MOLECULAR CHARACTERISTICS, GENOMIC STRUCTURE AND EXPRESSION PATTERNS OF DIVERSE BMP15 ALLELES IN POLYPLOID GIBEL CARP CLONE F
-
摘要: 为探究骨形态发生蛋白15(Bone morphogenetic protein 15, bmp15)在银鲫(Carassius gibelio Bloch) F系卵巢发育过程中的表达特征, 研究采用cDNA末端快速扩增(RACE)方法首先从银鲫F系卵巢cDNA中克隆了2个bmp15部分同源基因(Homeologs), 将其命名为Cgbmp15a和Cgbmp15b, 它们各自具有3个不同等位基因。不同脊椎动物Bmp15蛋白序列多重比对和系统进化树均表明, 银鲫为异源六倍体, 在其进化历程中发生了两轮多倍化, 其中早期的异源多倍化整合了来自2个原始祖先的染色体组, 导致银鲫和鲫的四倍体共同原始祖先基因组中包含bmp15a和bmp15b; 随后第二轮同源多倍化最终导致银鲫存在6个bmp15等位基因。bmp15基因及其邻近基因同线性分析表明, 银鲫在形成异源多倍体后, 其基因组发生了复杂的变化, 包括bmp15邻近基因的丢失。Cgbmp15a和Cgbmp15b均主要在卵巢中表达, 在皮质泡期卵母细胞中表达量最高; 无论是在银鲫成体组织还是不同发育阶段的卵子中, Cgbmp15a的表达水平显著高于Cgbmp15b的表达水平。在孕酮激素DHP体外诱导银鲫F系GV1期卵母细胞6h后, Cgbmp15a开始上调表达, 诱导8h后达到最高表达水平, 随后下降; 而Cgbmp15b在诱导8h后表达水平有微弱上调, 随后下降。上述的结果表明, Cgbmp15a和Cgbmp15b在银鲫F系成体组织和不同发育和成熟阶段的卵子中, 均表现出偏性表达的特征, 暗示Cgbmp15a在银鲫的卵母细胞发育和成熟中起着主要作用。Abstract: Bone morphogenetic protein 15 (bmp15) plays key roles in regulating development and function maintenance of reproductive system in vertebrates. In this study, we first identified two divergent bmp15 homeologs from gibel carp (Carassius gibelio Bloch) clone F. Both Cgbmp15a and Cgbmp15b possess 3 different alleles, which were obtained from ovary cDNA by using rapid-amplification of cDNA ends (RACE). Multiple sequence alignment of Bmp15 protein in vertebrates and phylogenetic analysis of gibel carp, crucian carp, and zebrafish bmp15 genomic sequences indicated that two rounds of polyploidization had been occurred during allo-hexaploid gibel carp evolution. The early polyploidy produced the two divergent bmp15a and bmp15b, and the late polyploidy generated the 6 Cgbmp15 alleles of gibel carp. Synteny analysis of genomic regions around bmp15 gene in vertebrates suggested that the complex genomic changes might occur after the polyploidization in gibel carp, such as the loss of bmp15 adjacent genes. Cgbmp15a and Cgbmp15b were predominantly expressed in ovary with the highest level in cortical alveolus oocytes. The Cgbmp15a level is remarkably higher than Cgbmp15b in adult tissues and oocytes at different developmental stages (P<0.05). Moreover, Cgbmp15a increased at 6 hours and reached peak level at 8 hours after DHP induction in vitro, while Cgbmp15b slightly increased at 8 hours after DHP induction. These results indicate that Cgbmp15a play a major role in gibel carp oocyte development and maturation.
-
Keywords:
- Gibel carp /
- Allo-hexaploid /
- Bmp15 /
- Oogenesis and oocyte maturation /
- Biased expression
-
-
图 4 Cgbmp15a和Cgbmp15b mRNA在银鲫不同成体组织中的表达分析
以β-actin为内参; Mean±SD (n=3); *表示Cgbmp15a和Cgbmp15b在同一组织中表达水平具有显著性差异(P<0.05); 下同
Figure 4. Relative expression of Cgbmp15a and Cgbmp15b in different adult tissues
β-actin was used as control. Each bar represents mean ± standard deviation (SD, n=3). Asterisks (*) indicate significant differences (P<0.05) between Cgbmp15a and Cgbmp15b expression in same tissue. The same applies below
表 1 本文中所用引物
Table 1 Primers used in this study
引物名称Primer 序列Sequence (5′-3′) 应用Usage Cgbmp15aF GGTCACGACTGTCTGAGA BAC克隆筛选 Cgbmp15aR GAGTCTGCAATCATGTCTTC Cgbmp15bF CTACCAGCAGTCACACCT Cgbmp15bR GAGTCTGCAATCATGTCTTC Cgbmp15a-5′-Outer TATACAGGATAGCGGTGGAT RACE Cgbmp15a-5′-Inner ACTGTAAGGCTGCTTCAAG Cgbmp15b-5′-Outer GGCGTCACCAATACAGAA Cgbmp15b-5′-Inner ACAAGTTATTCGGCTCCAA Cgbmp15a-3′-Outer GAGTCTGCAATCATGTCTTC Cgbmp15a-3′-Inner GCAGGATACGAGGACAATC Cgbmp15b-3′-Outer GAGTCTGCAATCATGTCTTC Cgbmp15b-3′-Inner CTCCATCATCAGCACACT UPM CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT NUP CTAATACGACTCACTATAGGGC Cgbmp15a QF GGGTCCAACACTGTAAGGC RT-qPCR Cgbmp15a QR CACCAATTTGTCCAACGAG Cgbmp15b QF TTATTCGGCTCCAACACTG Cgbmp15b QR TGTCCAACGAGAGGTTTTCC β-actin-QF AGCACGGTATTGTGACTAACTG β-actin-QR TCGAACATGATCTGTGTCATC -
[1] Lochab A K, Extavour C G. Bone morphogenetic protein (BMP) signaling in animal reproductive system development and function [J]. Developmental Biology, 2017, 427(2): 258-269. doi: 10.1016/j.ydbio.2017.03.002
[2] Dube J L, Wang P, Elvin J, et al. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes [J]. Molecular Endocrinology, 1998, 12(12): 1809-1817. doi: 10.1210/mend.12.12.0206
[3] Monestier O, Servin B, Auclair S, et al. Evolutionary origin of bone morphogenetic protein 15 and growth and differentiation factor 9 and differential selective pressure between mono- and polyovulating species [J]. Biology of Reproduction, 2014, 91(4): 83.
[4] Caixeta E S, Sutton-McDowall M L, Gilchrist R B, et al. Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes [J]. Reproduction, 2013, 146(1): 27-35. doi: 10.1530/REP-13-0079
[5] Abir R, Fisch B, Johnson M H. BMP15, fertility and the ovary [J]. Reproductive Biomedicine Online, 2014, 29(5): 525-526. doi: 10.1016/j.rbmo.2014.09.007
[6] De Castro F C, Cruz M H, Leal C L. Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility - A review [J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(8): 1065-1074.
[7] Otsuka F, Shimasaki S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 8060-8065. doi: 10.1073/pnas.122066899
[8] Su Y Q, Wu X, O’Brien M J, et al. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop [J]. Developmental Biology, 2004, 276(1): 64-73. doi: 10.1016/j.ydbio.2004.08.020
[9] Yan C, Wang P, DeMayo J, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function [J]. Molecular Endocrinology, 2001, 15(6): 854-866. doi: 10.1210/mend.15.6.0662
[10] Persani L, Rossetti R, Di Pasquale E, et al. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders [J]. Human Reproduction Update, 2014, 20(6): 869-883. doi: 10.1093/humupd/dmu036
[11] Clelland E, Kohli G, Campbell R K, et al. Bone morphogenetic protein-15 in the zebrafish ovary: complementary deoxyribonucleic acid cloning, genomic organization, tissue distribution, and role in oocyte maturation [J]. Endocrinology, 2006, 147(1): 201-209. doi: 10.1210/en.2005-1017
[12] Halm S, Ibanez A J, Tyler C R, et al. Molecular characterisation of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass [J]. Molecular & Cellular Endocrinology, 2008, 291(1-2): 95-103.
[13] Garcia-Lopez A, Sanchez-Amaya M I, Halm S, et al. Bone morphogenetic protein 15 and growth differentiation factor 9 expression in the ovary of European sea bass (Dicentrarchus labrax): cellular localization, developmental profiles, and response to unilateral ovariectomy [J]. Reproductive Biology & Endocrinology, 2011, 174(3): 326-334.
[14] Chen A Q, Liu Z W, Yang Z G, et al. Characterization of bmp15 and its regulation by human chorionic gonadotropin in the follicle of gibel carp (Carassius auratus gibelio) [J]. Comparative Biochemistry and Physiology B: Biochemistry & Molecular Biology, 2012, 163(1): 121-128.
[15] Zhang Y, Yuan C, Qin F, et al. Molecular characterization of gdf9 and bmp15 genes in rare minnow Gobiocypris rarus and their expression upon bisphenol a exposure in adult females [J]. Gene, 2014, 546(2): 214-221. doi: 10.1016/j.gene.2014.06.013
[16] Palomino J, Herrera G, Dettleff P, et al. Growth differentiation factor 9 and bone morphogenetic protein 15 expression in previtellogenic oocytes and during early embryonic development of Yellow-tail Kingfish Seriola lalandi [J]. Biological Research, 2014, 47(1): 60. doi: 10.1186/0717-6287-47-60
[17] Wu G C, Luo J W, Li H W, et al. Robust gdf9 and bmp15 expression in the oocytes of ovotestes through the Figla-independent pathway in the hermaphroditic black porgy, Acanthopagrus schlegelii [J]. PLoS One, 2017, 12(10): e186991.
[18] Kleppe L, Edvardsen R B, Furmanek T, et al. bmp15l, figla, smc1bl, and larp6l are preferentially expressed in germ cells in Atlantic salmon (Salmo salar L.) [J]. Molecular Reproduction & Development, 2017, 84(1): 76-87.
[19] Yadav H, Lal B. BMP15 in catfish testis: Cellular distribution, seasonal variation, and its role in steroidogenesis [J]. Steroids, 2017, 125: 114-123. doi: 10.1016/j.steroids.2017.07.002
[20] Fernandez T, Palomino J, Parraguez V H, et al. Differential expression of GDF-9 and BMP- 15 during follicular development in canine ovaries evaluated by flow cytometry [J]. Animal Reproduction Science, 2016, 167: 59-67. doi: 10.1016/j.anireprosci.2016.02.005
[21] Pennetier S, Uzbekova S, Perreau C, et al. Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos [J]. Biology of Reproduction, 2004, 71(4): 1359-1366. doi: 10.1095/biolreprod.104.030288
[22] Silva J R, Van Den H R, Van Tol H T, et al. Expression of growth differentiation factor 9(GDF9), bone morphogenetic protein 15(BMP15), and BMP receptors in the ovaries of goats [J]. Molecular Reproduction & Development, 2005, 70(1): 11-19.
[23] Kasahara M, Naruse K, Sasaki S, et al. The medaka draft genome and insights into vertebrate genome evolution [J]. Nature, 2007, 447(7145): 714-719. doi: 10.1038/nature05846
[24] Jaillon O, Aury J M, Brunet F, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype [J]. Nature, 2004, 431(7011): 946-957. doi: 10.1038/nature03025
[25] Braasch I, Gehrke A R, Smith J J, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons [J]. Nature Genetics, 2016, 48(4): 427-437. doi: 10.1038/ng.3526
[26] Wapinski I, Pfeffer A, Friedman N, et al. Natural history and evolutionary principles of gene duplication in fungi [J]. Nature, 2007, 449(7158): 54-61. doi: 10.1038/nature06107
[27] Comai L. The advantages and disadvantages of being polyploid [J]. Nature Reviews Genetics, 2005, 6(11): 836-846. doi: 10.1038/nrg1711
[28] Otto S P. The evolutionary consequences of polyploidy [J]. Cell, 2007, 131(3): 452-462. doi: 10.1016/j.cell.2007.10.022
[29] Soltis P S, Liu X, Marchant D B, et al. Polyploidy and novelty: Gottlieb’s legacy [J]. Philosophical Transactions of the Royal Society of London, 2014, 369(1648).
[30] Zhou L, Gui J F. Natural and artificial polyploids in aquaculture [J]. Aquaculture & Fisheries, 2017, 2: 103-111.
[31] Zhou L, Gui J F. Applications of genetic breeding biotechnologies in Chinese aquaculture [A]// Gui J F, Tang Q S, Li Z J, et al (Eds.), Aquaculture in China: Success Stories and Modern Trends [C]. Oxford: John Wiley & Sons, 2017: 463-495
[32] 桂建芳, 周莉. 多倍体银鲫克隆多样性和双重生殖方式的遗传基础和育种应用 [J]. 中国科学: 生命科学, 2010, 40(2): 97-103. Gui J F, Zhou L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploidy Carassius auratus gibelio [J]. Science China Life Science, 2010, 40(2): 97-103.
[33] Liu W, Li S Z, Li Z, et al. Complete depletion of primordial germ cells in an all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence [J]. BMC Genomics, 2015, 16: 971. doi: 10.1186/s12864-015-2130-z
[34] Rylková K, Kalous L, Šlechtová V, et al. Many branches, one root: First evidence for a monophyly of the morphologically highly diverse goldfish (Carassius auratus) [J]. Aquaculture, 2010, 302(1): 36-41.
[35] Zhang J, Sun M, Zhou L, et al. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio [J]. Scientific Reports, 2015, 5: 10898. doi: 10.1038/srep10898
[36] Li X Y, Liu X L, Ding M, et al. A novel male-specific SET domain-containing gene setdm identified from extra microchromosomes of gibel carp males [J]. Science Bulletin, 2017, 62(8): 528-536. doi: 10.1016/j.scib.2017.04.002
[37] Li X Y, Liu X L, Zhu Y J, et al. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish [J]. Heredity, 2018, doi: 10.1038/s41437-017-0049-7
[38] Liu X L, Jiang F F, Wang Z W, et al. Wider geographic distribution and higher diversity of hexaploids than tetraploids in Carassius species complex reveal recurrent polyploidy effects on adaptive evolution [J]. Scientific Reports, 2017, 7(1): 5395. doi: 10.1038/s41598-017-05731-0
[39] Liu X L, Li X Y, Jiang F F, et al. Numerous mitochondrial DNA haplotypes reveal multiple independent polyploidy origins of hexaploids in Carassius species complex [J]. Ecology & Evolution, 2017, 7(24): 10604-10615.
[40] Zhou L, Wang Z W, Wang Y, et al. Crucian carp and gibel carp culture [A]//Gui J F, Tang Q S., Li Z J, et al (Eds.), Aquaculture in China: Success Stories and Modern Trends [C]. Oxford: John Wiley & Sons, 2017: 149-157
[41] Zhou L, Gui J F. Karyotypic diversity in polyploid gibel carp, Carassius auratus gibelio Bloch [J]. Genetica, 2002, 115(2): 223-232. doi: 10.1023/A:1020102409270
[42] Ohno S, Muramoto J, Christian L, et al. Diploid-tetraploid relationship among old-world members of the fish family Cyprinidae [J]. Chromosoma, 1967, 23(1): 1-9. doi: 10.1007/BF00293307
[43] Zhu H P, Ma D M, Gui J F. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting [J]. Chromosome Research, 2006, 14(7): 767-776. doi: 10.1007/s10577-006-1083-0
[44] Li X Y, Zhang X J, Li Z, et al. Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp [J]. Molecular Phylogenetics & Evolution, 2014, 78: 96-104.
[45] Gao F X, Wang Y, Zhang Q Y, et al. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes [J]. BMC Genomics, 2017, 18(1): 561. doi: 10.1186/s12864-017-3945-6
[46] Mou C Y, Wang Y, Zhang Q Y, et al. Differential interferon system gene expression profiles in susceptible and resistant gynogenetic clones of gibel carp challenged with herpesvirus CaHV [J]. Developmental & Comparative Immunology, 2018, doi: 10.1016/j.dci.2018.04.024
[47] Xie J, Wen J J, Chen B, et al. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps [J]. Gene, 2001, 271(1): 109-116. doi: 10.1016/S0378-1119(01)00491-7
[48] Liu Z, Zhang X, Wang W, et al. Molecular characterization and expression of an oocyte-specific histone stem-loop binding protein in Carassius gibelio [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2015, 190: 46-53. doi: 10.1016/j.cbpb.2015.08.011
[49] Xiao Q, Xia J H, Zhang X J, et al. Type-IV antifreeze proteins are essential for epiboly and convergence in gastrulation of zebrafish embryos [J]. International Journal of Biological Sciences, 2014, 10(7): 715-732. doi: 10.7150/ijbs.9126
[50] 李志, 汪洋, 周莉, 等. 银鲫卵母细胞体外诱导成熟技术的建立 [J]. 水生生物学报, 2017, 41(5): 984-991. doi: 10.7541/2017.123 Li Z, Wang Y, Zhou L, et al. Development of in vitro maturation technology for gibel carp oocytes [J]. Acta Hydrobiologica Sinica, 2017, 41(5): 984-991. doi: 10.7541/2017.123
[51] Xu P, Zhang X, Wang X, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio [J]. Nature Genetics, 2014, 46(11): 1212-1219. doi: 10.1038/ng.3098
[52] Xiong Z, Gaeta R T, Pires J C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19): 7908-7913. doi: 10.1073/pnas.1014138108
[53] He Z, Wang L, Harper A L, et al. Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization [J]. Plant Biotechnology Journal, 2017, 15(5): 594-604. doi: 10.1111/pbi.12657
[54] Salmon A, Flagel L, Ying B, et al. Homoeologous nonreciprocal recombination in polyploid cotton [J]. New Phytologist, 2010, 186(1): 123-134. doi: 10.1111/j.1469-8137.2009.03093.x
[55] Buggs R J, Chamala S, Wu W, et al. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin [J]. Current Biology, 2012, 22(3): 248-252. doi: 10.1016/j.cub.2011.12.027
[56] Doyle J J, Flagel L E, Paterson A H, et al. Evolutionary genetics of genome merger and doubling in plants [J]. Annual Review of Genetics, 2008, 42(1): 443-461. doi: 10.1146/annurev.genet.42.110807.091524
[57] Jackson S, Chen Z J. Genomic and expression plasticity of polyploidy [J]. Current Opinion in Plant Biology, 2010, 13(2): 153-159. doi: 10.1016/j.pbi.2009.11.004
[58] Lashermes P, Hueber Y, Combes M C, et al. Inter-genomic DNA exchanges and homeologous gene silencing shaped the nascent allopolyploid coffee genome (Coffea arabica L.) [J]. G3 Genesgenetics, 2016, 6(9): 2937-2948. doi: 10.1534/g3.116.030858
[59] Wang X, Dong Q, Li X, et al. Cytonuclear variation of rubisco in synthesized rice hybrids and allotetraploids [J]. Plant Genome, 2017, 10(3): 1-11.
[60] Hu G, Koh J, Yoo M J, et al. Gene-expression novelty in allopolyploid cotton: a proteomic perspective [J]. Genetics, 2015, 200(1): 91-104. doi: 10.1534/genetics.115.174367
[61] Yoo M J, Szadkowski E, Wendel J F. Homoeolog expression bias and expression level dominance in allopolyploid cotton [J]. Heredity, 2013, 110(2): 171-180. doi: 10.1038/hdy.2012.94