BLOCKING EFFECT OF STATIC WATER AND FLOWING WATER BUBBLE CURTAIN ON SCHIZOTHORAX OCONNORI
-
摘要: 为了探究不同水流条件下不同形式的气泡幕对异齿裂腹鱼(Schizothorax oconnori)趋避行为的影响。在黑暗环境下测试了两种流速条件(静水与流水)、三种气量(15、30、45 L/min)及两种摆放角度(与水流方向呈90°和45°)的气泡幕对异齿裂腹鱼的阻拦效果,在静水和流水条件下各设置一组空白对照(气量为0 L/min)。结果显示: (1)在静水条件下, 工况2阻拦率最高(50%); 在流水条件下, 工况7阻拦率最高(50%)。(2)气量15 L/min时, 流水及90°摆放阻拦时间显著大于其他工况; 30 L/min时, 静水及90°摆放阻拦时间远大于其他工况。(3)在静水和流水中, 当异齿裂腹鱼尝试次数达到6次左右时对气泡幕表现出适应性, 并在48min前通过气泡幕; (4)在流水中各工况下气泡幕的影响距离显著大于静水(P<0.05), 即异齿裂腹鱼产生逃逸行为时距离气管的距离显著大于静水中。研究可得出结论: 推荐阻拦效果最佳的组合方式为流水条件下15 L/min 90°摆放(工况7)、静水条件下30 L/min 90°摆放(工况2); 气泡幕连续阻拦时间不宜超过48min。实验结果可为实际工程中气泡幕的布置提供参考。Abstract: To explore the effects of different forms of bubble curtains on the avoidance behavior of the Schizothorax oconnori under different water flow conditions, two flow conditions (static water, flowing water), a blank control with a gas flow of 0 under both flow conditions, three gas flow (15, 30, 45 L/min) and two placement angles (90° and 45° to the water flow direction) were utilized under dark environment. The results showed that the working condition 2 had the highest hinder rate (50%) under static water conditions, and that the working condition 7 had the highest hinder rate (50%) under flowing water conditions. The hinder time under flowing water and 90° placement was significantly longer than other working conditions at 15 L/min of the air flow. The hinder time under static water and 90° placement was much longer than other working conditions at 30 L/min. In static water and flowing water, when the attempt number of Schizothorax oconnori reached about 6 times, it showed adaptability to the bubble curtain and passed through the bubble curtain within 48 minutes. The influence distance of the bubble curtain in the flowing water was significantly greater than that in the static water (P<0.05), and the distance from the bubble pipe was significantly greater than that in the static water when Schizothorax oconnori performed avoidance behavior. Therefore, the recommended condition for optimal hinder effect is to place 15 L/min 90 ° under flowing water conditions (Condition 7) and 30 L/min 90 ° under static conditions (Condition 2) with a continuous obstruction time of bubble curtains should not exceed 48 minutes. These results provide a reference for the practical engineering of the bubble curtain arrangement.
-
Keywords:
- Schizothorax oconnori /
- Bubble curtain /
- Influence distance /
- Hinder effect /
- Flow condition
-
-
图 1 实验装置简图
a. 潜水泵; b. 输水管; c. 下游蓄水池; d. 上游蓄水池; e. 实验区; f. 适应区; g. 整流栅; h. 拦鱼网; i. 90°气泡幕管; j. 45°气泡幕管
Figure 1. Plane view of experimental device
a. Underwater pump; b. Water pipe; c. Downstream reservoir; d. Upstream reservoir; e. Test zone; f. Adaptation zone; g. Straightening vane; h. Net fish screen; i. 90° bubble curtain pipe; j. 45° bubble curtain pipe
图 2 气量×水流的交互作用对阻拦时间的影响
A、B表示静水条件下不同气量阻拦时间的差异性; a、b表示流水条件下不同气量阻拦时间的差异性; *表示相同气量下不同水流的差异性
Figure 2. The effect of the interaction of gas flow × water flow on blocking time
A and B represent the difference in hinder time of different gas flow under static water condition; a and b represent the difference in hinder time of different gas flow under flowing water condition; * represents the difference of different water flows at the same gas flow
图 3 气量×摆放的交互作用对阻拦时间的影响
A、B表示90°摆放时不同气量阻拦时间的差异性; a、b表示45°摆放时不同气量阻拦时间的差异性; *表示相同气量时不同摆放的差异性
Figure 3. Influence of gas flow × placement interaction on hinder time
A and B represent the difference of hinder time of different gas flow when 90° placed; a and b represent the difference in hinder time of different gas flow when 45° placed; * represents the difference of different placement of the same gas flow
表 1 实验工况分组
Table 1 Grouping of experimental conditions
工况Working condition 水流条件Water flow conditions 摆放角度Placement angles (°) 气量Gas flow (L/min) 对照组Blank control 静水 90 0 1 15 2 30 3 45 4 15 5 30 6 45 对照组Blank control 流水 90 0 7 15 8 30 9 45 10 15 11 30 12 45 表 2 异齿裂腹鱼在不同工况下的阻拦率
Table 2 The obstructing rate of Schizothorax oconnori under different working conditions
工况Working condition 阻拦率Obstructing rate (%) 静水对照Static water control 0 1 10 2 50 3 10 4 20 5 20 6 10 流水对照Flowing water control 0 7 50 8 30 9 0 10 0 11 0 12 20 表 3 不同工况下阻拦时间的单因变量三因素方差分析
Table 3 Univariate multifactor analysis of hinder time on different working condition
来源Source III型平方和Type III Sum of Squares df 均方Mean Square F值F-test P值P value 修正的模型Corrected Model 35922574.648a 11 3265688.604 3.208 0.001 截距Intercept 60561516.121 1 60561516.121 59.494 0.000 气量Gas flow 1760685.836 2 880342.918 0.865 0.424 水流Water flow 474436.554 1 474436.554 0.466 0.496 摆放方式Placement angles 6400439.101 1 6400439.101 6.288 0.014 气量×水流Gas flow×Water flow 13654789.644 2 6827394.822 6.707 0.002 气量×摆放方式Gas flow×Placement angles 9129656.056 2 4564828.028 4.484 0.014 水流×摆放方式Water flow×Placement angles 323675.545 1 323675.545 0.318 0.574 气量×水流×摆放方式Gas flow×Water flow×Placement angles 4253294.458 2 2126647.229 2.089 0.129 误差Error 103829791.922 102 1017939.136 统计Total 202055987.000 114 校正后总数Corrected Total 139752366.570 113 -
[1] Gardner C J, Reesjones J, Morris G, et al. The influence of sluice gate operation on the migratory behaviour of Atlantic salmon Salmo salar (L.) smolts [J]. Journal of Ecohydraulics, 2016, 1(1-2): 90-101. doi: 10.1080/24705357.2016.1252251
[2] 许家炜, 陈静, 林晨宇, 等. 齐口裂腹鱼在低照度下的趋光行为 [J]. 生态学杂志, 2018, 37(8): 2394-2402. Xu J W, Chen J, Lin C Y, et al. The phototaxis behavior of Schizothorax prenanti in low light intensity [J]. Chinese Journal of Ecology, 2018, 37(8): 2394-2402.
[3] Jones M J, Baumgartner L J, Zampatti B P, et al. Low light inhibits native fish movement through a vertical-slot fishway: Implications for engineering design [J]. Fisheries Management and Ecology, 2017, 3(24): 177-185.
[4] 乔云贵, 黄洪亮, 黄妙芬, 等. 气泡幕在鱼类行为研究中的应用 [J]. 渔业信息与战略, 2011, 26(12): 29-32. doi: 10.3969/j.issn.1004-8340.2011.12.008 Qiao Y G, Huang H L, Huang M F, et al. Application of bubble curtains in fish behavior research [J]. Fishery Information and Strategy, 2011, 26(12): 29-32. doi: 10.3969/j.issn.1004-8340.2011.12.008
[5] 赵锡光, 何大仁. 几种孔径气泡幕对黑鲷的阻拦作用 [J]. 厦门大学学报: 自然科学版, 1989(1): 83-87. Zhao X G, He D R. The intercepting effects of bubble curtains with different hole diameters on black porgy [J]. Journal of Xiamen University (
Natural Science ) , 1989(1): 83-87. [6] 赵锡光, 何大仁, 刘理东. 不同孔距固定气泡幕对黑鲷的阻拦效果 [J]. 海洋与湖沼, 1997, 28(3): 285-293. doi: 10.3321/j.issn:0029-814X.1997.03.009 Zhao X G, He D R, Liu L D. The intercepting effects of bubble curtains with different air-hole spacing on Sparus microcephalus [J]. Oceanologia et Limnologia Sinica, 1997, 28(3): 285-293. doi: 10.3321/j.issn:0029-814X.1997.03.009
[7] 白艳勤, 罗佳, 牛俊涛, 等. 不同密度气泡幕对花(鱼骨)和白甲鱼的阻拦效应 [J]. 水生态学杂志, 2013, 34(4): 63-69. doi: 10.3969/j.issn.1674-3075.2013.04.014 Bai Y Q, Luo J, Niu J T, et al. Avoidance responses of Hemibarbus maculates and Onychostoma sima to bubble curtains with different density [J]. Journal of Hydroecology, 2013, 34(4): 63-69. doi: 10.3969/j.issn.1674-3075.2013.04.014
[8] Onitsuka K, Akiyama J, Kobayashi T, et al. Effects of Transmitted Light and Bubbles in Open-Channel Flows on Fish Behaviors [M]. Advances in Water Resources and Hydraulic Engineering. Springer Berlin Heidelberg, 2009: 447-452
[9] 徐是雄, 林晨宇, 罗佳, 等. 鲢幼鱼对不同气量气泡幕的趋避行为 [J]. 水生态学杂志, 2018, 39(1): 69-75. Xu S X, Lin C Y, Luo J, et al. Approach-avoidance behavior of juvenile silver carp to a bubble curtain at different gas flows [J]. Journal of Hydroecology, 2018, 39(1): 69-75.
[10] Dawson H A, Reinhardt U G, Savino J F. Use of electric or bubble barriers to limit the movement of Eurasian ruffe (Gymnocephalus cernuus) [J]. Journal of Great Lakes Research, 2006, 32(1): 40-49. doi: 10.3394/0380-1330(2006)32[40:UOEOBB]2.0.CO;2
[11] 马丁一, 邢彬彬, 齐雨琨, 等. 气泡幕对大泷六线鱼的阻拦效果 [J]. 大连海洋大学学报, 2016, 31(3): 311-314. Ma D Y, Xing B B, Qi Y K, et al. Blocking effect of bubble curtains on fat greenling Hexagrammos otakii [J]. Journal of Dalian Fisheries University, 2016, 31(3): 311-314.
[12] Zielinski D P, Sorensen P W. Field test of a bubble curtain deterrent system for common carp [J]. Fisheries Management & Ecology, 2015, 22(2): 181-184.
[13] Flammang M K, Weber M J, Thul M D. Laboratory evaluation of a bioacoustic bubble strobe light barrier for reducing walleye escapement [J]. North American Journal of Fisheries Management, 2014, 34(5): 1047-1054. doi: 10.1080/02755947.2014.943864
[14] Lin C Y, Dai H C, Shi X T. An experimental study on fish attraction using a fish barge model [J]. Fisheries Research, 2019, (210): 181-188.
[15] Escobar L E, Mallez S, Mccartney M, et al. Aquatic invasive species in the great lakes region: an overview [J]. Reviews in Fisheries Science & Aquaculture, 2017, 26(3): 1-18.
[16] Perry R W, Romine J G, Adams N S, et al. Using a non-physical behavioural barrier to alter migration routing of juvenile chinook salmon in the sacramento–san joaquin river delta [J]. River Research & Applications, 2014, 30(2): 192-203.
[17] 傅菁菁, 李嘉, 安瑞冬, 等. 基于齐口裂腹鱼游泳能力的竖缝式鱼道流态塑造研究 [J]. 工程科学与技术, 2013, 45(3): 12-17. Fu J J, Li J, An R D, et al. Study of creating vertical slot fishway flow field based on swimming ability of Schizothorax prenanti [J]. Advanced Engineering Sciences, 2013, 45(3): 12-17.
[18] 蔡露, 王伟营, 王海龙, 等. 鱼感应流速对体长的响应及在过鱼设施流速设计中的应用 [J]. 农业工程学报, 2018, 34(2): 176-181. doi: 10.11975/j.issn.1002-6819.2018.02.024 Cai L, Wang W Y, Wang H L, et al. Response of induced flow speed to fish body length and its application in flow design of fish passage facilities [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 176-181. doi: 10.11975/j.issn.1002-6819.2018.02.024
[19] 罗佳, 白艳勤, 林晨宇, 等. 不同流速下气泡幕和闪光对光倒刺鲃趋避行为的影响 [J]. 水生生物学报, 2015, 39(5): 1065-1068. doi: 10.7541/2015.140 Luo J, Bai Y Q, Lin C Y, et al. The influence of bubble curtain and strobe light to approach-avoidance behavior of Spinibarbus hollandi oshima in different flow velovity [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 1065-1068. doi: 10.7541/2015.140
[20] 陈钊, 黄六一, 黄洪亮, 等. 固定气泡幕对许氏平鲉阻拦效果的研究 [J]. 中国海洋大学学报: 自然科学版, 2017, 47(3): 51-57. Chen Z, Huang L Y, Huang H L, et al. Studies on obstructing effect of air-bubble curtain on Sebastes schlegelii [J]. Periodical of Ocean University of China, 2017, 47(3): 51-57.
[21] 川村军藏, 安乐和彦, 田中荣嗣. 红海鲷幼鱼对水槽中连续和间歇气泡幕的反应 [J]. 日本水产学会志, 2002, 68(6): 900-902. doi: 10.2331/suisan.68.900 Kawamura G, Anraku K, Tanaka E. Response of red sea bream juveniles to continuous and intermittent air-bubble curtains in the tank [J]. Nihon Suisan Gakkaishi, 2002, 68(6): 900-902. doi: 10.2331/suisan.68.900
[22] 赵锡光, 刘理东. 气泡幕对黑鲷阻拦作用机制初探 [J]. 海洋与湖沼, 1998, 29(1): 35-40. doi: 10.3321/j.issn:0029-814X.1998.01.006 Zhao X G, Liu L D. A study on the intercepting mechanism of an air-bubble curtain on black porgy (Sparus macrocephalus) [J]. Oceanologia et Limnologia Sinica, 1998, 29(1): 35-40. doi: 10.3321/j.issn:0029-814X.1998.01.006
[23] Zielinski D P, Voller V R, Svendsen J C, et al. Laboratory experiments demonstrate that bubble curtains can effectively inhibit movement of common carp [J]. Ecological Engineering, 2014, 67(2): 95-103.