
[12] 赫崇波, 陈姝君, 高祥刚, 等. EST-SSR标记对我国斑点叉尾鮰种质资源的研究 [J]. 农业生物技术学报, 2008, 16(5): 815-823. doi: 10.3969/j.issn.1674-7968.2008.05.016 He C B, Chen S J, Gao X G, et al. Genetic diversity analysis of channel catfish (Ictalurus punctatus) Germplasms using EST-SSR markers [J]. Journal of Agriculture Biotechnology, 2008, 16(5): 815-823. doi: 10.3969/j.issn.1674-7968.2008.05.016
[13] 郑国栋, 陈杰, 蒋霞云, 等. 长江草鱼不同群体EST-SSR多态性标记的筛选及其遗传结构分析 [J]. 水生生物学报, 2015, 39(5): 1003-1011. doi: 10.7541/2015.131 Zheng G D, Chen J, Jiang X Y, et al. Detection of EST-SSR markers and genetic structure of different populations of grass carp in Yangtze River system [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 1003-1011. doi: 10.7541/2015.131
[14] 张立楠, 邹桂伟, 危起伟, 等. 鲢AFLP和微卫星标记连锁图谱构建 [J]. 中国海洋大学学报自然科学版, 2010, 40(9): 75-83. Zhang L N, Zou G W, Wei Q W, et al. Construction and characterization of A sex-average AFLP-SSR linkage map of silver carp (Hypophthalmichthys molitrix) [J]. Periodical of Ocean University of China, 2010, 40(9): 75-83.
[15] 张鹏, 杨官品, 张立楠, 等. 鲢InDel-RFLP标记开发及其在连锁图谱构建中的应用 [J]. 淡水渔业, 2011, 41(2): 43-50. doi: 10.3969/j.issn.1000-6907.2011.02.007 Zhang P, Yang G P, Zhang L N, et al. InDel-RFLPs of silver carp (Hypophthalmichthys molitrix) and their application to constructing the linkage map [J]. Freshwater Fisheries, 2011, 41(2): 43-50. doi: 10.3969/j.issn.1000-6907.2011.02.007
[16] Guo W J, Tong J G, Yu X M, et al. A second generation genetic linkage map for silver carp (Hypophthalmichehys molitrix) using microsatellite markers [J]. Aquaculture, 2013, 412–413(6): 97-106.
[17] 于悦, 庞美霞, 俞小牧, 等. 利用微卫星分子标记分析长江、赣江和鄱阳湖鲢群体遗传结构 [J]. 华中农业大学学报, 2016, 35(6): 104-110. Yu Y, Pang M X, Yu X M, et al. Population genetic structure of silver carp from Yangtze River, Ganjiang River and Poyang Lake based on Microsatellite markers [J]. Journal of Huazhong Agricultural University, 2016, 35(6): 104-110.
[18] Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high genomic DNA for PCR-based techniques [J]. Nucleic Acids Research, 1997, 25(22): 4692-4693. doi: 10.1093/nar/25.22.4692
[19] Schuelke M. An economic method for the fluorescent labeling of PCR fragments [J]. Nature Biotechnology, 2000, 18(2): 233-234. doi: 10.1038/72708
[20] Chen T. Characterization of porcine leptin receptor polymorphisms and their association with reproduction and production traits [J]. Animal Biotechnology, 2004, 15(1): 89-102. doi: 10.1081/ABIO-120037903
[21] Serapion J, Kucuktas H, Feng J N, et al. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus) [J]. Marine Biotechnology, 2004, (6): 364-377.
[22] Yue G H, Ho M Y, Orban L, et al. Microsatellites within genes and ESTs of common carp and their applicability in silver crucian carp [J]. Aquaculture, 2004, 234(1-4): 85-98.
[23] Rexroad C E, Rodriguez M F, Coulibaly I, et al. Comparative mapping of expressed sequence tags containing microsatellites in rainbow trout (Oncorhynchus mykiss) [J]. BMC Genomics, 2005, (6): 54.
[24] Chen S L, Liu Y G, Xu M Y, et al. Isolation and characterization of polymorphic microsatellite loci from an EST-library of red sea bream (Chrysophrys major) and cross-species amplification [J]. Molecular Ecology Notes, 2005, 5(2): 215-217. doi: 10.1111/j.1471-8286.2005.00880.x
[25] Pérez F, Ortiz J, Zhinaula M, et al. Development of EST-SSR markers by data mining in three species of shrimp: Litopenaeus vannamei, Litopenaeus stylirostris, and Trachypenaeus birdy [J]. Marine Biotechnology, 2005, 7(5): 554-569. doi: 10.1007/s10126-004-5099-1
[26] Maneeruttanarungroj C, Pongsomboon S, Wuthisuthimethavee S, et al. Development of polymorphic expressed sequence tag-derived microsatellites for the extension of the genetic linkage map of the black tiger shrimp (Penaeus monodon) [J]. Animal Genetics, 2006, 37(4): 363-368. doi: 10.1111/j.1365-2052.2006.01493.x
[27] Zhan A B, Bao Z M, Wang X L, et al. Microsatellite markers derived from bay scallop Argopecten irradians expressed sequence tags [J]. Fisheries Science, 2005, 71(6): 1341-1346. doi: 10.1111/j.1444-2906.2005.01100.x
[28] Edwards Y J, Elgar G, Clark M S, et al. The identification and characterization of microsatellites in the compact genome of the Japanese pufferfish, Fugu rubripes: perspectives in functional and comparative genomic analyses [J]. Journal of Molecular Biology, 1998, 278(4): 843-854. doi: 10.1006/jmbi.1998.1752
[29] Wang H X, Li F H, Xiang J H. Polymorphic EST-SSR markers and their mode of inheritance in Fenneropenaeus chinensis [J]. Aquaculture, 2005, 249(1-4): 107-114. doi: 10.1016/j.aquaculture.2005.03.041
[30] Chen C X, Zhou P, Choi Y A, et al. Mining and characterizing microsatellites from citrus ESTs [J]. Theoretical and Applied Genetics, 2006, 112(7): 1248-1257. doi: 10.1007/s00122-006-0226-1
[31] Kantety R V, Rota M L, Matthews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat [J]. Plant Molecular Biology, 2002, 48(5-6): 501-510.
[32] Ne ff, B D, Gross M R. Microsatellite evolution in vertebrates: inference from AC dinucleotide repeats [J]. Evolution, 2001, 55(9): 1717-1733.
[33] David L, Rajasekaran P, Fang J, et al. Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite marker [J]. Molecular Genetics and Genomics, 2001, 266(3): 353-362. doi: 10.1007/s004380100569
[34] Liao X L, Yu X M, Tong J G. Genetic diversity of common carp from two largest Chinese lakes and the Yangtze River revealed by microsatellite markers [J]. Hydrobiologia, 2006, 568(1): 445-453. doi: 10.1007/s10750-006-0222-0
[35] Nonneman D, Waldbieser G C. Isolation and enrichment of abundant microsatellites from a channel catfish (Ictalurus punctatus) brain cDNA library [J]. Animal Biotechnology, 2005, 16(2): 103-116.
[36] Cho Y G, Ishii T, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 2000, 100(5): 713-722. doi: 10.1007/s001220051343
[37] Cordeiro, G M, Casu R, McIntyre C L, et al. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum [J]. Plant Science, 2001, 160(6): 1115-1123. doi: 10.1016/S0168-9452(01)00365-X
[38] Linville R C, Pomp D, Johnson R K, et al. Candidate gene analysis for loci affecting litter size and ovulation rate in swine [J]. Journal of Animal Science, 2001, 79(1): 60-67. doi: 10.2527/2001.79160x
[39] Brym P, Kaminski S, Wojcik E. Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits [J]. Journal of Applied Genetics, 2005, 46(2): 179-185.
-
期刊类型引用(3)
1. 于爱清,施永海,徐嘉波,刘永士. 美洲鲥脑转录组多态性EST-SSR的规模化开发与利用. 西北农林科技大学学报(自然科学版). 2023(11): 1-12 . 百度学术
2. 吴新燕,梁宏伟,罗相忠,王丹,沙航,邹桂伟. 长丰鲢生长性状相关微卫星标记的初步筛选. 水产学报. 2022(01): 20-30 . 百度学术
3. 王宁,周金旭,徐浩,王秀利. SSR在水产养殖中的研究进展. 河北渔业. 2021(09): 27-31+37 . 百度学术
其他类型引用(2)