A METHOD FOR PATERNITY TESTING OF GRASS CARP (CTENOPHARYNGODON IDELLUS) USING MICROHAPLOTYPES
-
摘要: 研究选择一种新型分子标记——微单体型用于亲子鉴定, 构建了高效的标记筛选和亲子鉴定流程, 并以草鱼(Ctenopharyngodon idellus) 为例评估了该亲子鉴定方法的效果。结果表明, 利用基因组重测序数据能够准确完成微单体型标记的分型, 效果和适应性明显优于传统的基于群体遗传学推断的分型; 通过信息熵的大小能够高效筛选微单体型标记组合, 3个和5个微单体型标记的亲子鉴定结果与微卫星序列(SSR)鉴定结果的一致性分别达到97.08%和99.42%。研究表明使用微单体型分子标记可以快速而准确地完成鱼类的亲子鉴定工作。Abstract: Paternity testing is a technique of great importance in the genetic breeding of aquatic animals. Currently, the most frequently used type of biomarker in paternity tests is microsatellites (SSRs). However, weaknesses of SSRs lie in the complicated and labor-intensive genotyping process, which leads to low efficiency when such analyses are performed on a large scale. In this study, a new type of molecular biomarker, microhaplotypes (MH), was introduced for paternity testing. For the purpose of marker screening and paternity testing, a more efficient pipeline was constructed and evaluated with data from a grass carp population. The results showed that the genotypes of the MHs can be accurately obtained from genome resequencing data with clearly improved efficiency and compatibility over conventional genotyping methods based on population genetics. It is feasible to screen highly efficient MH combinations using the informative index. The consistency with the paternity test results obtained using SSRs reached 97.08% or 99.42% when 3 or 5 MHs were used, respectively. This research suggests that MHs can be used for the rapid and accurate paternity testing of fishes.
-
Keywords:
- Microhaplotype /
- Paternity test /
- Grass carp /
- High-throughput sequencing
-
-
表 1 用于亲子鉴定的SSR标记信息
Table 1 Information of the SSRs used for the paternity test
标记ID Marker ID PCR引物PCR primer (5′—3′) 重复片段Repeat motif 信息熵Informative index G5010 CATTTTACTGCTTGCCTCAC AGAAG 2.4464 CCCTTCCTTTCGCATAGA G5011 AAGCCACCAACCTCTACGA TTCTC 2.6464 TAACAGGGATGGGATGAAAT G5012 GATGACATGGGGGTGAGTAA AGAGA 2.7219 CAGAAAGGTAGTAAACAACGAAA G5020 CAACCCTGTTTCTGTCCTGT AAAGG 2.4464 GCAAGCAACTGTCAACCTG G5024 ATTCCTTCCGAAATCAGTG GAGAA 2.1710 AGAGGGAGAAAGATAAGACCA 注: 信息熵计算方法与1.3中一致Note: The informative index is calculated in the same way as 1.3 表 2 各基因上的SNP位点与微单体型区域的数量以及亲子鉴定准确率
Table 2 SNP loci and MR in each gene and the accuracy of paternity testing
基因Gene 长度Length (bp) SNP数Number of SNPs MR总数Total number of MRs 有效MR数Effective number of MRs 与用SSR鉴定结果的一致率Consistency with SSR’s results (%) 可鉴定子代占比Ratio of detectable offspring (%) adamts20 51075 188 32 18 99.40 97.08 brca2 16330 167 23 12 98.14 94.15 dlc1 21420 46 9 4 58.08 97.66 gbp 16058 35 6 3 29.46 75.44 lgals9 5112 14 1 0 — — lrp5 18312 89 13 4 38.57 81.87 meis2b 16360 43 9 2 63.75 46.78 mrps23 4348 28 4 1 12.77 54.97 msi2 2859 13 2 0 — — nos2b 11347 48 9 6 91.61 90.64 prtga 25714 158 25 16 99.41 99.42 rpz4 1138 18 1 0 — — snx14 45146 192 38 26 97.14 61.40 thsd4 7511 30 5 0 — — zmym4 12827 59 7 2 65.09 98.83 注: 其中“—”表示由于标记信息不足以完成亲子鉴定Note: “—” indicates the failure to perform the paternity testing due to insufficient information 表 3 所选用的MR标记与171尾子代个体的亲子鉴定
Table 3 MR markers adopted and paternity test results of 171 offspring
标记数量Number of markers 标记名字
Marker ID预测一致的子代数Number of offspring consistent with prediction 一致率Ratio of consistency (%) 3 prtga_14, gbp_2, brca2_1 166 97.08 4 prtga_14, gbp_2, brca2_1, adamts20_2 169 98.83 5 prtga_14, gbp_2, brca2_1, adamts20_2, snx14_5 170 99.42 -
[1] 桂建芳, 周莉, 张晓娟. 鱼类遗传育种发展现状与展望 [J]. 中国科学院院刊, 2018, 33(9): 932-939. Gui J F, Zhou L, Zhang X J. Research advances and prospects for fish genetic breeding [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 932-939.
[2] 贾智英, 白姗姗, 李池陶, 等. 德国镜鲤抗病选育群体的亲子鉴定及遗传结构分析 [J]. 基因组学与应用生物学, 2017, 36(9): 3735-3741. Jia Z Y, Bai S S, Li C T, et al. Paternity Identification and genetic structure analysis of disease-resistant breeding population of german mirror carp (Cyprinus carpio) [J]. Genomics and Applied Biology, 2017, 36(9): 3735-3741.
[3] Sobrino B, Brión M, Carracedo A. SNPs in forensic genetics: a review on SNP typing methodologies [J]. Forensic Science International, 2005, 154(2-3): 181-194. doi: 10.1016/j.forsciint.2004.10.020
[4] 成为为, 杨凯, 高银爱, 等. 基于微卫星标记建立翘嘴鳜亲子鉴定技术 [J]. 淡水渔业, 2016, 46(1): 29-32, 45. doi: 10.3969/j.issn.1000-6907.2016.01.005 Cheng W W, Yang K, Gao Y A, et al. Microsatellite DNA markers for parentage test of Siniperca chuatsi [J]. Freshwater Fisheries, 2016, 46(1): 29-32, 45. doi: 10.3969/j.issn.1000-6907.2016.01.005
[5] 张丹, 傅建军, 张利德, 等. 鳙基于10个微卫星标记的亲子鉴定分析 [J]. 基因组学与应用生物学, 2019, 38(7): 2949-2957. Zhang D, Fu J J, Zhang L D, et al. The parentage analysis of bighead carp (Hypophthalmichthys nobilis) based on ten microsatellite markers [J]. Genomics and Applied Biology, 2019, 38(7): 2949-2957.
[6] 唐刘秀, 许志强, 葛家春. DNA分子标记技术在水产动物遗传育种中的应用 [J]. 水产养殖, 2013, 34(10): 44-48. doi: 10.3969/j.issn.1004-2091.2013.10.011 Tang L X, Xu Z Q, Ge J C. Application of DNA molecular markers in genetics and breeding of aquatic animals [J]. Journal of Aquaculture, 2013, 34(10): 44-48. doi: 10.3969/j.issn.1004-2091.2013.10.011
[7] Bowcock A M, Ruiz-Linares A, Tomfohrde J, et al. High resolution of human evolutionary trees with polymorphic microsatellites [J]. Nature, 1994, 368(6470): 455-457. doi: 10.1038/368455a0
[8] Gill P. An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes [J]. International Journal of Legal Medicine, 2001, 114(4-5): 204-210. doi: 10.1007/s004149900117
[9] DePristo M A, Banks E, Poplin R E, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data [J]. Nature Genetics, 2011, 43(5): 491-498. doi: 10.1038/ng.806
[10] Tang H B, Kirkness E F, Lippert C, et al. Profiling of short-tandem-repeat disease alleles in 12632 human whole genomes [J]. American Journal of Human Genetics, 2017, 101(5): 700-715. doi: 10.1016/j.ajhg.2017.09.013
[11] Davey J W, Hohenlohe P A, Etter P D, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing [J]. Nature Reviews Genetics, 2011, 12(7): 499-510. doi: 10.1038/nrg3012
[12] 任昆. 草鱼亲子亲子关系的微卫星鉴定 [D]. 上海: 上海海洋大学. 2013: 23-50 Ren K. The parentage assignment of grass carp (Ctenopharyngoclon idellus) using microsatellite markers [D]. Shanghai: Shanghai Ocean University, 2013: 23-50
[13] 文萍, 赵建, 李伟, 等. 基于微卫星多重PCR技术的黄喉拟水龟亲子鉴定 [J]. 水生生物学报, 2015, 39(6): 1134-1141. doi: 10.7541/2015.149 Wen P, Zhao J, Li W, et al. The parentage assignment of mauremys mutica using multiplex PCR of microsatellites [J]. Acta Hydrobiologica Sinica, 2015, 39(6): 1134-1141. doi: 10.7541/2015.149
[14] 杨凯, 成为为, 高银爱, 等. 翘嘴鳜F2家系选育及微卫星亲子鉴定 [J]. 水生生物学报, 2015, 39(6): 1231-1235. doi: 10.7541/2015.160 Yang K, Cheng W W, Gao Y A, et al. Parentage analysis of F2 selective generation in mandarin fish using microsatellites [J]. Acta Hydrobiologica Sinica, 2015, 39(6): 1231-1235. doi: 10.7541/2015.160
[15] 朱树人, 孟庆磊, 安丽, 等. 雌核发育草鱼群体及两个普通草鱼群体的微卫星遗传分析 [J]. 中国水产科学, 2018, 25(6): 1236-1244. doi: 10.3724/SP.J.1118.2018.17448 Zhu S R, Meng Q L, An L, et al. Microsatellite genetic analysis of gynogenetic grass carp group and two common grass carp groups [J]. Journal of Fishery Sciences of China, 2018, 25(6): 1236-1244. doi: 10.3724/SP.J.1118.2018.17448
[16] Xia J H, Liu F, Zhu Z Y, et al. A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs [J]. BMC Genomics, 2010(11): 135. doi: 10.1186/1471-2164-11-135
[17] 苏娟娟. 草鱼TLR7和TLR8基因单核苷酸多态性与草鱼出血病的关联研究 [D]. 咸阳: 西北农林科技大学. 2017: 21-57 Su J J. Correlation studies between single nucleotide polymorphisms of TLR7 and TLR8 gene and the hemorrhage disease of grass carp (Ctenopharyngodon idella) [D]. Xianyang: Northwest A & F University, 2017: 21-57
[18] Kidd K K, Pakstis A J, Speed W C, et al. Microhaplotype loci are a powerful new type of forensic marker [J]. Forensic Science International: Genetics Supplement Series, 2013, 4(1): e123-e124. doi: 10.1016/j.fsigss.2013.10.063
[19] Wang H, Zhu J, Zhou N, et al. NGS technology makes microhaplotype a potential forensic marker [J]. Forensic Science International: Genetics Supplement Series, 2015(5): e233-e234. doi: 10.1016/j.fsigss.2015.09.093
[20] Pu Y, Chen P, Zhu J, et al. Microhaplotype: Ability of personal identification and being ancestry informative marker [J]. Forensic Science International: Genetics Supplement Series, 2017(6): e442-e444. doi: 10.1016/j.fsigss.2017.09.144
[21] Kidd K K, Speed W C, Pakstis A J, et al. Evaluating 130 microhaplotypes across a global set of 83 populations [J]. Forensic Science International: Genetics, 2017(29): 29-37. doi: 10.1016/j.fsigen.2017.03.014
[22] Hiroaki N, Koji F, Tetsushi K, et al. Approaches for identifying multiple-SNP haplotype blocks for use in human identification [J]. Legal Medicine, 2015, 17(5): 415-420. doi: 10.1016/j.legalmed.2015.06.003
[23] Chen P, Zhu W J, Tong F, et al. Identifying novel microhaplotypes for ancestry inference [J]. International Journal of Legal Medicine, 2018, 133(4): 983-988.
[24] Oldoni F, Hart R, Long K, et al. Microhaplotypes for ancestry prediction [J]. Forensic Science International: Genetics Supplement Series, 2017(6): e513-e515. doi: 10.1016/j.fsigss.2017.09.209
[25] Garciafernandez C, Sanchez J A, Blanco G. SNP-haplotypes: An accurate approach for parentage and relatedness inference in gilthead sea bream (Sparus aurata) [J]. Aquaculture, 2018(495): 582-591. doi: 10.1016/j.aquaculture.2018.06.019
[26] Baetscher D S, Clemento A J, Ng T C, et al. Microhaplotypes provide increased power from short-read DNA sequences for relationship inference [J]. Molecular Ecology Resources, 2018, 18(2): 296-305. doi: 10.1111/1755-0998.12737
[27] Barrett J C, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps [J]. Bioinformatics, 2005, 21(2): 263-265. doi: 10.1093/bioinformatics/bth457
[28] Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data [J]. American Journal of Human Genetics, 2003, 73(5): 1162-1169. doi: 10.1086/379378
[29] Delaneau O, Marchini J, Zagury J F. A linear complexity phasing method for thousands of genomes [J]. Nature Methods, 2012, 9(2): 179-181. doi: 10.1038/nmeth.1785
[30] Browning S R, Browning B L. Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering [J]. American Journal of Human Genetics, 2007, 81(5): 1084-1097. doi: 10.1086/521987
[31] Browning S R, Browning B L. Haplotype phasing: existing methods and new developments [J]. Nature Reviews Genetics, 2011, 12(10): 703-714. doi: 10.1038/nrg3054
[32] 辛苗苗, 张书环, 汪登强, 等. 多倍体中华鲟微卫星亲子鉴定体系的建立 [J]. 淡水渔业, 2015, 45(4): 3-9. doi: 10.3969/j.issn.1000-6907.2015.04.001 Xin M M, Zhang S H, Wang D Q, et al. Parentage identification of polyploidy Acipenser sinensis based on microsatellite markers [J]. Freshwater Fisheries, 2015, 45(4): 3-9. doi: 10.3969/j.issn.1000-6907.2015.04.001
[33] Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies [J]. Genome Research, 2017, 27(5): 801-812. doi: 10.1101/gr.213462.116
[34] Duitama J, Huebsch T, Mcewen G, et al. ReFHap: A reliable and fast algorithm for single individual haplotyping [C]//Zhang A D, Borodovsky M, et al. (Eds.), BCB ’10 Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology, 2 August - 4 August 2010, New York, USA: Association for Computing Machinery, 2010: 160-169
[35] Zhu J, Zhou N, Jiang Y J, et al. FLfinder: A novel software for the microhaplotype marker [J]. Forensic Science International: Genetics Supplement Series, 2015(5): e622-e624. doi: 10.1016/j.fsigss.2015.10.002
[36] Rhee J, Li H L, Joung J, et al. Survey of computational haplotype determination methods for single individual [J]. Genes & Genomics, 2016, 38(1): 1-12.
[37] Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment [J]. Molecular Ecology, 2007, 16(5): 1099-1106. doi: 10.1111/j.1365-294X.2007.03089.x
[38] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform [J]. Bioinformatics, 2010, 26(5): 589-595. doi: 10.1093/bioinformatics/btp698
[39] Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools [J]. Bioinformatics, 2009, 25(16): 2078-2079. doi: 10.1093/bioinformatics/btp352
[40] McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data [J]. Genome Research, 2010, 20(9): 1297-1303. doi: 10.1101/gr.107524.110
[41] Zhang X C, Zhao J, Li W, et al. Multiple paternity in the cultured yellow pond turtles (Mauremys mutica) [J]. Animal Reproduction Science, 2017(183): 46-55. doi: 10.1016/j.anireprosci.2017.06.003
[42] Liu Y, Chen Y Y, Gong Q, et al. Paternity assignment in the polyploid Acipenser dabryanus based on a novel microsatellite marker system [J]. PLoS One, 2017, 12(9): e0185280. doi: 10.1371/journal.pone.0185280
[43] 王泽. 缢蛏亲子鉴定技术及遗传连锁图谱的构建 [D]. 上海: 上海海洋大学. 2016: 20-32 Wang Z. Parentage determination and genetic linkage map construction in Sinonovacula constricta [D]. Shanghai: Shanghai Ocean University, 2016: 20-32
[44] 陈亮, 汪登强, 何勇凤, 等. 基于微卫星多重PCR技术的长鳍吻亲子鉴定 [J]. 农业生物技术学报, 2017, 25(9): 1526-1537. Chen L, Wang D Q, He Y F, et al. Parentage assignment of Rhinogobio ventralis using multiplex PCR of microsatellites [J]. Journal of Agricultural Biotechnology, 2017, 25(9): 1526-1537.
[45] 喻秋霞. 基于二代测序靶向捕获技术准确检测地中海贫血珠蛋白基因变异 [D]. 深圳: 南方医科大学, 2016: 44-70 Yu Q X. Accurate detection for hemoglobin variants of thalassemia based on next generation sequencing target capture technology [D]. Shenzhen: Southern University of Science and Technology, 2016: 44-70
[46] Jones A G, Small C M, Paczolt K A et al. A practical guide to methods of parentage analysis [J]. Molecular Ecology Resources, 2010, 10(1): 6-30. doi: 10.1111/j.1755-0998.2009.02778.x
-
期刊类型引用(3)
1. 谢大鑫,许蔚,沈富军,张修月. 微单倍型遗传标记的研究进展及在动物保护上的应用潜力. 野生动物学报. 2024(01): 193-203 . 百度学术
2. 王会虎,任超,郑国栋,邹曙明. 团头鲂选育家系亲子鉴定方法的建立. 水生生物学报. 2024(08): 1378-1384 . 本站查看
3. 石米娟,张婉婷,程莹寅,夏晓勤. 基于全基因组分析技术的鱼类育种技术原理与应用. 中国农业科技导报. 2022(02): 33-41 . 百度学术
其他类型引用(0)