EFFECTS OF ACCELERATION MODES ON MAXIMUM SWIMMING SPEED AND ACTIVITY METABOLISM IN MEGALOBRAMA AMBLYCEPHALA AND SILURUS MERIDIONALIS
-
摘要: 为了探讨游泳加速模式对不同生态习性鱼类游泳性能及运动代谢的影响, 评估团头鲂(Megalobrama amblycephala)和南方鲇(Silurus meridionalis)的临界游泳速度(Ucrit)、爆发游泳速度(Uburst)和最大代谢率(MMR)的适宜测定方法, 在4种加速模式条件下, 检测了实验鱼的最大游泳速度(Vmax), 以及鱼体在运动过程中及其力竭后代谢恢复期的耗氧率(MO2)。结果显示: 在速度增量(ΔV)为20 cm/s, 加速持续时间(Δt)为2min的加速模式条件下, 团头鲂和南方鲇的Vmax及游泳过程的无氧代谢占比均分别显著高于其他3种加速模式(P< 0.05), 呈爆发运动(Uburst)状态。在ΔV为10 cm/s, Δt分别为20、40和60min 的加速模式下, 两种鱼的无氧代谢占比均在12%以下且相互间无显著差异(P>0.05); 其中团头鲂在这3种加速模式下的Vmax之间无显著性差异(P>0.05); 而南方鲇在ΔV为10 cm/s、Δt为20min条件下的Vmax显著高于另2种加速模式的测定值(P< 0.05)。两种鱼的MO2在各加速模式下均随着游泳速度的升高而增加; 但在爆发游泳过程中, 两种鱼的MO2随游泳速度的增加呈现不同的变化趋势, 团头鲂的MO2随速度的变化曲线在接近100 cm/s的时候出现拐点, 此后MO2随速度的增幅变小; 而南方鲇的该曲线在速度为20 cm/s时就出现拐点, MO2的变化进入“平台期”。在所有加速模式下, 两种鱼在运动过程中的最大耗氧率(AMO2)均显著高于力竭后代谢恢复期的最大值(DMO2, P< 0.05)。用Ucrit法测得团头鲂的AMO2高于Uburst法的测得值, 而南方鲇则相反。由研究结果得出, 测定团头鲂的Ucrit采用ΔV为10 cm/s、Δt在20—60min的加速模式是适宜的, 测定南方鲇Ucrit的适宜加速模式是ΔV为10 cm/s、Δt为20min。两种鱼均应采用在运动阶段测得的最大MO2作为MMR; 测定团头鲂的MMR适用于Ucrit法, 测定南方鲇的MMR适用于Uburst法。团头鲂持续游泳的能力较强, 爆发游泳的加速能力相对较弱; 而南方鲇则表现出相反的趋势, 该差异反映了物种适应其生态习性的权衡效应。Abstract: To explore the effects of acceleration modes on the locomotor performance and metabolism characteristics in swimming for the species with different ecological habits and to evaluate the applicable methods for determining the critical swimming speed (Ucrit), burst swimming speed (Uburst) and maximum metabolic rate (MMR) for M. amblycephala and S. meridionalis, maximum swimming speed (Vmax) and oxygen consumption rate (MO2) of the experimental fish during their swimming processes and metabolic recovery after the exhaustion were measured under four different acceleration modes. The results showed that under the acceleration mode with velocity increment (ΔV) of 20 cm/s and duration of each acceleration (Δt) of 2min, Vmax and proportions of anaerobic metabolism in swimming process for both species were significantly higher than those under the other three modes, respectively (P<0.05). And their burst swimming should occur. Under the other three modes (ΔV=10 cm/s, Δt=20, 40, and 60min), the proportions of anaerobic metabolism of both species were below 12% and there was no significant (P>0.05) difference among the three values for the same species. There was no significant difference for the Vmax of M. amblycephala among the three modes. Meanwhile, Vmax of S. meridionalis under the mode with ΔV of 10 cm/s and Δt of 20min was significantly higher than those under the other two modes (P<0.05). MO2 of M. amblycephala and S. meridionalis both increased with increasing swimming speed for all acceleration modes. However, MO2 showed different trends with the increasing swimming speed in Uburst measurements for the two species. The inflection point of correlative curve for MO2 with swimming speed occurred at velocity of 100 cm/s for the M. amblycephala and MO2 did not change significantly with increasing velocity in the subsequent acceleration process. But such “plateau period” of MO2 appeared when the velocity was above 20 cm/s for the S. meridionalis. Under all acceleration modes, the maximum oxygen consumption rates (AMO2) of the two species during swimming process were significantly higher than the maximum value (DMO2) during the metabolic recovery period (P<0.05). The AMO2 measured by Ucrit method was higher than that observed by Uburst method for M. amblycephala, and the value for S. meridionalis showed an opposite trend. It was suggested that it should be applicable to determining Ucrit of M. amblycephala by the acceleration modes with ΔV of 10 cm/s and Δt of 20—60min, but only Δt of 20min with ΔV of 10 cm/s was the applicable mode for S. meridionalis. The maximum MO2 measured during swimming process should be used as MMR for both species. In addition, Ucrit method should be applicable to MMR measurement for M. amblycephala, and Uburst method be applicable to that for S. meridionalisis. The strong sustainability of swimming for M. amblycephala is accompanied by the weak ability of acceleration in burst swimming, and S. meridionalisis shows the opposite trend. Such differences between the species might reflect the trade-off effect in adapting to their ecological habits.
-
-
表 1 游泳加速模式对团头鲂的最大游泳速度和耗氧率的影响
Table 1 Effects of swimming acceleration modes on maximum swimming speed and oxygen consumption in M. amblycephala
指标Index 游泳加速模式Swimming acceleration mode 加速模式1 Mode 1 ∆t=2min, ∆V=20 cm/s 加速模式2 Mode 2 ∆t=20min, ∆V=10 cm/s 加速模式3 Mode 3 ∆t=40min, ∆V=10 cm/s 加速模式4 Mode 4 ∆t=60min, ∆V=10 cm/s 体重Weight (g) 15.62±0.70 16.14±0.99 15.16±0.73 15.67±0.68 体长Body length (cm) 9.36±0.12 9.41±0.19 9.22±0.15 9.34±0.14 Vmax (cm/s) 118.07±2.55a 102.81±2.94b 102.45±2.67b 97.84±5.03b AMO2 [mg O2/(kg·h)] 1064.07±55.63bx 1101.88±30.30abx 1216.22±46.80ax 1198.40±51.53abx BMO2 [mg O2/(kg·h)] 991.40±70.76bx 1048.29±47.48abx 1173.26±60.95ax 1152.59±61.88abx CMO2 [mg O2/(kg·h)] 667.70±31.91y 672.23±55.98y 800.60±86.35y 710.40±62.36y DMO2 [mg O2/(kg·h)] 689.23±31.86y 674.74±55.43y 800.60±86.35y 710.40±62.36y 游泳总历时Swimming duration (min) 11.81±0.26d 205.62±5.89c 409.81±10.69b 587.04±30.17a 无氧代谢占比 Proportion of anaerobic metabolism 0.64±0.08a 0.12±0.02b 0.07±0.01b 0.06±0.02b 注: ∆t为加速持续时间; ∆V为速度增量; Vmax为最大游泳速度; AMO2为运动过程中的最大耗氧率; BMO2为运动过程中最后阶段耗氧率; CMO2为恢复阶段最初2min耗氧率; DMO2为恢复阶段的最大耗氧率。无氧代谢占比=∑(MO2j×∆tj)/[∑(MO2i×∆ti)+∑(MO2j×∆tj)]. MO2i和MO2j分别为游泳过程和代谢恢复过程各测量时段在日常代谢水平以上的耗氧率; ∆ti和∆tj分别为游泳过程和代谢恢复过程各测量时段的持续时间。数据用平均值±标准误差表示(n=10); a, b. 同行中带不同上标表示差异显著(P<0.05); x, y. 同列中带不同上标表示差异显著(P<0.05), 表 2 同Note: ∆t. Duration of acceleration; ∆V. Velocity increment; Vmax. Maximum swimming speed; AMO2. MO2max during swimming; BMO2. MO2 in the final stage of swimming; CMO2. MO2 for the first 2min of the recovery phase; DMO2. MO2max during recovery phase. Proportion of anaerobic metabolism =∑(MO2j×∆tj)/[∑(MO2i×∆ti)+∑(MO2j×∆tj)]: MO2i and MO2j are oxygen consumption above the routine metabolic rates at each measuring occasion during the swimming and metabolic recovery processes respectively; ∆ti and ∆tj are the time between two measuring occasions during the two processes respectively. The data were expressed as Mean±SE (n=10); a, b. different superscripts in each row indicate significant differences (P<0.05); x, y. different superscripts in each colum indicate significant differences (P<0.05). The same applied as Tab. 2 表 2 游泳加速模式对南方鲇的最大游泳速度和耗氧率的影响
Table 2 Effects of swimming acceleration modes on maximum swimming speed and oxygen consumption in S. meridionalis
指标Index 游泳加速模式Swimming acceleration mode 加速模式1 Mode 1 ∆t=2min, ∆V=20 cm/s 加速模式2 Mode 2 ∆t=20min, ∆V=10 cm/s 加速模式3 Mode 3 ∆t=40min, ∆V=10 cm/s 加速模式4 Mode 4 ∆t=60min, ∆V=10 cm/s 体重Weight (g) 15.16±0.77 16.67±0.59 15.31±0.42 15.29±0.46 体长Body length (cm) 12.81±0.19b 13.25±0.14a 12.82±0.14ab 12.90±0.14ab Vmax (cm/s) 68.03±3.06a 45.23±2.70b 32.97±3.13c 27.33±2.75c AMO2 [mg O2/(kg·h)] 498.69±22.70ax 471.16±28.95ax 359.81±31.64bx 328.62±29.52bx BMO2 [mg O2/(kg·h)] 438.63±15.92ay 471.16±28.95ax 358.89±31.96bx 323.11±29.46bx CMO2 [mg O2/(kg·h)] 384.39±18.78az 294.69±22.21by 202.71±21.85cdy 167.31±18.10dy DMO2 [mg O2/(kg·h)] 403.84±14.52ayz 312.50±25.00by 242.97±25.00cdy 199.05±15.04cy 游泳总历时Swimming duration (min) 6.80±0.31d 90.46±5.40c 131.90±12.52b 163.99±16.52a 无氧代谢占比Proportion of anaerobic metabolism 0.72±0.04a 0.11±0.02b 0.10±0.04b 0.04±0.02b -
[1] Rome L C, Choi I H, Luts G, et al. The influence of temperature on muscle function in the fast swimming scup. I. Shortening velocity and muscle recruitment during swimming [J]. Journal of Experimental Biology, 1992, 163: 259-279.
[2] Young P S, Cech J J. Improved growth, swimming performance, and muscular development in exercise-conditioned young-of-the-year striped bass (Morone saxatilis) [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(4): 703-707. doi: 10.1139/f93-080
[3] Reidy S P, Nelson J A, Tang Y, et al. Post-exercise metabolic rate in Atlantic cod (Gadus morhua) and its dependence upon the method of exhaustion [J]. Journal of Fish Biology, 1995, 47(3): 377-386. doi: 10.1111/j.1095-8649.1995.tb01907.x
[4] Watkins T B. Predator-mediated selection on burst swimming performance in tadpole of the Pacific tree frog, Pseudacris regills [J]. Physiological Zoology, 1996, 69(1): 154-167. doi: 10.1086/physzool.69.1.30164205
[5] Blake R W. Fish functional design and swimming performance [J]. Journal of Fish Biology, 2004, 65(5): 1193-1222. doi: 10.1111/j.0022-1112.2004.00568.x
[6] Roche D G, Binning S A, Bosiger Y, et al. Finding the best estimates of metabolic rates in a coral reef fish [J]. Journal of Experimental Biology, 2013, 216(11): 2103-2110. doi: 10.1242/jeb.082925
[7] Jain K E, Hamilton J C, Farrell A P. Use of a ramp velocity test to measure critical swimming speed in rainbow trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology, 1997, 117(4): 441-444. doi: 10.1016/S0300-9629(96)00234-4
[8] Brett J R. The respiratory metabolism and swimming performance of young sockeye salmon [J]. Journal of the Fisheries Research Board of Canada, 1964, 21(5): 1183-1226. doi: 10.1139/f64-103
[9] Reidy S P, Kerr S R, Nelson J A. Aerobic and anaerobic swimming performance of individual Atlantic cod [J]. Journal of Experimental Biology, 2000, 203(2): 347-357.
[10] Burgetz I J, Rojas-Vargas A, Hinch S G, et al. Initial recruitment of anaerobic metabolism during submaximal swimming in rainbow trout (Oncorhynchus mykiss) [J]. Journal of Experimental Biology, 1998, 201(19): 2711-2721.
[11] Svendsen J C, Tudorache C, Jordan A D, et al. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer [J]. Journal of Experimental Biology, 2010, 213(13): 2177-2183. doi: 10.1242/jeb.041368
[12] Downie A T, Kieffer J D. Swimming performance in juvenile shortnose sturgeon (Acipenser brevirostrum): the influence of time interval and velocity increments on critical swimming tests [J]. Conservation Physiology, 2017, 5: 1-12.
[13] Farrell A P. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls [J]. Philosophical Transactions of the Royal Society Biological Sciences, 2007, 362(1487): 2017-2030. doi: 10.1098/rstb.2007.2111
[14] Farlinger S, Beamish F W H. Effects of time and velocity increments on the critical swimming speed of largemouth bass (Micropterus salmoides) [J]. Transactions of the American Fisheries Society, 1977, 106(5): 436-439. doi: 10.1577/1548-8659(1977)106<436:EOTAVI>2.0.CO;2
[15] Jones D R. The effect of hypoxia and anaemia on the swimming performance of rainbow trout (Salmo gairdneri) [J]. Journal of Experimental Biology, 1971, 55(2): 541-551.
[16] Hartwell S I, Otto R G. Critial swimmming capacity of the Atiantic silverside (Menidia menidia L.) [J]. Estuaries, 1991, 14(2): 218-221. doi: 10.2307/1351696
[17] Norin T, Clark T D. Measurement and relevance of maximum metabolic rate in fishes [J]. Journal of Fish Biology, 2016, 88(1): 122-151. doi: 10.1111/jfb.12796
[18] Fry F E J, Hart J S. The relation of temperature to oxygen consumption in the goldfish [J]. Anatomical Record, 1948, 96(4): 586-587.
[19] Steffensen J F. Some errors in respirometry of aquatic breathers: how to avoid and correct them [J]. Fish Physiology and Biochenistry, 1989, 6(1): 49-59. doi: 10.1007/BF02995809
[20] Steffensen J F, Johansen K, Bushinell P G. An automated swimming respirometer [J]. Comparative Biochemistry and Physiology A-Physiology, 1984, 79(3): 437-440. doi: 10.1016/0300-9629(84)90541-3
[21] Svendsen M B S, Bushnell P G, Steffensen J F. Design and setup of intermittent flow respirometry system for aquatic organisms [J]. Journal of Fish Biology, 2016, 8(1): 26-50.
[22] Fu S J, Peng J, Killen S S. Digestive and locomotor capacity show opposing responses to changing food availability in an ambush predatory fish [J]. Journal of Experi-mental Biology, 2018, 221(12): 1-11.
[23] Auer S K, Salin K, Rudolf A M, et al. Differential effects of food availability on minimum and maximum rates of metabolism [J]. Biology Letters, 2016, 12(10): 1-4.
[24] Lee C G, Farrell A P, Lotto A, et al. The effect of temperature on swimming performance and oxygen uptake in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks [J]. The Journal of Experimental Biology, 2003, 206(18): 3239-3251. doi: 10.1242/jeb.00547
[25] Rummer J L, Binning S A, Roche D G, et al. Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes [J]. Conservation Physiology, 2016, 4: 1-13. doi: 10.1093/conphys/cow050
[26] Malthe H, Frode O. Influence of experimental set-up and methodology for measurements of metabolic rates and critical swimming speed in Atlantic salmon Salmo salar [J]. Journal of Fish Biology, 2019, 95(3): 893-902.
[27] 蒋阳阳, 李向飞, 刘文斌, 等. 不同蛋白质和脂肪水平对1龄团头鲂生长性能和体组成的影响 [J]. 水生生物学报, 2012, 36(5): 826-836. Jiang Y Y, Li X F, Liu W B, et al. Effects of different protein and lipid levels on the growth performance and body composition of blunt snout bream (Megalobrama amblycephala) yearlings [J]. Acta Hydrobiologica Sinica, 2012, 36(5): 826-836.
[28] 李萍, 张耀光. 南方鲇 [J]. 生物学通报, 2005, 40(9): 12-13. doi: 10.3969/j.issn.0006-3193.2005.09.006 Li P, Zhang Y G. Southern catfish (Silurus meridionalis Chen) [J]. Bulletin of Biology, 2005, 40(9): 12-13. doi: 10.3969/j.issn.0006-3193.2005.09.006
[29] 曹振东, 谢小军. 南方鲇成鱼的静止代谢率的季节变化 [J]. 海洋与湖沼, 1996, 27(6): 619-625. doi: 10.3321/j.issn:0029-814X.1996.06.008 Cao Z D, Xie X J. Seasonal changes in resting metabolism of the adult Silurus meridionalis [J]. Oceanologia et Limnologia Sinica, 1996, 27(6): 619-625. doi: 10.3321/j.issn:0029-814X.1996.06.008
[30] 庞旭, 付世建, 曹振东, 等. 饥饿和温度驯化对中华倒刺鲃静止代谢和游泳能力的影响 [J]. 生态学报, 2016, 36(7): 1854-1860. Pang X, Fu S J, Cao Z D, et al. The effects of fasting and acclimation temperature on the resting metabolism and swimming performance in qingbo (Spinibarbus sinensis) [J]. Acta Ecologica Sinica, 2016, 36(7): 1854-1860.
[31] Hughes G M. Respiratory responses to hypoxia in fish [J]. American Zoolopist, 1973, 13(2): 475-489.
[32] Tetens V, Lykkeboe G. Acute exposure of rainbow trout to mild and deep hypoxia: O2 afnity and O2 capacitance of arterial blood [J]. Respiration Physiology, 1985, 6(2): 221-235.
[33] Boutilier R G, Dobson G, Hoeger U, et al. Acute exposure to graded levels of hypoxia in rainbow trout (Salmo gairdneri): metabolic and respiratory adaptations [J]. Res-piration Physiology, 1988, 71(1): 69-82. doi: 10.1016/0034-5687(88)90116-8
[34] Brett J R. The relation of size to rate of oxygen consumption and sustained swimming speed of sockeye salmon (Oncorhynchus nerka) [J]. Journal of the Fisheries Research Board of Canada, 1965, 22(6): 1491-1501. doi: 10.1139/f65-128
[35] Zhang Y, Claireaux G, Takle H, et al. A three-phase excess post-exercise oxygen consumption in Atlantic salmon Salmo salar and its response to exercise training [J]. Journal of Fish Biology, 2018, 92(5): 1385-1403. doi: 10.1111/jfb.13593
[36] Rummer J L, Binning S A, Roche D G, et al. Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes [J]. Conservation Physiology, 2016, 4: 1-13. doi: 10.1093/conphys/cow050X
[37] Xie X J, Sun R Y. The bioenergetics of southern catfish (Silurus meridionalis Chen): I Resting metabolic rate as a function of body weight and temperature [J]. Physiological Zoology, 1990, 63(6): 1181-1195. doi: 10.1086/physzool.63.6.30152639
[38] 张倩, 康斌. 水流对团头鲂 (Megalobrama amblycephala) 幼鱼游泳行为的影响 [J]. 动物学研究, 2013, 34(4): 429-436. Zhang Q, Kang B. Effect of water velocity on swimming behavior of juvenile Megalobrama amblycephala [J]. Zoological Research, 2013, 34(4): 429-436.
[39] Hvas1 M, Folkedal1 O, Imsland A, et al. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon (Salmo salar) [J]. Journal of Experimental Biology, 2017, 220(15): 2757-2764. doi: 10.1242/jeb.154021
[40] Johansen J L, Esbaugh A J. Sustained impairment of respiratory function and swim performance following acute oil exposure in a coastal marine fish [J]. Aquatic Toxico-logy, 2017, 187: 82-89. doi: 10.1016/j.aquatox.2017.04.002
[41] Cai L, Chen L, Johnson D, et al. Integrating water flow, locomotor performance and respiration of Chinese sturgeon during multiple fatigue-recovery cycles [J]. PLoS One, 2014, 9(4): 1-7.
[42] Sylvestre E L, Lapointe D, Dutil J D, et al. Thermal sensitivity of metabolic rates and swimming performance in two latitudinally separated populations of cod, Gadus morhua L [J]. Journal of Comparative Physiology B, 2007, 177(4): 447-460. doi: 10.1007/s00360-007-0143-x
[43] Gollock M J, Hunter K J, Syme D A, et al. Potential methods for measuring the activity patterns and energy use of Atlantic cod (Gadus morhua) [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(7): 1095-1100. doi: 10.1139/F09-062