活性污泥菌胶团/生物絮团形成菌的分离鉴定及基因组分析

刘亚琦, 刘双元, 高娜, 戴景程, 邱东茹

刘亚琦, 刘双元, 高娜, 戴景程, 邱东茹. 活性污泥菌胶团/生物絮团形成菌的分离鉴定及基因组分析[J]. 水生生物学报, 2020, 44(3): 655-662. DOI: 10.7541/2020.080
引用本文: 刘亚琦, 刘双元, 高娜, 戴景程, 邱东茹. 活性污泥菌胶团/生物絮团形成菌的分离鉴定及基因组分析[J]. 水生生物学报, 2020, 44(3): 655-662. DOI: 10.7541/2020.080
LIU Ya-Qi, LIU Shuang-Yuan, GAO Na, DAI Jing-Cheng, QIU Dong-Ru. ISOLATION, IDENTIFICATION AND GENOMICS ANALYSIS OF ACTIVATED SLUDGE FLOC/BIOFLOC FORMING PSEUDODUGANELLA EBURNEA STRAINS[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(3): 655-662. DOI: 10.7541/2020.080
Citation: LIU Ya-Qi, LIU Shuang-Yuan, GAO Na, DAI Jing-Cheng, QIU Dong-Ru. ISOLATION, IDENTIFICATION AND GENOMICS ANALYSIS OF ACTIVATED SLUDGE FLOC/BIOFLOC FORMING PSEUDODUGANELLA EBURNEA STRAINS[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(3): 655-662. DOI: 10.7541/2020.080

活性污泥菌胶团/生物絮团形成菌的分离鉴定及基因组分析

基金项目: 中国科学院先导项目“美丽中国”子课题(XDA23040401); 中国科学院重点部署项目(KFZD-SW-219-3-2)资助
详细信息
    作者简介:

    刘亚琦(1995—), 女, 硕士研究生; 主要从事分子微生物学与生物技术研究。E-mail: liuyaqi@ihb.ac.cn

    通信作者:

    邱东茹(1968—), 男, 研究员; 博士生导师; 主要从事分子微生物学与生物技术研究。E-mail: qiu@ihb.ac.cn

  • 中图分类号: Q938.8

ISOLATION, IDENTIFICATION AND GENOMICS ANALYSIS OF ACTIVATED SLUDGE FLOC/BIOFLOC FORMING PSEUDODUGANELLA EBURNEA STRAINS

Funds: Supported by Strategic Priority Research Program of CAS (XDA23040401); Key Research Program of the Chinese Academy of Sciences Grant (KFZD-SW-219)
    Corresponding author:
  • 摘要: 从云南省泸西县的污水处理厂分离到一株菌胶团形成菌YN12, 经过鉴定与象牙白伪杜擀氏菌(Pseudoduganella eburnea)10R5-21T模式株具有较近的亲缘关系, 属于同一物种。为揭示该菌株与其他活性污泥细菌间菌胶团形成机制及碳源利用方面的异同, 对该菌株进行全基因组测序、组装、注释及比较基因组学分析。结果表明: P. eburnea YN12株基因组大小约为5934 kb, G+C含量为63.9%, 包含5313个蛋白质编码序列, 具有与喜树脂动胶菌(Zoogloea resiniphila)MMB株、解叔丁醇水居菌(Aquincola tertiaricarbonis)RN12株及解壳聚糖松江菌(Mitsuaria chitosanitabida)XHY-A6株相似的胞外多糖生物合成途径、PrsK-PrsR双组分系统和PEP-CTERM胞外蛋白家族, 共同介导和调控的菌胶团形成机制。与后者相比, 菌株YN12中胞外多聚物(Extracellular polymeric substances, EPS)形成相关基因集中在大小约为72 kb的大型基因簇上, 且能吸收利用的碳源特别是单糖、二糖和多糖更为丰富多样。同时, 我们还从河流及养殖水体中也分离到象牙白伪杜擀氏菌, 这些菌株可用于生物絮团技术(Biofloc Technology), 改善水产养殖水质。
    Abstract: In activated sludge process the separation of sludge and water is achieved by gravity, and the floc-forming bacteria are predominated and play a central role in the water purification. In this study, a floc-forming bacterial strain YN12 was isolated from activated sludge of the municipal sewage treatment plant of Luxi County, Yunnan Province, and it was identified as Pseudoduganella eburnean and was phenotypically similar to the type strain 10R5-21T. In order to reveal and compare the floc-forming mechanism and carbon source utilization of the strain YN12 with those of other floc-forming bacteria, the genome sequencing, assembly, annotation and comparative genomics analysis were conducted. The results showed that the genome size of Pseudoduganella eburnea YN12 was about 5934 kb, the G+C content was 63.9%, and it contained 5313 protein coding sequences. Comparative analyses revealed a similar floc-forming and regulation mechanism to Zoogloea resiniphila MMB, Aquincola tertiaricarbonis RN12 and Mitsuaria chitosanitabida XHY-A6, which involves the exopolysaccharide biosynthesis, PrsK-PrsR two-component system and PEP-CTERM domain containing protein family. Meanwhile, these genes involved in the synthesis of extracellular polymeric substances (EPS) were concentrated on a large gene cluster of about 72 kb in size, and the YN12 strain was more functionally diverse in the absorption and utilization of carbon sources, particularly monosaccharides, disaccharides and polysaccharides. Moreover, two other Pseudoduganella eburnea strains had also been isolated from a river and an aquaculture pond. It is suggested that these strains could also be utilized in biofloc technology to improve the water quality and nutrient recycling in aquaculture.
  • 图  1   Pseudoduganella eburnea YN12菌胶团形成表型及显微镜图

    A为振荡培养时菌株YN12的表型; B为菌株YN12静置后沉淀的菌胶团; C为YN12在普通光学显微镜下的表型, 亚甲基蓝染色; D是用微分干涉显微镜拍摄的菌株YN12; 显微镜照片标尺均为10 μm

    Figure  1.   Floc-forming phenotype and microscopical observation of P. eburnea YN12 strain

    A. Agitated bacterial cultures of strain YN12; B. Settled bacterial cultures of strain YN12; C. Microscope image of methylene blue staining of strain YN12; D. Photographed with differential interference microscope of strain YN12; Bars: 10 μm

    图  2   Pseudoduganella eburnea YN12及近缘细菌基于16S rDNA序列的系统发育进化树

    Figure  2.   Phylogenetic tree based on 16S rDNA sequences of Pseudoduganella eburnea YN12 and closely related strains

    图  3   Pseudoduganella eburnea YN12胞外多聚物形成相关基因簇

    Figure  3.   The extracellular polymeric substances biosynthesis gene cluster of P. eburnea YN12

    图  4   从不同水体中分离纯化的象牙白伪杜擀氏菌菌胶团形成表型及显微镜图

    A、B、C分别为菌株YN12、F1、SS14用微分干涉显微镜拍摄的照片; D、E从左至右依次为菌株YN12、F1、SS14; D为各菌株振荡时表型; E为各菌株静置后表型; 标尺为10 μm

    Figure  4.   Floc-forming phenotype and microscopic observation of the Pseudoduganella eburnean strains isolated from different water bodies

    Panel A, B and C were the YN12, F1 and SS14 strains photographed with differential interference microscope, respectively; Panel D. Agitated bacterial cultures from panels A to C, from left to right; Panela E. Settled bacterial cultures from panels A to C, from left to right. Bars: 10 μm

    表  1   基因组信息统计

    Table  1   Genomic information statistics

    版本信息VersionP. eburnea YN12
    基因组大小Genome size (bp)5933582
    G+C含量GC content (%)63.9
    Scaffold N50长度Length of scaffold N50 (bp)451172
    基因组L50 Genome L505
    序列重叠群数目Number of contigs with PEGs81
    子系统数Number of subsystems465
    蛋白质编码序列Number of coding sequences5313
    RNA数目Number of RNAs104
    下载: 导出CSV

    表  2   Pseudoduganella eburnea YN12与喜树脂动胶菌MMB中EPS合成相关基因簇表达产物的序列相似性

    Table  2   The gene products of the extracellular polymeric substances (EPS) biosynthesis gene cluster of Pseudoduganella eburnea YN12 strain and the predicted orthologues in the closely related proteobacterial genomes (the polypeptide sequence identity was shown)

    蛋白Protein预测功能Predicted functionZoogloea resiniphila MMB 蛋白Protein预测功能PredictedfunctionZoogloea resiniphila MMB
    WzcEPS chain length determinant48%FemAB-like proteinUnknown49%
    AsnBAsparagine biosynthesis44%Wzy polymeraseEPS unit polymerization44%
    MltESoluble lytic murein transgly-cosylases42%AAA ATPaseEPS export46%
    CapKUnknown55%Polysaccharide deacetylaseRemoval of acetyl group from EPS57%
    EpsHTransmembrane protein involved in EPS biosynthesis32%DegQ2Periplasmic serine protease43%
    AsnHAsparagine biosynthesis66%WzxCFlipping ofEPS units21%
    WzzEPS chain length determinant43%Outer membranePorinEPS export22%
    WzaEPS export58%UgdUDP-glucose dehydrogenase71%
    EpsB2PEP-CTERM system associated sugar transferase44%UgeSynthesis of UDP-D-galacturonate22%
    PrsRPEP-CTERM box response regulator66%PrsKPutativePEP-CTERM system histidine kinase42%
    PrsTPutative PEP-CTERM system TPR-repeat lipoprotein33%Diaminopimelate decarboxylaseLysine biosynthesis63%
    下载: 导出CSV

    表  3   Pseudoduganella eburnea YN12基于BioLog结果的碳源利用

    Table  3   Utilization of carbon source based on BioLog results of Pseudoduganella eburnea YN12

    碳源Carbon source12345 碳源Carbon source12345
    糊精Dextrin+NDND++ 肌醇Myo-Inositol+
    麦芽糖D-Maltose++++ 甘油GlycerolND++
    海藻糖D-TrehaloseNDND 明胶Gelatin+NDND
    纤维二糖D-cellobiose+++ 甘氨酸-L-脯氨酸Glycyl-L-proline+NDND
    龙胆二糖Gentiobiose+NDND L-丙氨酸L-alanine+++
    蔗糖Sucrose++++ L-精氨酸L-Arginine+NDND
    松二糖TuranoseNDND L-天冬氨酸L-aspartic acid+++
    水苏糖StachyoseNDND L-谷氨酸L-glutamic acid+++
    棉子糖D-Raffinose+ L-组氨酸L-Histidine++++
    乳糖α-D-LactoseNDND L-丝氨酸L-Serine+++
    蜜二糖D-Melibiose+ 果胶Pectin+NDND+
    β-甲基-D-葡糖苷β-Methyl-D-glucosideNDND+ 葡糖酸D-Gluconic acidNDND+
    水杨苷D-Salicin+ 苹果酸L-malic acid+NDND++
    N-乙酰-D-葡萄糖胺N-acetyl-D-glucosamine+ND+ 柠檬酸Citrate+
    N-乙酰-D-半乳糖胺N-acetyl-D-galactosamine+NDND 乳酸Lactic acid+++
    葡萄糖α-D-Glucose++++ 吐温40 Tween 40+NDND+
    甘露糖D-Mannose++ 丁酸Butyric acids+NDND++
    果糖D-Fructose++ 丙酸Propionic acid+ND
    半乳糖D-Galactose+ND+ 甲酸Formic acidNDND+
    岩藻糖Fucose 乙酸Acetic acid+++
    鼠李糖L-Rhamnose 乙酰乙酸Acetoacetic acidNDND+
    肌苷InosineNDND+ 丙酮酸甲酯Methyl PyruvateNDND++
    山梨醇D-Sorbitol+ 羟基苯乙酸p-hydroxy-phenylacetic acidNDND++
    甘露醇Mannitol++ 乳酸甲酯D-lactic acid methyl esterNDND++
    阿拉伯醇D-ArabitolNDND+ α-酮戊二酸α-Keto-glutaric acidNDND
    注: 1. 菌株P. eburnea YN12; 2. 菌株P. eburnean 10R5-21T[11]; 3. 菌株P. violaceinigra YIM 31327T[8]; 4. 菌株Z. resiniphila MMB[6]; 5. 菌株A. tertiaricarbonis RN12[12]。“+”表示可以利用; “–”表示不能利用, “ND”表示没有相关数据Note: Strain: 1. P. eburnea YN12; 2. P. eburnean 10R5-21T[11]; 3. P. violaceinigra YIM 31327T[8]; 4. Z. resiniphila MMB[6]; 5. A. tertiaricarbonis RN12[12]. “+”, Positive reaction; “–”, Negative reaction; “ND”, No data available
    下载: 导出CSV
  • [1] 邱东茹, 高娜, 安卫星, 等. 活性污泥微生物胞外多聚物生物合成途径与菌胶团形成的调控机制 [J]. 微生物学通报, 2019, 46(8): 2080-2089.

    Qiu D R, Gao N, An W X, et al. Biosynthesis pathway of extracellular polymeric substance and regulatory mechanism underlying floc formation of activate [J]. Microbiology China, 2019, 46(8): 2080-2089.

    [2] 王晶, 高娜, 刘双元, 等. 活性污泥微生物解壳聚糖松江菌中菌胶团形成相关大型基因簇的鉴定和分析 [J]. 微生物学通报, 2019, 46(8): 1946-1953.

    Wang J, Gao N, Liu S Y, et al. Identification and analysis of a large gene cluster involved in floc formation of activated sludge bacterium Mitsuaria chitosanitabida [J]. Microbiology China, 2019, 46(8): 1946-1953.

    [3]

    Dias F F, Bhat J V. Microbial ecology of activated sludge I. Dominant bacteria [J]. Applied Microbiology, 1964, 12(5): 412-417. doi: 10.1128/AEM.12.5.412-417.1964

    [4]

    Rossellomora R A, Wagner M, Amann R, et al. The abundance of Zoogloea resiniphila in sewage treatment plants [J]. Applied and Environmental Microbiology, 1995, 61(2): 702-707. doi: 10.1128/AEM.61.2.702-707.1995

    [5] 安卫星, 高娜, 夏明, 等. 动胶菌属系统分类、生理特征及其在活性污泥中的作用 [J]. 应用与环境生物学报, 2016, 22(6): 1167-1174.

    An W X, Gao N, Xia M, et al. Physiological characteristics and systematic classification of the Zoogloea species and their role in the activated sludge [J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(6): 1167-1174.

    [6]

    An W X, Guo F, Song Y L, et al. Comparative genomics analyses on EPS biosynthesis genes required for floc formation of Zoogloea resiniphila and other activated sludge bacteria [J]. Water Research, 2016, (102): 494-504.

    [7]

    Gao N, Xia M, Dai J C, et al. Both widespread PEP-CTERM proteins and exopolysaccharides are required for floc formation of Zoogloea resiniphila and other activated sludge bacteria [J]. Environmental Microbiology, 2018, 20(5): 1677-1692. doi: 10.1111/1462-2920.14080

    [8]

    Li W J, Zhang Y Q, Park D J, et al. Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil [J]. International Journal of Systermatic and Evolutionary Microbiology, 2004, 54(4): 1811-1814.

    [9]

    Kampfer P, Wellner S, Lohse K, et al. Duganella phyllosphaerae sp. nov., isolated from the leaf surface of Trifolium repens and proposal to reclassify Duganella violaceinigra into a novel genus as Pseudoduganella violceinigra gen. nov., comb. nov [J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 35(1): 19-23.

    [10]

    Kämpfer P, Irgang R, Busse H J, et al. Pseudoduganella danionis sp. nov., isolated from zebrafish (Danio rerio) [J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(11): 4671-4675. doi: 10.1099/ijsem.0.001408

    [11]

    Jin D H, Subhash Y, Lee S S. Psedoduganella eburnea sp. nov., isolated from lagoon sediments [J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(12): 5268-5272. doi: 10.1099/ijsem.0.002460

    [12]

    Yu D Z, Xia M, Zhang L P, et al. RpoN (sigma (54)) is required for floc formation but not for extracellular polysaccharide biosynthesis in a floc-forming Aquincola tertiaricarbonis strain [J]. Applied and Environmental Microbiology, 2017, 83(14): e00709-e00717.

    [13]

    Avnimelech Y. Carbon nitrogen ratio as a control element in aquaculture systems [J]. Aquaculture, 1999, 176(3-4): 227-235. doi: 10.1016/S0044-8486(99)00085-X

    [14]

    Azim M E, Little D C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus) [J]. Aquaculture, 2008, 283(1-4): 29-35. doi: 10.1016/j.aquaculture.2008.06.036

    [15]

    Kumar V S, Pandey P K, Anand T, et al. Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system [J]. Journal of Environmental Management, 2018, (215): 206-215.

    [16]

    Cardona E, Gueguen Y, Magre K, et al. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system [J]. BMC Microbiology, 2016, 16(1): 157. doi: 10.1186/s12866-016-0770-z

    [17]

    Liu H K, Li H D, Wei H, et al. Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system [J]. Aquaculture, 2019, (506): 256-269.

图(4)  /  表(3)
计量
  • 文章访问数:  4194
  • HTML全文浏览量:  937
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-21
  • 修回日期:  2020-03-13
  • 网络出版日期:  2020-05-18
  • 发布日期:  2020-04-30

目录

    /

    返回文章
    返回