基于微单体型分子标记的草鱼亲子鉴定方法

夏雷, 石米娟, 张婉婷, 段攸, 程莹寅, 吴南, 夏晓勤

夏雷, 石米娟, 张婉婷, 段攸, 程莹寅, 吴南, 夏晓勤. 基于微单体型分子标记的草鱼亲子鉴定方法[J]. 水生生物学报, 2020, 44(3): 509-517. DOI: 10.7541/2020.062
引用本文: 夏雷, 石米娟, 张婉婷, 段攸, 程莹寅, 吴南, 夏晓勤. 基于微单体型分子标记的草鱼亲子鉴定方法[J]. 水生生物学报, 2020, 44(3): 509-517. DOI: 10.7541/2020.062
XIA Lei, SHI Mi-Juan, ZHANG Wan-Ting, DUAN You, CHENG Ying-Yin, WU Nan, XIA Xiao-Qin. A METHOD FOR PATERNITY TESTING OF GRASS CARP (CTENOPHARYNGODON IDELLUS) USING MICROHAPLOTYPES[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(3): 509-517. DOI: 10.7541/2020.062
Citation: XIA Lei, SHI Mi-Juan, ZHANG Wan-Ting, DUAN You, CHENG Ying-Yin, WU Nan, XIA Xiao-Qin. A METHOD FOR PATERNITY TESTING OF GRASS CARP (CTENOPHARYNGODON IDELLUS) USING MICROHAPLOTYPES[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(3): 509-517. DOI: 10.7541/2020.062

基于微单体型分子标记的草鱼亲子鉴定方法

基金项目: 国家自然科学基金(31571275和31801055); 中国科学院战略先导专项A类项目子课题(XDA08020201)资助
详细信息
    作者简介:

    夏雷 (1994—), 男, 博士研究生; 研究方向为水体生物信息分析。E-mail: xialei@ihb.ac.cn

    通信作者:

    夏晓勤 (1970—), 研究员; E-mail: xqxia@ihb.ac.cn

  • 中图分类号: Q-331

A METHOD FOR PATERNITY TESTING OF GRASS CARP (CTENOPHARYNGODON IDELLUS) USING MICROHAPLOTYPES

Funds: Supported by the National Natural Science Foundation of China (31571275, 31801055); the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA08020201)
    Corresponding author:
  • 摘要: 研究选择一种新型分子标记——微单体型用于亲子鉴定, 构建了高效的标记筛选和亲子鉴定流程, 并以草鱼(Ctenopharyngodon idellus) 为例评估了该亲子鉴定方法的效果。结果表明, 利用基因组重测序数据能够准确完成微单体型标记的分型, 效果和适应性明显优于传统的基于群体遗传学推断的分型; 通过信息熵的大小能够高效筛选微单体型标记组合, 3个和5个微单体型标记的亲子鉴定结果与微卫星序列(SSR)鉴定结果的一致性分别达到97.08%和99.42%。研究表明使用微单体型分子标记可以快速而准确地完成鱼类的亲子鉴定工作。
    Abstract: Paternity testing is a technique of great importance in the genetic breeding of aquatic animals. Currently, the most frequently used type of biomarker in paternity tests is microsatellites (SSRs). However, weaknesses of SSRs lie in the complicated and labor-intensive genotyping process, which leads to low efficiency when such analyses are performed on a large scale. In this study, a new type of molecular biomarker, microhaplotypes (MH), was introduced for paternity testing. For the purpose of marker screening and paternity testing, a more efficient pipeline was constructed and evaluated with data from a grass carp population. The results showed that the genotypes of the MHs can be accurately obtained from genome resequencing data with clearly improved efficiency and compatibility over conventional genotyping methods based on population genetics. It is feasible to screen highly efficient MH combinations using the informative index. The consistency with the paternity test results obtained using SSRs reached 97.08% or 99.42% when 3 or 5 MHs were used, respectively. This research suggests that MHs can be used for the rapid and accurate paternity testing of fishes.
  • 图  1   微单体型获取和亲子鉴定流程

    Figure  1.   Pipeline for microhaplotype genotyping and paternity testing

    图  2   15个基因中SNP分布密度

    Figure  2.   Distribution of SNPs in 15 genes

    图  3   基于个体序列组装的微单体型分析结果

    Figure  3.   Analysis of the microhaplotypes assembled using the sequence data of individuals

    图  4   亲子鉴定一致性与MH标记数量(A)和各基因有效标记信息熵之和(B)的关系

    Figure  4.   Consistency between the SSRs used in the paternity test and MH marker numbers (A) or the sum of the informative indexes of the markers within each gene (B)

    表  1   用于亲子鉴定的SSR标记信息

    Table  1   Information of the SSRs used for the paternity test

    标记ID Marker IDPCR引物PCR primer (5′—3′)重复片段Repeat motif信息熵Informative index
    G5010CATTTTACTGCTTGCCTCACAGAAG2.4464
    CCCTTCCTTTCGCATAGA
    G5011AAGCCACCAACCTCTACGATTCTC2.6464
    TAACAGGGATGGGATGAAAT
    G5012GATGACATGGGGGTGAGTAAAGAGA2.7219
    CAGAAAGGTAGTAAACAACGAAA
    G5020CAACCCTGTTTCTGTCCTGTAAAGG2.4464
    GCAAGCAACTGTCAACCTG
    G5024ATTCCTTCCGAAATCAGTGGAGAA2.1710
    AGAGGGAGAAAGATAAGACCA
    注: 信息熵计算方法与1.3中一致Note: The informative index is calculated in the same way as 1.3
    下载: 导出CSV

    表  2   各基因上的SNP位点与微单体型区域的数量以及亲子鉴定准确率

    Table  2   SNP loci and MR in each gene and the accuracy of paternity testing

    基因Gene长度Length (bp)SNP数Number of SNPsMR总数Total number of MRs有效MR数Effective number of MRs与用SSR鉴定结果的一致率Consistency with SSR’s results (%)可鉴定子代占比Ratio of detectable offspring (%)
    adamts2051075188321899.4097.08
    brca216330167231298.1494.15
    dlc121420469458.0897.66
    gbp16058356329.4675.44
    lgals951121410
    lrp5183128913438.5781.87
    meis2b16360439263.7546.78
    mrps234348284112.7754.97
    msi228591320
    nos2b11347489691.6190.64
    prtga25714158251699.4199.42
    rpz411381810
    snx1445146192382697.1461.40
    thsd475113050
    zmym412827597265.0998.83
    注: 其中“—”表示由于标记信息不足以完成亲子鉴定Note: “—” indicates the failure to perform the paternity testing due to insufficient information
    下载: 导出CSV

    表  3   所选用的MR标记与171尾子代个体的亲子鉴定

    Table  3   MR markers adopted and paternity test results of 171 offspring

    标记数量Number of markers标记名字
    Marker ID
    预测一致的子代数Number of offspring consistent with prediction一致率Ratio of consistency (%)
    3prtga_14, gbp_2, brca2_116697.08
    4prtga_14, gbp_2, brca2_1, adamts20_216998.83
    5prtga_14, gbp_2, brca2_1, adamts20_2, snx14_517099.42
    下载: 导出CSV
  • [1] 桂建芳, 周莉, 张晓娟. 鱼类遗传育种发展现状与展望 [J]. 中国科学院院刊, 2018, 33(9): 932-939.

    Gui J F, Zhou L, Zhang X J. Research advances and prospects for fish genetic breeding [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 932-939.

    [2] 贾智英, 白姗姗, 李池陶, 等. 德国镜鲤抗病选育群体的亲子鉴定及遗传结构分析 [J]. 基因组学与应用生物学, 2017, 36(9): 3735-3741.

    Jia Z Y, Bai S S, Li C T, et al. Paternity Identification and genetic structure analysis of disease-resistant breeding population of german mirror carp (Cyprinus carpio) [J]. Genomics and Applied Biology, 2017, 36(9): 3735-3741.

    [3]

    Sobrino B, Brión M, Carracedo A. SNPs in forensic genetics: a review on SNP typing methodologies [J]. Forensic Science International, 2005, 154(2-3): 181-194. doi: 10.1016/j.forsciint.2004.10.020

    [4] 成为为, 杨凯, 高银爱, 等. 基于微卫星标记建立翘嘴鳜亲子鉴定技术 [J]. 淡水渔业, 2016, 46(1): 29-32, 45. doi: 10.3969/j.issn.1000-6907.2016.01.005

    Cheng W W, Yang K, Gao Y A, et al. Microsatellite DNA markers for parentage test of Siniperca chuatsi [J]. Freshwater Fisheries, 2016, 46(1): 29-32, 45. doi: 10.3969/j.issn.1000-6907.2016.01.005

    [5] 张丹, 傅建军, 张利德, 等. 鳙基于10个微卫星标记的亲子鉴定分析 [J]. 基因组学与应用生物学, 2019, 38(7): 2949-2957.

    Zhang D, Fu J J, Zhang L D, et al. The parentage analysis of bighead carp (Hypophthalmichthys nobilis) based on ten microsatellite markers [J]. Genomics and Applied Biology, 2019, 38(7): 2949-2957.

    [6] 唐刘秀, 许志强, 葛家春. DNA分子标记技术在水产动物遗传育种中的应用 [J]. 水产养殖, 2013, 34(10): 44-48. doi: 10.3969/j.issn.1004-2091.2013.10.011

    Tang L X, Xu Z Q, Ge J C. Application of DNA molecular markers in genetics and breeding of aquatic animals [J]. Journal of Aquaculture, 2013, 34(10): 44-48. doi: 10.3969/j.issn.1004-2091.2013.10.011

    [7]

    Bowcock A M, Ruiz-Linares A, Tomfohrde J, et al. High resolution of human evolutionary trees with polymorphic microsatellites [J]. Nature, 1994, 368(6470): 455-457. doi: 10.1038/368455a0

    [8]

    Gill P. An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes [J]. International Journal of Legal Medicine, 2001, 114(4-5): 204-210. doi: 10.1007/s004149900117

    [9]

    DePristo M A, Banks E, Poplin R E, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data [J]. Nature Genetics, 2011, 43(5): 491-498. doi: 10.1038/ng.806

    [10]

    Tang H B, Kirkness E F, Lippert C, et al. Profiling of short-tandem-repeat disease alleles in 12632 human whole genomes [J]. American Journal of Human Genetics, 2017, 101(5): 700-715. doi: 10.1016/j.ajhg.2017.09.013

    [11]

    Davey J W, Hohenlohe P A, Etter P D, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing [J]. Nature Reviews Genetics, 2011, 12(7): 499-510. doi: 10.1038/nrg3012

    [12] 任昆. 草鱼亲子亲子关系的微卫星鉴定 [D]. 上海: 上海海洋大学. 2013: 23-50

    Ren K. The parentage assignment of grass carp (Ctenopharyngoclon idellus) using microsatellite markers [D]. Shanghai: Shanghai Ocean University, 2013: 23-50

    [13] 文萍, 赵建, 李伟, 等. 基于微卫星多重PCR技术的黄喉拟水龟亲子鉴定 [J]. 水生生物学报, 2015, 39(6): 1134-1141. doi: 10.7541/2015.149

    Wen P, Zhao J, Li W, et al. The parentage assignment of mauremys mutica using multiplex PCR of microsatellites [J]. Acta Hydrobiologica Sinica, 2015, 39(6): 1134-1141. doi: 10.7541/2015.149

    [14] 杨凯, 成为为, 高银爱, 等. 翘嘴鳜F2家系选育及微卫星亲子鉴定 [J]. 水生生物学报, 2015, 39(6): 1231-1235. doi: 10.7541/2015.160

    Yang K, Cheng W W, Gao Y A, et al. Parentage analysis of F2 selective generation in mandarin fish using microsatellites [J]. Acta Hydrobiologica Sinica, 2015, 39(6): 1231-1235. doi: 10.7541/2015.160

    [15] 朱树人, 孟庆磊, 安丽, 等. 雌核发育草鱼群体及两个普通草鱼群体的微卫星遗传分析 [J]. 中国水产科学, 2018, 25(6): 1236-1244. doi: 10.3724/SP.J.1118.2018.17448

    Zhu S R, Meng Q L, An L, et al. Microsatellite genetic analysis of gynogenetic grass carp group and two common grass carp groups [J]. Journal of Fishery Sciences of China, 2018, 25(6): 1236-1244. doi: 10.3724/SP.J.1118.2018.17448

    [16]

    Xia J H, Liu F, Zhu Z Y, et al. A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs [J]. BMC Genomics, 2010(11): 135. doi: 10.1186/1471-2164-11-135

    [17] 苏娟娟. 草鱼TLR7和TLR8基因单核苷酸多态性与草鱼出血病的关联研究 [D]. 咸阳: 西北农林科技大学. 2017: 21-57

    Su J J. Correlation studies between single nucleotide polymorphisms of TLR7 and TLR8 gene and the hemorrhage disease of grass carp (Ctenopharyngodon idella) [D]. Xianyang: Northwest A & F University, 2017: 21-57

    [18]

    Kidd K K, Pakstis A J, Speed W C, et al. Microhaplotype loci are a powerful new type of forensic marker [J]. Forensic Science International: Genetics Supplement Series, 2013, 4(1): e123-e124. doi: 10.1016/j.fsigss.2013.10.063

    [19]

    Wang H, Zhu J, Zhou N, et al. NGS technology makes microhaplotype a potential forensic marker [J]. Forensic Science International: Genetics Supplement Series, 2015(5): e233-e234. doi: 10.1016/j.fsigss.2015.09.093

    [20]

    Pu Y, Chen P, Zhu J, et al. Microhaplotype: Ability of personal identification and being ancestry informative marker [J]. Forensic Science International: Genetics Supplement Series, 2017(6): e442-e444. doi: 10.1016/j.fsigss.2017.09.144

    [21]

    Kidd K K, Speed W C, Pakstis A J, et al. Evaluating 130 microhaplotypes across a global set of 83 populations [J]. Forensic Science International: Genetics, 2017(29): 29-37. doi: 10.1016/j.fsigen.2017.03.014

    [22]

    Hiroaki N, Koji F, Tetsushi K, et al. Approaches for identifying multiple-SNP haplotype blocks for use in human identification [J]. Legal Medicine, 2015, 17(5): 415-420. doi: 10.1016/j.legalmed.2015.06.003

    [23]

    Chen P, Zhu W J, Tong F, et al. Identifying novel microhaplotypes for ancestry inference [J]. International Journal of Legal Medicine, 2018, 133(4): 983-988.

    [24]

    Oldoni F, Hart R, Long K, et al. Microhaplotypes for ancestry prediction [J]. Forensic Science International: Genetics Supplement Series, 2017(6): e513-e515. doi: 10.1016/j.fsigss.2017.09.209

    [25]

    Garciafernandez C, Sanchez J A, Blanco G. SNP-haplotypes: An accurate approach for parentage and relatedness inference in gilthead sea bream (Sparus aurata) [J]. Aquaculture, 2018(495): 582-591. doi: 10.1016/j.aquaculture.2018.06.019

    [26]

    Baetscher D S, Clemento A J, Ng T C, et al. Microhaplotypes provide increased power from short-read DNA sequences for relationship inference [J]. Molecular Ecology Resources, 2018, 18(2): 296-305. doi: 10.1111/1755-0998.12737

    [27]

    Barrett J C, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps [J]. Bioinformatics, 2005, 21(2): 263-265. doi: 10.1093/bioinformatics/bth457

    [28]

    Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data [J]. American Journal of Human Genetics, 2003, 73(5): 1162-1169. doi: 10.1086/379378

    [29]

    Delaneau O, Marchini J, Zagury J F. A linear complexity phasing method for thousands of genomes [J]. Nature Methods, 2012, 9(2): 179-181. doi: 10.1038/nmeth.1785

    [30]

    Browning S R, Browning B L. Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering [J]. American Journal of Human Genetics, 2007, 81(5): 1084-1097. doi: 10.1086/521987

    [31]

    Browning S R, Browning B L. Haplotype phasing: existing methods and new developments [J]. Nature Reviews Genetics, 2011, 12(10): 703-714. doi: 10.1038/nrg3054

    [32] 辛苗苗, 张书环, 汪登强, 等. 多倍体中华鲟微卫星亲子鉴定体系的建立 [J]. 淡水渔业, 2015, 45(4): 3-9. doi: 10.3969/j.issn.1000-6907.2015.04.001

    Xin M M, Zhang S H, Wang D Q, et al. Parentage identification of polyploidy Acipenser sinensis based on microsatellite markers [J]. Freshwater Fisheries, 2015, 45(4): 3-9. doi: 10.3969/j.issn.1000-6907.2015.04.001

    [33]

    Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies [J]. Genome Research, 2017, 27(5): 801-812. doi: 10.1101/gr.213462.116

    [34]

    Duitama J, Huebsch T, Mcewen G, et al. ReFHap: A reliable and fast algorithm for single individual haplotyping [C]//Zhang A D, Borodovsky M, et al. (Eds.), BCB ’10 Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology, 2 August - 4 August 2010, New York, USA: Association for Computing Machinery, 2010: 160-169

    [35]

    Zhu J, Zhou N, Jiang Y J, et al. FLfinder: A novel software for the microhaplotype marker [J]. Forensic Science International: Genetics Supplement Series, 2015(5): e622-e624. doi: 10.1016/j.fsigss.2015.10.002

    [36]

    Rhee J, Li H L, Joung J, et al. Survey of computational haplotype determination methods for single individual [J]. Genes & Genomics, 2016, 38(1): 1-12.

    [37]

    Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment [J]. Molecular Ecology, 2007, 16(5): 1099-1106. doi: 10.1111/j.1365-294X.2007.03089.x

    [38]

    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform [J]. Bioinformatics, 2010, 26(5): 589-595. doi: 10.1093/bioinformatics/btp698

    [39]

    Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools [J]. Bioinformatics, 2009, 25(16): 2078-2079. doi: 10.1093/bioinformatics/btp352

    [40]

    McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data [J]. Genome Research, 2010, 20(9): 1297-1303. doi: 10.1101/gr.107524.110

    [41]

    Zhang X C, Zhao J, Li W, et al. Multiple paternity in the cultured yellow pond turtles (Mauremys mutica) [J]. Animal Reproduction Science, 2017(183): 46-55. doi: 10.1016/j.anireprosci.2017.06.003

    [42]

    Liu Y, Chen Y Y, Gong Q, et al. Paternity assignment in the polyploid Acipenser dabryanus based on a novel microsatellite marker system [J]. PLoS One, 2017, 12(9): e0185280. doi: 10.1371/journal.pone.0185280

    [43] 王泽. 缢蛏亲子鉴定技术及遗传连锁图谱的构建 [D]. 上海: 上海海洋大学. 2016: 20-32

    Wang Z. Parentage determination and genetic linkage map construction in Sinonovacula constricta [D]. Shanghai: Shanghai Ocean University, 2016: 20-32

    [44] 陈亮, 汪登强, 何勇凤, 等. 基于微卫星多重PCR技术的长鳍吻亲子鉴定 [J]. 农业生物技术学报, 2017, 25(9): 1526-1537.

    Chen L, Wang D Q, He Y F, et al. Parentage assignment of Rhinogobio ventralis using multiplex PCR of microsatellites [J]. Journal of Agricultural Biotechnology, 2017, 25(9): 1526-1537.

    [45] 喻秋霞. 基于二代测序靶向捕获技术准确检测地中海贫血珠蛋白基因变异 [D]. 深圳: 南方医科大学, 2016: 44-70

    Yu Q X. Accurate detection for hemoglobin variants of thalassemia based on next generation sequencing target capture technology [D]. Shenzhen: Southern University of Science and Technology, 2016: 44-70

    [46]

    Jones A G, Small C M, Paczolt K A et al. A practical guide to methods of parentage analysis [J]. Molecular Ecology Resources, 2010, 10(1): 6-30. doi: 10.1111/j.1755-0998.2009.02778.x

  • [1] 王子睿, 王昱杰, 周泽斌, 邱军强, 李伟眀, 张庆华. 斑马鱼notch1anotch1bhsp70基因的调控作用 [J]. 水生生物学报, 2024, 48(5): 829-838. DOI: 10.7541/2024.2023.0320
    [2] 两种温度下大黄素对团头鲂生长、血液指标及肝脏 HSP70 mRNA表达的影响 [J]. 水生生物学报, 2013, 37(5): 919-928. DOI: 10.7541/2013.119
    [3] 王瑞, 李莉萍, 黄婷, 梁万文, 甘西, 施金谷, 雷爱莹, 罗洪林, 黄维义, 李健, 陈明. 重组罗非鱼Hsp70蛋白ATPase和抗原多肽结合活性研究 [J]. 水生生物学报, 2013, 37(4): 792-795. DOI: 10.7541/2013.98
    [4] 强俊, 杨弘, 王辉, 徐跑, 何杰. 饲料蛋白水平对低温应激下吉富罗非鱼血清生化指标和HSP70 mRNA表达的影响 [J]. 水生生物学报, 2013, 37(3): 434-443. DOI: 10.7541/2013.40
    [5] 田照辉, 徐绍刚, 王巍, 胡红霞, 马国庆. 急性热应激对西伯利亚鲟HSP70 mRNA表达、血清皮质醇和非特异性免疫的影响 [J]. 水生生物学报, 2013, 37(2): 344-350. DOI: 10.7541/2013.25
    [6] 徐磊, 刘波, 谢骏, 戈贤平, 张媛媛, 崔红红, 周群兰, 陈汝丽, 怀明燕. 甘露寡糖对异育银鲫生长性能、免疫及HSP70基因表达的影响 [J]. 水生生物学报, 2012, 36(4): 656-664. DOI: 10.3724/SP.J.1035.2012.00656
    [7] 贾爱荣, 王传娟, 张晓华. 大菱鲆组成型热休克蛋白70的全长cDNA克隆及表达分析 [J]. 水生生物学报, 2010, 34(3): 547-553.
    [8] 马克学, 陈广文, 娄昊, 费利娜. 日本三角涡虫hsp70 cDNA克隆及原核表达 [J]. 水生生物学报, 2010, 34(2): 317-322.
    [9] ESTIMATION OF VOLATILE CONSTITUENTS IN THE FISH FLESH FROM WILD AND FARMED CIRRHINA MRIGALA AND CYPRINUS CARPIO [J]. 水生生物学报, 2009, 33(3): 484-491.
    [10] 周定刚, 王康宁. Reserpine和Domperidone对LHRH-A诱导黄鳝排卵的影响 [J]. 水生生物学报, 1993, 17(1): 98-100.
  • 期刊类型引用(3)

    1. 谢大鑫,许蔚,沈富军,张修月. 微单倍型遗传标记的研究进展及在动物保护上的应用潜力. 野生动物学报. 2024(01): 193-203 . 百度学术
    2. 王会虎,任超,郑国栋,邹曙明. 团头鲂选育家系亲子鉴定方法的建立. 水生生物学报. 2024(08): 1378-1384 . 本站查看
    3. 石米娟,张婉婷,程莹寅,夏晓勤. 基于全基因组分析技术的鱼类育种技术原理与应用. 中国农业科技导报. 2022(02): 33-41 . 百度学术

    其他类型引用(0)

图(4)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-05-09
  • 修回日期:  2019-10-27
  • 网络出版日期:  2020-05-18
  • 发布日期:  2020-04-30

目录

    /

    返回文章
    返回