TYPES AND SPECIES COMPOSITION OF BIOLOGICAL SOIL CRUST IN METAL TAILINGS PONDS
-
摘要: 为对金属尾矿库生物土壤结皮进行研究, 2016年对湖北省黄石市的两个废弃尾矿库开展了生物土壤结皮调查, 并采用空间代替时间的方法来研究结皮发育演替过程中的物种组成及变化。结皮中蓝藻、真菌和苔藓的绝对丰度分别为(0.63—2.01)×108、(0.19—1.53)×108和(0.08—3.34)×107 copies/g DW soil, 随着结皮的演替蓝藻和真菌丰度降低, 苔藓的丰度增加。从微生物组成来看, 从两个尾矿库的生物土壤结皮中共分析出41门的物种, 其中变形菌门、蓝藻门、放线菌门、拟杆菌门、绿弯菌门、疣微菌门、酸杆菌门、浮霉菌门、芽单胞菌门及热微菌门是主要组分, 它们在不同结皮中累计丰度均达到90%以上。金属尾矿库中的生物土壤结皮物种组成及其变化规律与荒漠化地区类似, 蓝藻在其中具有不可替代的作用。研究表明生物土壤结皮在金属尾矿库中广泛分布, 同时可以起到增加尾矿库土壤养分的作用, 可广泛应用于金属尾矿库的生态修复。Abstract: The metal tailings pond is a typical degraded habitat with high soil heavy metal content, low fertility, poor matrix structure and low vegetation coverage. To study the biological soil crust, samples were collected from two abandoned tailings ponds in 2016 from Huangshi City, Hubei Province to assess the species composition by spatial sequence method rather than time successional sequence. The absolute abundance of cyanobacteria, fungi and moss in the crusts were (0.63-2.01)×108, (0.19-1.53)×108 and (0.08-3.34)×107 copies/g DW soil, respectively, and the abundance of moss increased with the decreased abundance of cyanobacteria and fungi. A total of 41 species were analyzed from the biological soil crusts, in which Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Verrucomicrobia, Acidobacteria, Planctomycetes, Gemmatimonadetes and Thermomicrobia were the main components. The accumulative abundance in different crusts was more than 90%. The composition and successions of biological soil crust in the metal tailings ponds are similar to those in the desertified area, and Cyanobacteria have an irreplaceable role. Studies have shown that biological soil crust can be widely distributed in metal tailings ponds, and can enrich the soil nutrients in the tailings pond, which can be widely used for ecological restoration of metal tailings ponds.
-
Keywords:
- Biological soil crust /
- Heavy metals /
- Tailings ponds /
- Species composition /
- Ecological restoration
-
-
图 2 JLS和NTS尾矿库中结皮层与土壤层的色素含量
A组和B组分别代表鸡笼山和牛头山来源的结皮类型。小写字母用于标注结皮层之间的显著性差异(P<0.05), *用于标注结皮层与土壤层之间的显著性差异(P<0.05)
Figure 2. The contents of pigments in the soil crust layers and their underlying soil layers of the two tailings ponds
Group A and group B represent the crust types from JLS and NTS respectively, the lowercase letters are used to mark the significant difference (P<0.05) between different crust layers, * is used to mark the significant difference (P<0.05) between crust layers and soil layers
表 1 尾矿库样品采集情况
Table 1 Samples of biological soil crusts in different tailings ponds
尾矿库Tailing pond 结皮编号Number of the crusts 结皮类型Type of crust 生境Habitat 藻类盖度Algae coverage (%) 苔藓盖度Moss coverage (%) JLS J.PC 物理结皮 平地 0 0 J.A 藻结皮 平地 84—86 0—4 J.MA 藓-藻结皮 小斜坡, 草本植物旁 32—40 57—66 J.M 苔藓结皮 斜坡, 少许草 3—6 85—90 NTS N.PC 物理结皮 平地 0 0 N.A 藻结皮 尾矿库边缘的小斜坡 90—98 7—10 N.AM 藻-藓结皮 平地 50—60 25—35 N.M1 早期苔藓结皮 平地 0 45—55 N.M2 后期苔藓结皮 平地 0 97—100 表 2 蓝藻、真菌、苔藓目的基因及引物
Table 2 Primers for cyanobacteria, fungi and moss
目标基因
Target gene引物Primer 序列Target sequence (5′-3′) 16S rRNA CYA359f GGGGAATYTTCCGCAATGGG CYA781r
(A)GACTACTGGGGTATCTAATCCCATT CYA781r
(B)GACTACAGGGGTATCTAATCCCTTT 25-28S rRNA NL1f ATATCAATAAGCGGAGGAAAAG LS2r ATTCCCAAACAACTCGACTC rps4 rps5′ ATGTCCCGTTATCGAGGACCT trnS TACCGAGGGTTCGAATC 表 3 JLS和NTS尾矿库土壤的理化指标
Table 3 Physical and chemical parameters of soils from the two tailings ponds
尾矿库
Tailing pondpH 含水量
WC (%)有机质
OM (g/kg)总氮
TN (g/kg)总磷
TP (g/kg)总钾
TK (g/kg)速效氮
AN (mg/kg)速效磷
AP (mg/kg)速效钾
AK (mg/kg)JLS 8.19±0.19a 19.68±6.03a 8.92±3.15a 0.19±0.07a 0.02±0.00a 0.17±0.03a 17.08±6.16a 1.04±0.39a 25.32±12.22a NTS 8.82±0.14b 11.88±11.17a 1.39±1.00b 0.09±0.07b 0.02±0.01a 0.12±0.06a 12.80±9.14a 1.02±0.27a 2.41±2.11b 注: *小写字母a、b用于表示不同尾矿库之间理化指标的显著性差异(P<0.05)Note: *lowercase letters a and b are used to indicate the significant difference of physical and chemical parameters between different tailings ponds (P<0.05) 表 4 JLS和NTS尾矿库土壤的重金属含量及重金属污染评价
Table 4 Heavy metal contents of soils and Nemerow multi-factor index in the two tailings ponds
尾矿库Tailing pond 土壤重金属含量Heavy metal content in soil (mg/kg) 内梅罗综合污染指数Nemerow muti-factor index 污染水平Pollution levels Cu Zn As Ni Cd Pb Cr JLS 428.99 214.33 85.15 9.29 1.33 53.06 18.39 3.26 重度污染 NTS 162.48 54.88 6.17 8.29 0.10 4.17 21.23 1.18 轻度污染 -
[1] Hudson-Edwards K A, Jamieson H E, Lottermoser B G. Mine wastes: Past, present, future [J]. Elements, 2011, 7(6): 375-380. doi: 10.2113/gselements.7.6.375
[2] Zornoza R, Faz A, Carmona D M, et al. Carbon mineralization, microbial activity and metal dynamics in tailing ponds amended with pig slurry and marble waste [J]. Chemosphere, 2013, 90(10): 2606-2613. doi: 10.1016/j.chemosphere.2012.10.107
[3] Zornoza R, Acosta J A, Faz A, et al. Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation [J]. Geoderma, 2016, (272): 64-72.
[4] Bradshaw A. Restoration of mined lands - using natural processes [J]. Ecological Engineering, 1997, 8(4): 255-269. doi: 10.1016/S0925-8574(97)00022-0
[5] Belnap J, Büdel B, Lange O L. Biological Soil crusts: Characteristics and Distribution, in Biological Soil Crusts: Structure, Function, and Management [M]. Heidelberg: Springer Berlin Heidelberg, 2003: 3-30
[6] Rivera-Aguilar V, Montejano G, Rodriguez-Zaragoza S, et al. Distribution and composition of cyanobacteria, mosses and lichens of the biological soil crusts of the tehuacan valley, puebla, Mexico [J]. Journal of Arid Environments, 2006, 67(2): 208-225. doi: 10.1016/j.jaridenv.2006.02.013
[7] Su Y G, Li X R, Zheng J G, et al. The effect of biological soil crusts of different successional stages and conditions on the germination of seeds of three desert plants [J]. Journal of Arid Environments, 2009, 73(10): 931-936. doi: 10.1016/j.jaridenv.2009.04.010
[8] Belnap J. Potential role of cryptobiotic soil crusts in semiarid rangelands [J]. Proceedings-Ecology and Management of Annual Rangelands, 1994, (313): 179-185.
[9] Peng C R, Zheng J L, Huang S, et al. Application of sodium alginate in induced biological soil crusts: Enhancing the sand stabilization in the early stage [J]. Journal of Applied Phycology, 2017, 29(3): 1421-1428. doi: 10.1007/s10811-017-1061-2
[10] Wu Y W, Rao B Q, Wu P P, et al. Development of artificially induced biological soil crusts in fields and their effects on top soil [J]. Plant and Soil, 2013, 370(1-2): 115-124. doi: 10.1007/s11104-013-1611-6
[11] Frouz J, Keplin B, Pizl V, et al. Soil biota and upper soil layer development in two contrasting post-mining chronosequences [J]. Ecological Engineering, 2001, 17(2-3): 275-284. doi: 10.1016/S0925-8574(00)00144-0
[12] Seiderer T, Venter A, van Wyk F, et al. Growth of soil algae and cyanobacteria on gold mine tailings material [J]. South African Journal of Science, 2017, 113(11-12): 1-6.
[13] Orlekowsky T, Venter A, van Wyk F, et al. Cyanobacteria and algae of gold mine tailings in the northwest province of south africa [J]. Nova Hedwigia, 2013, 97(3-4): 281-294.
[14] Cabala J, Rahmonov O, Jablonska M, et al. Soil algal colonization and its ecological role in an environment polluted by past Zn-Pb mining and smelting activity [J]. Water Air and Soil Pollution, 2011, 215(1-4): 339-348. doi: 10.1007/s11270-010-0482-1
[15] Li X R, He M Z, Zerbe S, et al. Micro-geomorphology determines community structure of biological soil crusts at small scales [J]. Earth Surface Processes and Landforms, 2010, 35(8): 932-940. doi: 10.1002/esp.1963
[16] 鲁如坤. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社, 2000: 147-152, 168-169, 193-195 Lu R K. Analytical Method of Soil Agricultural Chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000: 147-152, 168-169, 193-195
[17] 鲍士旦. 土壤农化分析(第三版) [M]. 中国农业出版社, 2008: 76-79, 101-103 Bao S D. Soil Agrochemical Analysis (3rd edition) [M]. Beijing: China Agriculture Press, 2008: 76-79, 101-103
[18] Charzynski P, Plak A, Hanaka A. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors [J]. Environmental Science and Pollution Research, 2017, 24(5): 4801-4811. doi: 10.1007/s11356-016-8209-5
[19] 陈文德, 向莉莉, 何政伟. 雪鸡坪-春都铜矿区土壤重金属污染评价 [J]. 河北师范大学学报(自然科学版), 2019, 43(2): 163-170. Chen W D, Xiang L L, He Z W. Evaluation of heavy metal pollution in soil of Xuejiping-Chundu copper mining area [J]. Journal of Hebei Normal University (
Natural Science Edition ) , 2019, 43(2): 163-170. [20] Garcia-Pichel F, Castenholz R W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment [J]. Journal of Phycology, 1991, 27(3): 395-409. doi: 10.1111/j.0022-3646.1991.00395.x
[21] Deng S Q, Wang C Z, De Philippis R, et al. Use of quantitative pcr with the chloroplast gene rps4 to determine moss abundance in the early succession stage of biological soil crusts [J]. Biology and Fertility of Soils, 2016, 52(5): 595-599. doi: 10.1007/s00374-016-1107-7
[22] 全国土壤普查办公室. 中国土壤 [M]. 北京: 中国农业出版社, 1998: 356 National Soil Census Office. China Soil [M]. Beijing: China Agriculture Press, 1998: 356
[23] Sun Q Y, An S Q, Yang L Z, et al. Chemical properties of the upper tailings beneath biotic crusts [J]. Ecological Engineering, 2004, 23(1): 47-53. doi: 10.1016/j.ecoleng.2004.07.001
[24] Larney F J, Angers D A. The role of organic amendments in soil reclamation: A review [J]. Canadian Journal of Soil Science, 2012, 92(1): 19-38. doi: 10.4141/cjss2010-064
[25] 邵坤, 靳辉. 尾矿库酸性废水处理研究 [J]. 环境保护与循环经济, 2009, 29(9): 63-65. doi: 10.3969/j.issn.1674-1021.2009.09.023 Shao K, Jin H. Study on acid wastewater treatment of tailings pond [J]. Liaoning Urban and Rural Environmental Science & Technology, 2009, 29(9): 63-65. doi: 10.3969/j.issn.1674-1021.2009.09.023
[26] 饶运章, 侯运炳. 尾矿库废水酸化与重金属污染规律研究 [J]. 辽宁工程技术大学学报(自然科学版), 2004, (3): 430-432. Rao Y Z, Hou Y B. Study on law of acidification of wastewater in tailings reservoir and heavy metals pollution [J]. Journal of Liaoning Technology University (
Natural Science ) , 2004, (3): 430-432. [27] 饶运章, 侯运炳, 潘建平, 等. 尾矿库废水pH值对重金属污染的影响及治理技术研究 [J]. 中国矿业, 2003, (12): 36-37. doi: 10.3969/j.issn.1004-4051.2003.12.012 Rao Y Z, Hou Y B, Pan J P, et al. Study on influencing of pH value to heavy metals pollution and fathering techniques of wastewater in tailings reservoir [J]. China Mining Magazine, 2003, (12): 36-37. doi: 10.3969/j.issn.1004-4051.2003.12.012
[28] Senesi N, Plaza C, Brunetti G, et al. A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances [J]. Soil Biology and Biochemistry, 2007, 39(6): 1244-1262.
[29] Chamizo S, Cantón Y, Lázaro R, et al. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems [J]. Ecosystems, 2012, 15(1): 148-161. doi: 10.1007/s10021-011-9499-6
[30] Song Y S, Shu W S, Wang A D, et al. Characters of soil algae during primary succession on copper mine dumps [J]. Journal of Soils and Sediments, 2014, 14(3): 577-583. doi: 10.1007/s11368-013-0815-y
[31] Lan S B, Wu L, Zhang D L, et al. Assessing level of development and successional stages in biological soil crusts with biological indicators [J]. Microbial Ecology, 2013, 66(2): 394-403. doi: 10.1007/s00248-013-0191-6
[32] Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16s rRNA genes [J]. Applied and Environmental Microbiology, 2006, 72(3): 1719-1728. doi: 10.1128/AEM.72.3.1719-1728.2006
[33] 刘梅, 铜陵铜尾矿生物结皮微生物群落结构的变化 [D]. 安徽大学, 2012: 57 Liu M. The change of microbial community structure in biological soil crust of tailing, Tongling [D]. Hefei: Anhui University, 2012: 57
[34] 李靖宇, 张琇. 腾格里沙漠不同生物土壤结皮微生物多样性分析 [J]. 生态科学, 2017, 36(3): 36-42. Li J Y, Zhang X. Microbial diversity analysis of different biological soil crusts in tengger desert [J]. Ecological Science, 2017, 36(3): 36-42.
[35] Verrecchia E, Yair A, Kidron G J, et al. Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western negev desert, israel [J]. Journal of Arid Environments, 1995, 29(4): 427-437. doi: 10.1016/S0140-1963(95)80015-8