DEVELOPMENT OF EST-SSR MARKERS AND ANALYSIS OF GROWTH TRAIT IN SILVER CARP
-
摘要: 研究采用Illumina高通量测序技术对鲢(Hypophthalmichthys molitrix)卵组织进行转录组测序分析, 筛选多态EST-SSR标记并与生长性状进行关联性分析。研究结果显示: (1)测序组装总Unigene 77129个, SSR共24458个, 占所测EST数据的31.7%。鲢包含SSR的EST序列主要有二碱基、三碱基、四碱基和五碱基组成。二碱基中, AC含量最丰富; (2)随机挑选175条EST序列设计SSR引物, 筛选出多态EST-SSR标记36个, Blast结果显示有10条已知基因功能; (3)全同胞家系检测结果显示有两个标记与鲢的生长性状相关。SCE26与体长和体重显著相关(P<0.05), SCE65与肥满度显著相关(P<0.05)。研究结果将为鲢的分子标记辅助育种的应用提供基础理论指导。Abstract: Silver carp is one of important breeding fish in China. It is necessary to study the growth traits markers to accelerate the molecular marker-assisted breeding techniques. The simple sequence repeat (SSR) from the transcriptome of egg in silver carp were characterized by high-throughput Illumina sequencing, and genotypes associated growth traits were analyzed. The main results are as follows: (1) 77129 unigenes were detected by assembly, 31.7% of 24458 ESTs contained repeat motifs of various types (dinucleotide, trinucleotide, tetranucleotide and pentanucleotide) and lengths with AC being the most abundant dinucleotides one. (2) 175 EST-SSR primers were randomly characterized and 36 polymorphic EST-SSR were developed in silver carp. The results of Blast indicated that 10 EST-SSR genes are known. (3) The results showed that two loci were significantly correlated with growth traits in full-sibling family in silver carp. One locus SCE26 was significantly (P<0.05) correlated with body length and body weight, and SCE65 was significantly (P<0.05) correlated with condition factor. This study will provide theoretical basis and technical methods for the development of the marker-assisted breeding system in silver carp.
-
Keywords:
- Hypophthalmichthys molitrix /
- EST-SSR /
- Molecular marker /
- Family /
- Growth traits
-
-
表 1 鲢36对EST-SSR引物特征
Table 1 Characterization of 36 EST-SSR in silver carp
引物位点Locus 退火温度Tm 片段大小
Size (bp)核心重复类型
Motif引物序列Primer (5′-3′) 基因Gene SCE26 55 148 (GGA)8 CAATGAAGGTGCAAATATTCCTC
ACTCTCTGTCTTCAAAATGGCTGUnknown SCE29 55 178 (TTC)5 CATGGGGATATTTGTGACTTCTT
ACTACAGAGCAAGGACACCTCTGUnknown SCE41 50 185 (ATG)5 CATATATGAGCAGAGCTGAGGCT
AAGTGACGATGGTCTCTGTGAGTUncharacterized protein isoform X1 SCE42 60 168 (TCC)7 AGTACTTTTTGACTGCTCCTTCG
CGGAGATTTTCAGTGTACAGGACTranscription factor 3C polypeptide 2 SCE58 48 173 (TAT)5 AAAATGCACCTGAATCTTTCGTA
AACGTTGATGGTGATGATAATTTGUnknown SCE60 50 176 (CA)10 CTCATATCAGGGCAGCTACAATC
CGTATTAGCATCTCTTCCCGTCSugar phosphate exchanger 2 SCE65 50 157 (TG)10 TGAACTGGATCAGAAGACACTCA
GCAAACTGCAAAAATGATTCTGUnknown SCE77 50 165 (AT)8 GTGATCGCTCCCTAAAGTTAAGA
GGCCTCTATGATCAGCTTCTGTUnknown SCE78 60 386 (TGC)6 ATCTACGCGTCTGCCAGTATC
ACTTCACGTGATCTTTACGAACGSolute carrier family 12 member SCE79 50 158 (TG)11 GCAGCTGTTTTCATAGTTACACG
GGAATTTACAGAATCACACAGCCUnknown SCE84 50 350 (TCCCAT)4 GAAATCGTTTGATGCACCATCT
GGATGTATTCGAGCTTTCATCACUnknown SCE86 55 167 (AAAGA)4 TGGGATTTTGTAGTTCAGTGGAT
ACTTGCTGCTGCATTTGTAGTTTUnknown SCE91 50 170 (GCC)6 GCAGGGTGAAAACATTGATTC
AGCAGGGCAGATCGAACCAbelson tyrosine-protein kinase 2 SCE92 50 186 (CA)8 AACACAACGATCCAACAGAGAAT
GGGTCTATGGATTCTTCCTTGTCUnknown SCE94 50 175 (GCT)5 TCACAGGGATCTAGGTGTTTTTC
AAACCAGCAAAGGTTAAAAGGACUnknown SCE97 55 178 (GAA)5 GCATCCAGAGTCTGAAAGAGAAG
TTCTCTCCGTCTGTCTTTTTGGUnknown SCE101 52 172 (CCA)5 TTATCCAGTCCATGTCCCTCTAC
CTCTTTTAGTGCCCTTTCCACTCSerine/threonine-protein kinase X1 SCE102 55 182 (TAT)6 GTCCAGTGCCAACTGAGTAGTTT
ATCAAGTGGCACAACCAAGTATTUnknown SCE109 50 170 (CT)10 TGGTGATGGAGCTCATCTTCTAC
ACAGCTTTCAGGCTCTTTGAAGTUnknown SCE111 55 173 (GAG)5 AGCGTACGTGCTCTTCTACCAG
CTGCTCGTTGTCGTTGAGATUbiquitin carboxy1-terminal hydrolase SCE118 50 252 (TGA)8 CAGAGCTGGTTGTGTTTGTGTTA
CAGACAGATGTGTCAGAGGGAACBifunctional lysine-specific emethylase SCE128 55 175 (TTC)7 AACCCACAGTTGTCAAGATTGTT
TGACAAGTGAACTGTTGAAGTGCUnknown SCE132 50 158 (TTTC)5 CAAGTGTTTGTGACACTCATTCC
TGGTTTTTCATTCTTATCAACCTTCUnknown SCE133 50 171 (ATT)5 TGAATCTAAAGAGGGAATGATGC
CCAGTGTGCTGTTGTATAAGTCGUnknown SCE136 55 190 (GAAA)5 GTGATAGTTTACCACCCCCTGTT
ATGGCCTTATCATAGGCTTCTTTUnknown SCE142 48 173 (TGA)6 TCTCCTTATTCTGCTGTGGTTGT
ATATGTTCAGCCTTGAGATCGAAUnknown SCE145 48 168 (GAT)8 GGATAATCTGGGGGTGTTAAGTT
CTTCCATCGATGTCTCATTTCATUnknown SCE155 52 170 (CAT)5 ATACAGAAGAGCCAAAACCATCA
AGTTTGATCACCATTCCAAACACUnknown SCE161 55 280 (TCTGA)4 TCAAACCCTCGTGTGATTAATGT
CGTGTGCGAGTGTCTAATATCTGUnknown SCE162 50 171 (CAA)5 GCTCGACTTGTGCCTAATTATTG
AAAATGACAATGTTTGGTCTTGGUnknown SCE163 60 176 (GT)10 AGGACTGTTTGATTGTCTGATGG
ATGAGTGAGAGGTTGTTGAGCAGInterleukin-12 subunit alpha SCE167 50 167 (ATG)6 CACAGCATGAGCTGAAGTGTAAC
AGTTCAAACCGCACACATGTAAUnknown SCE170 55 170 (GAT)6 AATCAAGAAACAATGTGGCCTT
GGTTTGTCGTAGTGGTCTTTCAGZinc finger SCE171 50 175 (ACA)6 GAAGAACAAAAAGAGAATAGGAAAAGA
CTGAAATGAGCAGAATGGAAAATUnknown SCE174 55 163 (TGAT)5 GTTGAAGATCCAGCTCTTCTCTG
TTGTTAATTTGGGTTCACCAGTTUnknown SCE175 50 169 (TCC)6 TGTTATTTTCCTTCAGCTTCTGG
TAGAAGACACCAACAAGCCAAATUncharacterized protein C9orf85 表 2 144尾鲢测量指标
Table 2 Measurements from 144 silver carp individuals
项目Item 体长Body length
BL (cm)体重Body
weight BW (g)肥满度K 最小值Min 11.2 25.8 1.41 最大值Max 17 82.3 2.07 平均值Average 14.1 49.4 1.7 表 3 鲢生长性状有关的EST-SSR多态位点信息
Table 3 Effects of EST-SSR polymorphisms on growth traits of silver carp
位点Locus 基因型Genotype 数目No. 基因型频率Genotype frequency 体长Body length (cm) 体重Body weigh (g) 肥满度K SCE26 A148-148 3 0.02 14.47±0.50ab 52.03±4.89ab 1.75±0.63 A148-154 98 0.68 14.21±0.51a 50.28±4.89a 1.74±0.64 A154-154 43 0.30 13.89±0.49b 47.17±4.98b 1.73±0.61 SCE65 A149-157 36 0.25 14.12±0.48 49.55±5.05 1.74±0.60 ab A157-159 48 0.33 14.20±0.52 49.89±5.10 1.73±0.56 ab A149-159 32 0.22 13.96±0.50 48.63±5.23 1.77±0.58a A159-159 28 0.19 14.18±0.44 49.21±4.79 1.71±0.62b 注: 平均值±标准误; a, b (P<0.05)Note: Mean±SD; a, b (P<0.05) -
[1] 王长忠, 梁宏伟, 邹桂伟, 等. 长江中上游两个鲢群体遗传变异的微卫星分析 [J]. 遗传, 2008, 30(10): 1341-1348. doi: 10.3321/j.issn:0253-9772.2008.10.016 Wang C Z, Liang H W, Zou G W, et al. Genetic variation analysis of two silver carp populations in the middle and upper Yangtze River by microsatellite [J]. Hereditas, 2008, 30(10): 1341-1348. doi: 10.3321/j.issn:0253-9772.2008.10.016
[2] 庞美霞, 俞小牧, 童金苟. 三峡库区5个鲢群体遗传变异的微卫星分析 [J]. 水生生物学报, 2015, 39(5): 869-876. doi: 10.7541/2015.115 Pang M X, Yu X M, Tong J G. The microsatellite analysis of genetic diversity of five silver carp populations in the three gorges reservoir of the Yangtze River [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 869-876. doi: 10.7541/2015.115
[3] Ribaut J M, Hoisington D A. Marker-assisted selection: new tools and strategies [J]. Trends in Plant Science, 1998, 3(6): 236-239.
[4] Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics [J]. Aquaculture, 2004, 238(1-4): 1-37. doi: 10.1016/j.aquaculture.2004.05.027
[5] Liu Z J, Tan G, Li P, et al. Transcribed dinucleotide microsatellites and their associated genes from channel catfish Ictalurus punctatus [J]. Biochemical and Biophysical Research Communications, 1999, 259(1): 190-194. doi: 10.1006/bbrc.1999.0751
[6] Wang D, Liao X, Cheng L, et al. Development of novel EST-SSR markers in common carp by data mining from public EST sequences [J]. Aquaculture, 2007, 271(1-4): 558-574. doi: 10.1016/j.aquaculture.2007.06.001
[7] Fuji K, Hasegawa O, Honda K, et al. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus) [J]. Aquaculture, 2007, 272(1): 291-295.
[8] 鲁翠云, 曹顶臣, 李超, 等. 生长相关的微卫星标记在镜鲤繁殖群体中的验证 [J]. 天津农学院学报, 2012, 19(3): 13-18. Lu C Y, Cao D C, Li C, et al. Verification of microsatellite markers correlated with growth trait in mirror carp Cyprinus carpio L. [J]. Journal of Tianjin Agricultural College, 2012, 19(3): 13-18.
[9] 郭薇, 郑先虎, 匡友谊, 等. 鲫体重和体厚相关的EST-SSRs标记筛选及同源基因分析 [J]. 淡水渔业, 2013, 43(2): 9-15. doi: 10.3969/j.issn.1000-6907.2013.02.002 Guo W, Zheng X H, Kuang Y Y, et al. Screening and homology analysis of EST-SSRs makers related to body weight and body width in Carassius auratus [J]. Freshwater Fisheries, 2013, 43(2): 9-15. doi: 10.3969/j.issn.1000-6907.2013.02.002
[10] Vasemgi A, Nilsson J, Primmer C R. Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.) [J]. Molecular Biology & Evolution, 2005, 22(4): 1067.
[11] 鲁翠云, 全迎春, 李大宇, 等. 用鲤鱼EST-SSRs分子标记分析长江黑龙江鲤种群结构 [J]. 农业生物技术学报, 2007, 15(6): 947-952. doi: 10.3969/j.issn.1674-7968.2007.06.007 Lu C Y, Quan Y C, Li D Y, et al. Population structure analysis of common carp of Yangtze River and Heilongjiang River using EST-SSRs markers [J]. Journal of Agriculture Biotechnology, 2007, 15(6): 947-952. doi: 10.3969/j.issn.1674-7968.2007.06.007
[12] 赫崇波, 陈姝君, 高祥刚, 等. EST-SSR标记对我国斑点叉尾鮰种质资源的研究 [J]. 农业生物技术学报, 2008, 16(5): 815-823. doi: 10.3969/j.issn.1674-7968.2008.05.016 He C B, Chen S J, Gao X G, et al. Genetic diversity analysis of channel catfish (Ictalurus punctatus) Germplasms using EST-SSR markers [J]. Journal of Agriculture Biotechnology, 2008, 16(5): 815-823. doi: 10.3969/j.issn.1674-7968.2008.05.016
[13] 郑国栋, 陈杰, 蒋霞云, 等. 长江草鱼不同群体EST-SSR多态性标记的筛选及其遗传结构分析 [J]. 水生生物学报, 2015, 39(5): 1003-1011. doi: 10.7541/2015.131 Zheng G D, Chen J, Jiang X Y, et al. Detection of EST-SSR markers and genetic structure of different populations of grass carp in Yangtze River system [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 1003-1011. doi: 10.7541/2015.131
[14] 张立楠, 邹桂伟, 危起伟, 等. 鲢AFLP和微卫星标记连锁图谱构建 [J]. 中国海洋大学学报自然科学版, 2010, 40(9): 75-83. Zhang L N, Zou G W, Wei Q W, et al. Construction and characterization of A sex-average AFLP-SSR linkage map of silver carp (Hypophthalmichthys molitrix) [J]. Periodical of Ocean University of China, 2010, 40(9): 75-83.
[15] 张鹏, 杨官品, 张立楠, 等. 鲢InDel-RFLP标记开发及其在连锁图谱构建中的应用 [J]. 淡水渔业, 2011, 41(2): 43-50. doi: 10.3969/j.issn.1000-6907.2011.02.007 Zhang P, Yang G P, Zhang L N, et al. InDel-RFLPs of silver carp (Hypophthalmichthys molitrix) and their application to constructing the linkage map [J]. Freshwater Fisheries, 2011, 41(2): 43-50. doi: 10.3969/j.issn.1000-6907.2011.02.007
[16] Guo W J, Tong J G, Yu X M, et al. A second generation genetic linkage map for silver carp (Hypophthalmichehys molitrix) using microsatellite markers [J]. Aquaculture, 2013, 412–413(6): 97-106.
[17] 于悦, 庞美霞, 俞小牧, 等. 利用微卫星分子标记分析长江、赣江和鄱阳湖鲢群体遗传结构 [J]. 华中农业大学学报, 2016, 35(6): 104-110. Yu Y, Pang M X, Yu X M, et al. Population genetic structure of silver carp from Yangtze River, Ganjiang River and Poyang Lake based on Microsatellite markers [J]. Journal of Huazhong Agricultural University, 2016, 35(6): 104-110.
[18] Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high genomic DNA for PCR-based techniques [J]. Nucleic Acids Research, 1997, 25(22): 4692-4693. doi: 10.1093/nar/25.22.4692
[19] Schuelke M. An economic method for the fluorescent labeling of PCR fragments [J]. Nature Biotechnology, 2000, 18(2): 233-234. doi: 10.1038/72708
[20] Chen T. Characterization of porcine leptin receptor polymorphisms and their association with reproduction and production traits [J]. Animal Biotechnology, 2004, 15(1): 89-102. doi: 10.1081/ABIO-120037903
[21] Serapion J, Kucuktas H, Feng J N, et al. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus) [J]. Marine Biotechnology, 2004, (6): 364-377.
[22] Yue G H, Ho M Y, Orban L, et al. Microsatellites within genes and ESTs of common carp and their applicability in silver crucian carp [J]. Aquaculture, 2004, 234(1-4): 85-98.
[23] Rexroad C E, Rodriguez M F, Coulibaly I, et al. Comparative mapping of expressed sequence tags containing microsatellites in rainbow trout (Oncorhynchus mykiss) [J]. BMC Genomics, 2005, (6): 54.
[24] Chen S L, Liu Y G, Xu M Y, et al. Isolation and characterization of polymorphic microsatellite loci from an EST-library of red sea bream (Chrysophrys major) and cross-species amplification [J]. Molecular Ecology Notes, 2005, 5(2): 215-217. doi: 10.1111/j.1471-8286.2005.00880.x
[25] Pérez F, Ortiz J, Zhinaula M, et al. Development of EST-SSR markers by data mining in three species of shrimp: Litopenaeus vannamei, Litopenaeus stylirostris, and Trachypenaeus birdy [J]. Marine Biotechnology, 2005, 7(5): 554-569. doi: 10.1007/s10126-004-5099-1
[26] Maneeruttanarungroj C, Pongsomboon S, Wuthisuthimethavee S, et al. Development of polymorphic expressed sequence tag-derived microsatellites for the extension of the genetic linkage map of the black tiger shrimp (Penaeus monodon) [J]. Animal Genetics, 2006, 37(4): 363-368. doi: 10.1111/j.1365-2052.2006.01493.x
[27] Zhan A B, Bao Z M, Wang X L, et al. Microsatellite markers derived from bay scallop Argopecten irradians expressed sequence tags [J]. Fisheries Science, 2005, 71(6): 1341-1346. doi: 10.1111/j.1444-2906.2005.01100.x
[28] Edwards Y J, Elgar G, Clark M S, et al. The identification and characterization of microsatellites in the compact genome of the Japanese pufferfish, Fugu rubripes: perspectives in functional and comparative genomic analyses [J]. Journal of Molecular Biology, 1998, 278(4): 843-854. doi: 10.1006/jmbi.1998.1752
[29] Wang H X, Li F H, Xiang J H. Polymorphic EST-SSR markers and their mode of inheritance in Fenneropenaeus chinensis [J]. Aquaculture, 2005, 249(1-4): 107-114. doi: 10.1016/j.aquaculture.2005.03.041
[30] Chen C X, Zhou P, Choi Y A, et al. Mining and characterizing microsatellites from citrus ESTs [J]. Theoretical and Applied Genetics, 2006, 112(7): 1248-1257. doi: 10.1007/s00122-006-0226-1
[31] Kantety R V, Rota M L, Matthews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat [J]. Plant Molecular Biology, 2002, 48(5-6): 501-510.
[32] Ne ff, B D, Gross M R. Microsatellite evolution in vertebrates: inference from AC dinucleotide repeats [J]. Evolution, 2001, 55(9): 1717-1733.
[33] David L, Rajasekaran P, Fang J, et al. Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite marker [J]. Molecular Genetics and Genomics, 2001, 266(3): 353-362. doi: 10.1007/s004380100569
[34] Liao X L, Yu X M, Tong J G. Genetic diversity of common carp from two largest Chinese lakes and the Yangtze River revealed by microsatellite markers [J]. Hydrobiologia, 2006, 568(1): 445-453. doi: 10.1007/s10750-006-0222-0
[35] Nonneman D, Waldbieser G C. Isolation and enrichment of abundant microsatellites from a channel catfish (Ictalurus punctatus) brain cDNA library [J]. Animal Biotechnology, 2005, 16(2): 103-116.
[36] Cho Y G, Ishii T, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 2000, 100(5): 713-722. doi: 10.1007/s001220051343
[37] Cordeiro, G M, Casu R, McIntyre C L, et al. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum [J]. Plant Science, 2001, 160(6): 1115-1123. doi: 10.1016/S0168-9452(01)00365-X
[38] Linville R C, Pomp D, Johnson R K, et al. Candidate gene analysis for loci affecting litter size and ovulation rate in swine [J]. Journal of Animal Science, 2001, 79(1): 60-67. doi: 10.2527/2001.79160x
[39] Brym P, Kaminski S, Wojcik E. Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits [J]. Journal of Applied Genetics, 2005, 46(2): 179-185.
-
期刊类型引用(3)
1. 于爱清,施永海,徐嘉波,刘永士. 美洲鲥脑转录组多态性EST-SSR的规模化开发与利用. 西北农林科技大学学报(自然科学版). 2023(11): 1-12 . 百度学术
2. 吴新燕,梁宏伟,罗相忠,王丹,沙航,邹桂伟. 长丰鲢生长性状相关微卫星标记的初步筛选. 水产学报. 2022(01): 20-30 . 百度学术
3. 王宁,周金旭,徐浩,王秀利. SSR在水产养殖中的研究进展. 河北渔业. 2021(09): 27-31+37 . 百度学术
其他类型引用(2)