SEASONAL SUCCESSION AND ECOLOGICAL NICHE ANALYSIS OF THE DOMINANT SPECIES OF PHYTOPLANKTON IN CHANGHU LAKE
-
摘要: 为查明长湖浮游植物优势种群落结构特征及季节演替规律, 于2015年4月至2016年1月对长湖浮游植物群落结构及相关环境因子进行了调查, 同时利用典范对应分析法(CCA)进行浮游植物优势种与环境因子的相关性分析。结果表明: 本次调查共鉴定出浮游植物优势种共14种, 其中扭曲小环藻(Cyclotella comta)、小球藻(Chlorella vulgaris)和梭形裸藻(Euglena acus)是4个季节的共有优势种。生态位宽度(Niche width)变化范围为1.002—2.377, 其中夏季小球藻最高, 广生态位种类以富营养化水体常见指示种小球藻、扭曲小环藻、两栖颤藻(Oscillatoria amphibia)等种类为主。平均边缘指数(OMI)变化范围为0.25—3.71, 其中小于1的物种共12种。耐受指数(TOI)变化范围为0.13—3.35, 夏季两栖颤藻最高。生态位重叠值的变化范围为0.02—0.93, 其中秋季扭曲小环藻和梭形裸藻的重叠值最高。选取7个环境因子与浮游植物优势种进行CCA分析发现: 夏季微小平裂藻(Merismopedia tenuissima)、两栖颤藻、四尾栅藻、扭曲小环藻以及梭形裸藻与TN和TP呈正相关性。综合(优势种群落结构特征、生态位参数及其与环境因子相关性)分析表明, 长湖浮游植物优势种群落结构特征及其相关生态位指数与物种形态结构、生活方式和生境状况等密切相关, 反映出浮游植物各季节优势种对生境资源的不同利用能力。与2012年研究结果比较, 冬季裸甲藻数量明显增多, 成为冬季优势种, 且广生态位优势种数量也有所增加, 表明长湖仍处于浮游植物种类组成单一、稳定性较差的富营养化状态, 且富营养化程度有加重趋势。Abstract: To find out the community structure characteristics and seasonal succession of dominant species in Changhu Lake, phytoplankton and environmental factors were investigated from April, 2015 to January, 2016. The results showed that 14 dominant species of phytoplankton were identified and Cyclotella comta, Chlorella vulgaris and Euglena acus were common species in the all seasons. Niche indexes and the characteristics of the community structure of dominant species were analyzed. The niche breadth index varied from 1.002 to 2.377 for Chlorella vulgaris in summer. Wide niche breadth species, such as Chlorella vulgaris, Cyclotella comta and Oscillatoria amphibian, were considered common indicator species in eutrophic water. The other indexes, such as the outlying mean index (OMI) (0.25—3.71), tolerance index (TOI) (0.13—3.35) and niche overlaps (0.02—0.93), were determined. The correlation between 7 environmental parameters and dominant species analyzed by canonical correspondence analysis (CCA) showed that there were significant positive correlations between the TN, TP and several dominant species, such as Merismopedia.tenuissima, Oscillatoria amphibian, Scenedesmus quadricauda, Cyclotella comta and Euglena acus, in summer. Comprehensive analysis showed that the characteristics of community and niches were significantly correlated with the morphology, lifestyle and habitat of dominant species of phytoplankton. There were also different abilities to utilize the habitat resources of dominant species in each season. Compared with the date in 2012, Gymnodinium aeruginosum was considered a dominant species in winter, and the density increased. The number of wide niche breadth species increased at the same time. The results showed that Changhu Lake remaind in the eutrophic state and that the degree of eutrophication tended to increase.
-
Keywords:
- Phytoplankton /
- Dominant species /
- Ecological niche /
- CCA /
- Changhu Lake
-
-
图 3 浮游植物优势种生态位参数
P为各物种之间的相关性, 将对P值小于0.05的优势种进行生态位分析; 1. 湖泊色球藻; 2. 类颤鱼腥藻; 3. 微小平裂藻; 4. 两栖颤藻; 5. 小球藻; 6. 镰形纤维藻; 7. 简单衣藻; 8. 四尾栅藻; 9. 扭曲小环藻; 10. 肘状针杆藻; 11. 颗粒直链藻; 12. 帽形菱形藻; 13. 梭形裸藻; 14. 裸甲藻. 下文同此编号
Figure 3. Niche index of dominant species of phytoplankton
P means correlations between species, Niche analysis was carried out for dominant species with P value less than 0.05 Niche analysis of dominant species with P value less than 0.05. 1. Chlorella limneticus; 2. Osicellariordes; 3. Merismopedia tenuissima; 4. Oscillatoria amphibian; 5. Chlorella vulgaris; 6. Ankistrodesmus.falcatus; 7. Chlamydomonas simplex; 8. Scenedesmus quadricauda; 9. Cyclotella comta; 10. Synedra ulna; 11. Melosira granulate; 12. Nitzschia cap; 13. Euglena acus; 14. Gymnodinium aeruginosum. The same number applies below
表 1 长湖浮游植物优势种出现频率和优势度指数
Table 1 Occurrence frequency and dominance index of dominant species phytoplankton in Changhu Lake
优势种编号No. 门Phylum 种类Species 春Spring 夏Summer 秋Autumn 冬Winter f Y f Y f Y f Y 1 蓝藻门Cyanophyta 湖泊色球藻Chlorella limneticus 86% 0.022 100% 0.035 93% 0.042 – – 2 类颤鱼腥藻Osicellariordes – – 100% 0.074 86% 0.022 3 微小平裂藻Merismopedia tenuissima – – 100% 0.038 86% 0.037 – – 4 两栖颤藻Oscillatoria amphibia – – 79% 0.109 79% 0.041 5 绿藻门Chlorophyta 小球藻Chlorella vulgaris 93% 0.164 100% 0.401 86% 0.235 86% 0.222 6 镰形纤维藻Ankistrodesmus falcatus 93% 0.036 – – – – 86% 0.021 7 简单衣藻Chlamydomonas simplex 86% 0.08 – – – – 86% 0.047 8 四尾栅藻Scenedesmus quadricauda 93% 0.044 93% 0.022 93% 0.031 – – 9 硅藻门Bacillariophyta 扭曲小环藻Cyclotella comta 71% 0.196 86% 0.102 86% 0.109 93% 0.117 10 肘状针杆藻Synedra ulna 79% 0.026 – – 93% 0.037 100% 0.051 11 颗粒直链藻Melosira granulata 79% 0.048 – – – – – – 12 帽形菱形藻Nitzschia cap – – – – 86% 0.032 93% 0.033 13 裸藻门Cryptophyta 梭形裸藻Euglena acus 86% 0.087 71% 0.027 100% 0.191 93% 0.143 14 甲藻门Euglenophyta 裸甲藻Gymnodinium aeruginosum – – – – – – 71% 0.073 注: f为出现频率, Y为优势度指数, “–”代表该种在某季节出现但不形成优势种, 空白代表该种未出现Note: f means frequency of occurrence. Y means dominance index. “–” means the species appeared in a certain season but not dominant, Blank means the species were not found -
[1] 牛翠娟, 娄安如, 孙儒泳, 等. 基础生态学(第三版) [M]. 北京: 高等教育出版社, 2015: 304-380 Niu C J, Lou A R, Sun R Y, et al. Foundations in Ecology (3rd edition) [M]. Beijing: Higher Education Press, 2015: 304-380
[2] 张金屯. 数量生态学(第三版) [M]. 北京: 科学出版社, 2018: 78-94 Zhang J T. Quantitative Ecology (3rd edition) [M]. Beijing: Science Press, 2018: 78-94
[3] 朱耿平, 刘国卿, 卜文俊, 等. 生态位模型的基本原理及其在生物多样性保护中的应用 [J]. 生物多样性, 2013, 21(1): 90-98. doi: 10.3724/SP.J.1003.2013.09106 Zhu G P, Liu G Q, Bu W J, et al. Ecological niche modeling and its applications in biodiversity conservation [J]. Biodiversity Science, 2013, 21(1): 90-98. doi: 10.3724/SP.J.1003.2013.09106
[4] Nagy-Reis M B, Iwakami V H S, Estevo C A, et al. Temporal and dietary segregation in a neotropical small-felid assemblage and its relation to prey activity [J]. Mammalian Biology, 2019, (95): 1-8.
[5] Jakobs R, Müller C. Volatile, stored and phloem exudate-located compounds represent different appearance levels affecting aphid niche choice [J]. Phytochemistry, 2019, (159): 1-10.
[6] Wan J Z, Chen L X, Gao S, et al. Ecological niche shift between diploid and tetraploid plants of Fragaria (Rosaceae) in China [J]. South African Journal of Botany, 2019, (121): 68-75.
[7] Zeller L, Pretzsch H. Effect of forest structure on stand productivity in central European forests depends on developmental stage and tree species diversity [J]. Forest Ecology and Management, 2019, (434): 193-204.
[8] 李云凯, 高小迪, 王琳禹, 等. 东太平洋中部中上层鲨鱼群落营养生态位分化 [J]. 应用生态学报, 2018, 29(1): 309-313. Li Y K, Gao X D, Wang L Y, et al. Trophic niche partitioning of pelagic sharks in Central Eastern Pacific inferred from stableisotope analysis [J]. Chinese Journal of Applied Ecology, 2018, 29(1): 309-313.
[9] 徐晓群, 曾江宁, 陈全震, 等. 浙江三门湾浮游动物优势种空间生态位 [J]. 应用生态学报, 2013, 24(3): 818-824. Xu X Q, Zeng J N, Chen Q Z, et al. Spatial niches of dominant zooplankton species in Sanmen Bay, Zhejiang Province of East China [J]. Chinese Journal of Applied Ecology, 2013, 24(3): 818-824.
[10] Vilmi A, Tolonenc K T, Karjalainen S M, et al. Niche position drives interspecific variation in occupancy and abundance in a highly-connected lake system [J]. Ecological Indicators, 2019, (99): 159-166.
[11] 郭坤, 杨德国, 彭婷, 等. 湖北省长湖浮游植物优势种生态位分析 [J]. 湖泊科学, 2016, 28(4): 825-834. doi: 10.18307/2016.0416 Guo K, Yang D G, Peng T, et al. Ecological niche analysis of dominant species of phytoplankton in Lake Changhu, Hubei Province [J]. Journal of Lake Sciences, 2016, 28(4): 825-834. doi: 10.18307/2016.0416
[12] 李兴, 李建茹, 李畅游. 内蒙古乌梁素海浮游植物优势种的生态位分析 [J]. 水生态学杂志, 2017, 38(6): 40-47. Li X, Li J R, Li C Y. Ecological niche analysis of dominant phytoplankton species in Wuliangsuhai Lake, Inner Mongolia [J]. Journal of Hydroecology, 2017, 38(6): 40-47.
[13] 张琪. 淀山湖浮游植物生态种群季节动态及其影响因子. 上海: 华东师范大学, 2016: 44-49 Zhang Q. The seasonal dynamics of phytoplankton ecological groups and its influencing factors in Dianshan Lake, China [D]. Shanghai: East China Normal Universit, 2016: 44-49
[14] Doléd S, Chessel D, Clémentine G C. Niche separation in community analysis: a new method [J]. Ecology, 2000, 81(10): 2914-2927. doi: 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
[15] 柴毅, 彭婷, 郭坤, 等. 2012年夏季长湖浮游植物群落结构特征及其与环境因子的关系 [J]. 植物生态学报, 2014, 38(8): 857-867. doi: 10.3724/SP.J.1258.2014.00080 Chai Y, Peng T, Guo K, et al. Community characteristics of phytoplankton in Lake Changhu and relationship with environmental factors in the summer of 2012 [J]. Chinese Journal of Plant Ecology, 2014, 38(8): 857-867. doi: 10.3724/SP.J.1258.2014.00080
[16] 刘建峰, 张翔, 谢平, 等. 长湖水质演变特征及水环境现状评价 [J]. 水资源保护, 2014, 30(4): 18-22. Liu J F, Zhang X, Xie P, et al. Variation of water quality and present water environment assessment of Changhu Lake [J]. Water Resources Protection, 2014, 30(4): 18-22.
[17] 柴毅, 彭婷, 郭坤, 等. 海子湖春季浮游植物群落结构与环境因子相关性分析 [J]. 水生态学杂志, 2014, 35(2): 56-62. doi: 10.3969/j.issn.1674-3075.2014.02.009 Chai Y, Peng T, Guo K, et al. Correlation analysis of spring phytoplankton community and environmental factors in Hazihu Lake [J]. Journal of Hydroecology, 2014, 35(2): 56-62. doi: 10.3969/j.issn.1674-3075.2014.02.009
[18] 郭坤. 长湖浮游植物生态特征分析及水质评价 [D]. 荆州: 长江大学, 2017: 37-58 Guo K. Ecological characteristics of phytoplankton and water quality assessment in Changhu Lake [D]. Jingzhou: Yangtze University, 2017: 37-58
[19] 柴毅, 彭婷, 李昊成, 等. 长湖海子湖夏季浮游植物群落结构及环境影响因子 [J]. 湖北农业科学, 2014, 53(19): 4568-4573. Chai Y, Peng T, Li H C, et al. Community structures of phytoplankton in the Haizihu Lake, Changhu Lake and associated environmental factors [J]. Hubei Agricultural Science, 2014, 53(19): 4568-4573.
[20] 蔡庆华. 水域生态系统观测规范 [M]. 北京: 中国环境科学出版社, 2007: 7-9 Cai Q H. The Survey Specification in Aquatic Ecosystem [M]. Beijing: China Environmental Science Press, 2007: 7-9
[21] 赵文. 水生生物学(第二版)[M]. 北京: 中国农业出版社, 2016: 490-498 Zhao W. Hydrobiology (2rd edition)[M]. Beijing: China Agricultural Press, 2016: 490-498
[22] 胡鸿钧, 魏印心. 中国淡水藻类-系统、分类及生态 [M]. 北京: 科学出版社, 2006: 21-157 Hu H J, Wei Y X. The Freshwater Algae of China Systematic, Taxonomy and Ecology [M]. Beijing: Science Press, 2006: 21-157
[23] 梁象秋, 方纪祖, 杨和荃. 水生生物学 [M]. 北京: 中国农业出版社, 1996: 16-125 Liang X Q, Fang J Z, Yang H Q. Hydrobiology [M]. Beiing: China Agricultural Press, 1996: 16-125
[24] 薛毅, 陈立萍. 统计建模与 R 软件 [M]. 北京: 清华大学出版社, 2007: 546-555 Xue Y, Chen L P. Statistical Modeling and R [M]. Beijing: Tsinghua University Press, 2007: 546-555
[25] 李娜, 黎佳茜, 李国文, 等. 中国典型湖泊富营养化现状与区域性差异分析 [J]. 水生生物学报, 2018, 42(4): 194-204. Li N, Li J X, Li G W, et al. Eutrophication status and regional difference analysis of typical lakes in China [J]. Acta Hydrobiologicica sinica, 2018, 42(4): 194-204.
[26] Elizabeth O M, Rojo C, Rodrigo M A. Controlling factors of phytoplankton assemblages in wetlands: an experimental approach [J]. Hydrobiologia, 2003, 502: 177-186. doi: 10.1023/B:HYDR.0000004280.74279.74
[27] 刘建康. 高级水生生物学 [M]. 北京: 科学出版社, 1999: 95-133 Liu J K. Advanced Hydrobiology [M]. Beijing: Science Press, 1999: 95-133
[28] 刘惠, 郭朋军, 陈洲杰, 等. 舟山近岸海域主要甲壳类的生态位及其与种间联结性 [J]. 海洋学报, 2019, 41(4): 83-93. Liu H, Guo P J, Chen Z J, et al. Niche and interspecific association of major crustaceans in Zhoushan coastal waters [J]. Acta Oceanologica Sinica, 2019, 41(4): 83-93.
[29] 焦海峰, 施慧雄, 尤仲杰, 等. 渔山岛岩礁基质潮间带大型底栖动物优势种生态位 [J]. 生态学报, 2011, 31(14): 3928-3936. Jiao H F, Shi H X, You Z J, et al. Niche analysis of dominant species of macrobenthic community at a tidal flat of Yushan Island [J]. Acta Ecologica Sinica, 2011, 31(14): 3928-3936.
[30] 彭松耀, 李新正, 王洪法, 等. 南黄海春季大型底栖动物优势种生态位 [J]. 生态学报, 2015, 35(6): 1917-1928. Peng S Y, Li X Z, Wang H F, et al. Niche analysis of dominant species of macrozoobenthic community in the southern Yellow Sea in spring [J]. Acta Ecologica Sinica, 2015, 35(6): 1917-1928.
[31] 龚志军, 谢平, 唐汇涓, 等. 水体富营养化对大型底栖动物群落结构及多样性的影响 [J]. 水生生物学报, 2001, 25(3): 210-216. doi: 10.3321/j.issn:1000-3207.2001.03.002 Gong Z J, Xie P, Tang H J, et al. The influence of eutrophycation upon community structure and biodiversity of macrozoobenthos [J]. Acta Hydrobiologicica Sinica, 2001, 25(3): 210-216. doi: 10.3321/j.issn:1000-3207.2001.03.002
[32] Wathne J A, Haug T, Lydersen C. Prey preference and niche overlap of ringed seals Phoca hispida and harp seals P. groenlandica in the Barents Sea [J]. Marine Ecology Progress Series, 2000, (194): 233-239.
[33] 葛宝明, 郑祥, 程宏毅, 等. 灵昆岛围垦滩涂潮沟大型底栖动物群落和物种生态位分析 [J]. 水生生物学报, 2007, 31(5): 675-681. doi: 10.3321/j.issn:1000-3207.2007.05.011 Ge B M, Zheng X, Cheng H Y, et al. The macrobenthic community and niche analysis of creeks in diked tidal flat at Lingkun island, Wenzhou bay [J]. Acta Hydrobiologica Sinica, 2007, 31(5): 675-681. doi: 10.3321/j.issn:1000-3207.2007.05.011
[34] 王菁, 裘丽萍, 孟顺龙, 等. 温度对普通小球藻和鱼腥藻生长竞争的影响 [J]. 水生生物学报, 2014, 38(6): 1127-1134. doi: 10.7541/2014.164 Wang J, Qiu L P, Meng S L, et al. Effects of temperature on growth competition of Chlorella vulgaris and Anabaena sp. strain PCC [J]. Acta Hydrobiologica Sinica, 2014, 38(6): 1127-1134. doi: 10.7541/2014.164
[35] 蔡庆华, 孙志禹. 三峡水库水环境与水生态研究的进展与展望 [J]. 湖泊科学, 2012, 24(2): 169-177. doi: 10.3969/j.issn.1003-5427.2012.02.001 Cai Q H, Sun Z Y. Water environment and aquatic ecosystem of Three Gorges Reservoir, China: progress and prospects [J]. Journal of Lake Sciences, 2012, 24(2): 169-177. doi: 10.3969/j.issn.1003-5427.2012.02.001
[36] 刘旻慧, 闻学政, 张志勇, 等. 生物浮岛与漂浮植物对开放池塘水质净化效果 [J]. 水生生物学报, 2017, 41(6): 154-162. Liu M H, Wen X Z, Zhang Z Y, et al. Purification effect of biological floating island and floating plants on an open contaminated pond [J]. Acta Hydrobiologica Sinica, 2017, 41(6): 154-162.