湖泊富营养化治理: 集中控磷, 或氮磷皆控?

王洪铸, 王海军, 李艳, 马硕楠, 于清

王洪铸, 王海军, 李艳, 马硕楠, 于清. 湖泊富营养化治理: 集中控磷, 或氮磷皆控?[J]. 水生生物学报, 2020, 44(5): 938-960. DOI: 10.7541/2020.111
引用本文: 王洪铸, 王海军, 李艳, 马硕楠, 于清. 湖泊富营养化治理: 集中控磷, 或氮磷皆控?[J]. 水生生物学报, 2020, 44(5): 938-960. DOI: 10.7541/2020.111
WANG Hong-Zhu, WANG Hai-Jun, LI Yan, MA Shuo-Nan, YU Qing. THE CONTROL OF LAKE EUTROPHICATION: FOCUSING ON PHOSPHORUS ABATEMENT, OR REDUCING BOTH PHOSPHORUS AND NITROGEN?[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 938-960. DOI: 10.7541/2020.111
Citation: WANG Hong-Zhu, WANG Hai-Jun, LI Yan, MA Shuo-Nan, YU Qing. THE CONTROL OF LAKE EUTROPHICATION: FOCUSING ON PHOSPHORUS ABATEMENT, OR REDUCING BOTH PHOSPHORUS AND NITROGEN?[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 938-960. DOI: 10.7541/2020.111

湖泊富营养化治理: 集中控磷, 或氮磷皆控?

基金项目: 国家水污染控制与治理专项(2017ZX07302-002); 国家重点研发计划(2018YFD0900805); 淡水生态与生物技术国家重点实验室课题(2019FBZ01); 中国科学院青年创新促进会(Y201859)资助
详细信息
    通信作者:

    王洪铸(1967—), 男, 博士, 研究员; 研究方向为河流-泛滥平原生态学与无脊椎动物学。E-mail: wanghz@ihb.ac.cn

  • 中图分类号: X524

THE CONTROL OF LAKE EUTROPHICATION: FOCUSING ON PHOSPHORUS ABATEMENT, OR REDUCING BOTH PHOSPHORUS AND NITROGEN?

Funds: Supported by Major Science and Technology Program for Water Pollution Control and Treatment of China (2017ZX07302-002); National Key Research and Development Program of China (2018YFD0900805); State Key Laboratory of Freshwater Ecology and Biotechnology (2019FBZ01); the Youth Innovation Association of Chinese Academy of Sciences (Y201859)
    Corresponding author:
  • 摘要: 关于湖泊富营养化的治理, 有充足的全生态系统实验和湖泊治理实践表明, 只控磷(P)就可使湖泊贫营养化。但也有不少人认为需要氮(N)和P皆控。由于N和P皆控的成本可达只控P的4—15倍, 故确定富营养化治理是否必须既控P又控N是一个重大而现实的科学问题。针对这个问题, 文章对所有相关观点及其证据的科学性进行了系统辨析。首先, 系统总结了关于富营养化营养驱动与控制的研究历史。其次, 对判定营养控制的主要依据——限制因子的概念发展及判定方法进行了全面回顾与分析, 明确指出该概念的目的是确定促进生物生长的因子。第三, 介绍了新概念——减控因子, 其定义是: 在生态系统管理中, 能够抑制生物个体、种群和群落过度繁盛的必需环境因子, 或直接减灭生物本身的物理(机械)、化学和生物因子, 且成本效益最大。随后, 举例说明了确定减控因子的五个步骤, 即必需性、可控性、可行性、成本分析及实验和应用验证, 证明非限制因子也可成为减控因子, 而限制因子不一定是减控因子。第四, 基于减控因子分析, 指出湖泊富营养化的减控因子是P; 进而, 总结了加拿大和中国的全生态系统实验及大量湖泊治理实践的系统证据。这些充分证明: 仅控P就可控制富营养化, 而减N无助于控制浮游藻类总量, 反而会诱导固氮蓝藻大量生长。第五, 对控N观点的逻辑和实验依据逐一批驳, 指出这些争论或将限制因子混同于减控因子, 或缺乏大尺度的实验证据。第六, 系统辨析了高N的生态效应, 初步确定: 只有总氮和氨氮>5 mg/L时, N才对水生植物等有一定的负面影响且可促进沉积物P的释放。建议先把地表水Ⅰ—Ⅴ类的总氮和氨氮标准限值均放宽至2 mg/L, 后逐步放宽至5 mg/L左右。最后, 指出富营养化治理必须采取系统对策, 以修复物理、化学、水文和生物完整性。在维护湖盆物理完整性的基础上, 最根本的措施是控制外源P负荷总量; 若内源P负荷较大, 则可采取钝化等方法。次之, 应开展水位调控, 以修复水生植被, 实现浊-清稳态转换。综上所述, 湖泊富营养化治理应采取“放宽控N、集中控P的策略”, 以大幅度降低治理成本。
    Abstract: In terms of eutrophication control, quite a lot of whole-lake experiments and lake rehabilitation practices have shown that reducing phosphorus only can reverse lake eutrophication; however, many people still argue that both phosphorus and nitrogen should be reduced. Since reducing both phosphorus and nitrogen costs 4—15 times as much as reducing P only, it is of the utmost importance to conclude whether dual nutrient control is a must. Focusing on such an essential question, we critically scrutinize all relevant viewpoints and their evidences. First, we systematically summarize the research history about nutrients driving and controlling eutrophication. Second, we retrospect and examine the concept evolution and the experiment criterion of limiting factors, which have been considered as the main basis to judge controlling nutrients for a long time, and clearly point out that the purpose of identifying limiting factors is to determine the factors to promote growth of organisms. Third, we introduce the new term of an abating factor, which has been defined as the most cost-effective factor that can reduce overgrowth of individuals, populations or communities in ecosystem managements, being either an essential environmental factor or a physical/chemical/biological means of destroying organisms; and explain the five steps to determine an abating factor, i.e. analyses of necessity, controllability, practicability and costs, and tests, through an example, demonstrating convincingly that a non-limiting factor can become an abating factor, and a limiting factor is not necessarily an abating factor. Fourth, based upon abating factor analysis, we show that the abating factor of lake eutrophication is phosphorus; further, summarize the systematic evidences from whole-ecosystem experiments in Canada and China and lake management. These fully prove that only phosphorus abatement can effectively mitigate eutrophication, whereas only nitrogen reduction cannot decrease phytoplankton biomass, even can induce massive growth of N-fixing cyanobacteria. Fifth, we refute logical and experimental bases of the opinion of reducing nitrogen one by one; such arguments either confused abating factors with limiting factors, or lacked support from large-scale experiments. Sixth, we critically analyze the ecological effects of high nitrogen concentrations, and preliminarily conclude that it is only when total nitrogen and ammonia are more than 5 mg/L that nitrogen can have some stresses on organisms (submersed macrophytes, fishes, etc.) and promote sediment phosphorus release; then suggest to loosen total nitrogen and ammonia standards for Class Ⅰ—Ⅴ surface water first from ≤0.2—≤2 mg/L (China: GB 3838-2002) to the same value of 2 mg/L, and gradually to ca. 5 mg/L. Last, we recommend a systematic strategy in eutrophication control, with the purpose to rehabilitate physical, chemical, hydrological and biological integrity. On the basis of maintenance of lake basin integrity, the most fundamental measure is intercepting external phosphorus loading; if internal loading is heavy, in-lake phosphorus inactivation is the first choice. Next, the key action in shallow lakes is regulating water level to recover aquatic vegetation and switch ecosystems from turbid-to clear-water states. In conclusion, we advocate loosening N control and focusing on P abatement in eutrophication mitigation so as to reduce costs substantially.
  • 图  1   限制因子(A)和减控因子(B)概念示意图(以具多板闸门的水箱说明)

    A. 加长最短板是升高水位的唯一选择; B. 钱币表示缩短各板至同一长度的费用, 缩短斜纹板(如图示, 不一定是最短的)是降低水位最经济有效的办法[57]

    Figure  1.   Diagrams of limiting factor (A) and abating factor (B) concepts, each using a water box with a multi-boards gate

    A. lengthening the shortest board is the only way to raise the water level. B. coins indicate costs to shorten each board to the same level, and shortening the diagonal board (not necessarily the shortest, as shown in this figure) is the most cost-effective way to lower the water level[57]

    图  2   池塘边杂草减控因子的确定步骤

    Figure  2.   Procedure to determine the abating factor of pondside weeds

    图  3   湖泊藻类水华减控因子确定步骤[57]

    Figure  3.   Procedure to determine the abating factor of algal blooms in lakes[57]

    图  4   长江中游池塘施肥实验(2010.12—2012.6)[57]

    Figure  4.   The fertilization experiment in the ponds in the middle Yangtze Basin (2010.12—2012.6)[57]

    图  5   长江中游中宇宙施肥实验的净自然氮输入(固氮量-反硝化量, 2010.12—2011.9)[75]

    Figure  5.   Net nitrogen inputs(fixed-denitrified N) in the fertilization experiment in the mesocosms in the middle Yangtze Basin (2010.12—2011.9)[75]

    图  6   1986—2011年西湖的外湖(A)、西里湖(B)和全湖(C)的总氮(mg/L)、总磷(×10–1 mg/L)和叶绿素a(×102 μg/L)的变化

    Figure  6.   Changes in total nitrogen (TN, mg/L), total phosphorus (TP, ×10–1 mg/L) and phytoplankton chlorophyll a (Chl.a, ×102 μg/L) in the two subareas, Waihu (A) and Xilihu (B), and the whole lake (C) of Lake Xihu (1986—2011)

  • [1]

    Schindler D W, Vallentyne J R. The Algal Bowl: Overfertilization of the World’s Freshwaters and Estuaries [M]. Edmonton: University of Alberta Press, 2008

    [2] 王海军, 王洪铸. 富营养化治理应该放宽控氮、集中控磷 [J]. 自然科学进展, 2009, 19(6): 599-604.

    Wang H J, Wang H Z. Mitigation of lake eutrophication: loosen nitrogen control and focus on phosphorus abatement [J]. Progress in Natural Science, 2009, 19(6): 599-604.

    [3]

    Schindler D W. The dilemma of controlling cultural eutrophication of lakes [J]. Proceedings of the Royal Society B Biological Sciences, 2012, 279(1746): 4322-4333. doi: 10.1098/rspb.2012.1032

    [4]

    Schindler D W, Carpenter S R, Chapra S C, et al. Reducing phosphorus to curb lake eutrophication is a success [J]. Environmental Science & Technology, 2016, 50(17): 8923-8929.

    [5]

    Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication: Nitrogen and phosphorus [J]. Science, 2009(323): 1014-1015.

    [6]

    Conley D J, Paerl H W, Howarth R W, et al. Eutrophication: Time to adjust expectations-response [J]. Science, 2009(324): 725.

    [7]

    Abell J M, Özkundakci D, Hamilton D P. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand Lakes: implications for eutrophication control [J]. Ecosystems, 2010, 13(7): 966-977. doi: 10.1007/s10021-010-9367-9

    [8]

    Lewis W M, Wurtsbaugh W A, Paerl H W. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters [J]. Environmental Science & Technology, 2011, 45(24): 10300-10305.

    [9]

    Paerl H W, Xu H, Hall N S, et al. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: Will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa [J]? Multidisciplinary Sciences, 2014, 9(11): e113123.

    [10]

    Bryhn A C, Håkanson L. Coastal eutrophication: whether N and/or P should be abated depends on the dynamic mass balance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1): E3. doi: 10.1073/pnas.0810905106

    [11]

    Hutchinson G E. Eutrophication: Causes, Consequences, Correctives [M]. Washington, D C: National Academy of Sciences, 1969: 17−26

    [12]

    Hutchinson G E. Marginalia: Eutrophication: The scientific background of a contemporary practical problem [J]. American Scientist, 1973, 61(3): 269-279.

    [13]

    Wetzel R G. Limnology, lake and river ecosystems [J]. Journal of Phycology, 2001, 37(6): 1146-1147. doi: 10.1046/j.1529-8817.2001.37602.x

    [14]

    Schindler D W. Recent advances in the understanding and management of eutrophication [J]. Limnology & Oceanography, 2006, 51(1): 356-363.

    [15]

    Hasler A D. Eutrophication of lakes by domestic drainage [J]. Ecology, 1947, 28(4): 383-395. doi: 10.2307/1931228

    [16]

    Deevey E S. Limnological studies in connecticut. V. A contribution to regional limnology [J]. American Journal of Science, 1940, 238(10): 717-741. doi: 10.2475/ajs.238.10.717

    [17]

    Vollenweider R A. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to phosphorus and nitrogen as factors in eutrophication [R]. OECD Technical Report DAS/CSI/, 1968

    [18]

    Edmondson W T. Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage [J]. Science, 1970, 169(3946): 690-691. doi: 10.1126/science.169.3946.690

    [19]

    Edmondson W T, Lehman J T. The effect of changes in the nutrient income on the condition of Lake Washington [J]. Limnology & Oceanography, 1981, 26(1): 1-29.

    [20]

    Edmondson W T. Sixty years of Lake Washington: a curriculum vitae [J]. Lake & Reservoir Management, 1994, 10(2): 75-84.

    [21]

    Kuentzel L E. Bacteria, carbon dioxide, and algal blooms [J]. Journal-Water Pollution Control Federation, 1969, 41(10): 1737-1747.

    [22]

    Moss B, Jeppesen E, Søndergaard M, et al. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy[J]? Hydrobiologia, 2013, 710(1): 3-21

    [23]

    Likens G E, Bartsch A F, Lauff G H, et al. Nutrients and eutrophication [J]. Science, 1971, 172(3985): 873-874. doi: 10.1126/science.172.3985.873

    [24]

    Schindler D W, Armstrong F A J, Holmgren S K, et al. Eutrophication of Lake 227, Experimental Lakes Area (ELA), northwestern Ontario, by addition of phosphate and nitrate [J]. Journal of the Fisheries Research Board of Canada, 1971, 28(11): 1763-1782. doi: 10.1139/f71-261

    [25]

    Schindler D W, Brunskill G J, Emerson S, et al. Atmospheric carbon dioxide: Its role in maintaining phytoplankton standing crops [J]. Science, 1972, 177(4055): 1192-1194. doi: 10.1126/science.177.4055.1192

    [26]

    Schindler D W, Kling H, Schmidt R V, et al. Eutrophication of Lake 227 by addition of phosphate and nitrate: The second, third and fourth years of enrichment 1970, 1971 and 1972 [J]. Journal of the Fisheries Research Board of Canada, 1973, 30(10): 1415-1440. doi: 10.1139/f73-233

    [27]

    White E, Law K, Payne G, et al. Nutrient demand and availability among planktonic communities-an attempt to assess nutrient limitation to plant growth in 12 central volcanic plateau lakes [J]. New Zealand Journal of Marine & Freshwater Research, 1985(19): 49-62.

    [28]

    Sanders J G, Cibik S J, Delia C F, et al. Nutrient enrichment studies in a coastal plain estuary: changes in phytoplankton species composition [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1986, 44(1): 83-90.

    [29]

    Schindler D W. Evolution of phosphorus limitation in lakes [J]. Science, 1977, 195(4275): 260-262. doi: 10.1126/science.195.4275.260

    [30]

    Paterson M J, Schindler D W, Hecky R E, et al. Comment: Lake 227 shows clearly that controlling inputs of nitrogen will not reduce or prevent eutrophication of lakes [J]. Limnology & Oceanography, 2011, 56(4): 1545-1547.

    [31]

    Li Y, Wang H Z, Liang X M, et al. Total phytoplankton abundance is determined by phosphorus input: evidence from an 18-month fertilization experiment in four subtropical ponds [J]. Canadian Journal of Fisheries & Aquatic Sciences, 2017(74): 1454-1461.

    [32]

    Howarth R. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance [J]. Limnology & Oceanography, 1988, 33(4): 669-687.

    [33]

    Ploeg P R, Bohm W, Kirkham M B. On the origin of the theory of mineral nutrition of plants and the law of the minimum [J]. Soil Science Society of America Journal, 1999, 63(5): 1055-1062. doi: 10.2136/sssaj1999.6351055x

    [34]

    Hooker H D Jr. Liebig’s law of the minimum in relation to general biological problems [J]. Science, 1917, 46(1183): 197-204. doi: 10.1126/science.46.1183.197

    [35]

    Shelford V E. Some concepts of bioecology [J]. Ecology, 1931, 12(3): 455-467. doi: 10.2307/1928991

    [36]

    Cade B S, Terrell J W, Schroeder R L. Estimating effects of limiting factors with regression quantiles [J]. Ecology, 1999, 80(1): 311-323. doi: 10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2

    [37]

    Kaiser M, Speckman P, Jones J. Statistical models for limiting nutrient relations in inland waters [J]. Journal of the American Statistical Association, 1994, 89(426): 410-423. doi: 10.1080/01621459.1994.10476763

    [38]

    Thomson J D, Weiblen G, Thomson B A, et al. Untangling multiple factors in spatial distributions: Lilies, gophers, and rocks [J]. Ecology, 1996, 77(6): 1698-1715. doi: 10.2307/2265776

    [39]

    Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecological Applications, 2010, 20(1): 5-15. doi: 10.1890/08-0127.1

    [40]

    Smayda T J. Bioassay of the growth potential of the surface water of lower Narragansett Bay over an annual cycle using the diatom Thalassiosira pseudonana (oceanic clone, 13-1) [J]. Limnology & Oceanography, 1974, 19(6): 889-901.

    [41]

    Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems [J]. Ecology Letters, 2007, 10(12): 1135-1142. doi: 10.1111/j.1461-0248.2007.01113.x

    [42]

    Bloom A J, Chapin F S, Mooney H A. Resource limitation in plants: An economic analogy [J]. Annual Review of Ecology & Systematics, 1985(16): 363-392.

    [43]

    Field C B, Chapin F S, Matson P A, et al. Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach [J]. Annual Review of Ecology & Systematics, 1992(23): 201-235.

    [44]

    Rastetter E B, Ågren G I, Shaver G R. Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model [J]. Ecological Applications, 1997, 7(2): 444-460.

    [45]

    Eisele K A, Schimel D S, Kapustka L A, et al. Effects of available P and N:P ratios on non-symbiotic dinitrogen fixation in tall grass prairie soils [J]. Oecologia, 1989(79): 471-474.

    [46]

    Crews T E, Kitayama K, Fownes J, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long soil chronosequence in Hawaii [J]. Ecology, 1995, 76(5): 1407-1424. doi: 10.2307/1938144

    [47]

    McGill W B, Cole C V. Comparative aspects of cycling of organic C, N, S, and P through soil organic matter [J]. Geoderma, 1981, 26(4): 267-286. doi: 10.1016/0016-7061(81)90024-0

    [48]

    Wang Y P, Houlton B Z, Field C B. A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production [J]. Biogeochemical Information, 2007, 21(1): GB1018 (15 p).

    [49]

    Marklein A R, Houlton B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems [J]. New Phytologist, 2012(193): 696-704.

    [50]

    Tanaka T, Henriksen P, Lignell R, et al. Specific affinity for phosphate uptake and specific alkaline phosphatase activity as diagnostic tool for detecting phosphorus-limited phytoplankton and bacteria [J]. Estuaries and Coasts, 2006(29): 1226-1241.

    [51]

    Thingstad T F, Fauzi R, Mantoura C. Titrating excess nitrogen content of phosphorous-deficient eastern Mediterranean surface water using alkaline phosphatase activity as a bio-indicator [J]. Limnology & Oceanography, 2005, 3(2): 94-100.

    [52]

    Ma S N, Wang H J, Wang H Z, et al. High ammonium loading can increase alkaline phosphatase activity and promote sediment phosphorus release: A two-month mesocosm experiment [J]. Water Research, 2018(145): 388-397.

    [53]

    Gleeson S K, Tilman D. Plant allocation and the multiple limitation hypothesis [J]. American Naturalist, 1992, 139(6): 1322-1343. doi: 10.1086/285389

    [54]

    Danger M, Daufresne T, Lucas F, et al. Does Liebigs law of the minimum scale up from species to communities[J]? Oikos, 2008, 117(11): 1741-1751

    [55]

    Patterson B R, Macdonald B A, Lock B A, et al. Proximate factors limiting population growth of white-tailed deer in Nova Scotia [J]. The Journal of Wildlife Management, 2002, 66(2): 511-521. doi: 10.2307/3803184

    [56]

    Hazael R, Meersman F, Ono F, et al. Pressure as a limiting factor for life [J]. Life, 2016, 6(3): 34. doi: 10.3390/life6030034

    [57]

    Wang H Z, Wang H J. Eutrophication: a limiting nutrient is not necessarily an abating factor [J]. Science Bulletin, 2019(64): 1125-1128.

    [58]

    Mack R N, Simberloff D, Lonsdale W M, et al. Biotic invasions: Causes, epidemiology, global consequences, and control [J]. Ecological Applications, 2000, 10(3): 689-710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    [59]

    Panetta F D. Weed eradication feasibility: lessons of the 21st century [J]. Weed Research, 2015, 55(3): 226-238. doi: 10.1111/wre.12136

    [60]

    Reynolds C S. Ecology of Phytoplankton[M]. Cambridge: Cambridge University Press. 2006

    [61]

    Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth [J]. Archiv fur Hydrobiologie, 1966, 62(1): 1-28.

    [62]

    Twiss M R, Auclair J C, Charlton M N. An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques [J]. Canadian Journal of Fisheries & Aquatic Sciences, 2000(57): 86-95.

    [63]

    Glass J B, Axler R P, Chandra S, et al. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures [J]. Frontiers in Microbiology, 2012(3): 331.

    [64]

    Schindler D W, Fee E J. Experimental Lakes Area: Whole-lake experiments in eutrophication [J]. Journal of the Fisheries Research Board of Canada, 1974, 31(5): 937-953. doi: 10.1139/f74-110

    [65]

    Fee E J. A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments [J]. Limnology & Oceanography, 1979, 24(3): 401-416.

    [66]

    Findlay D L, Kasian S E M. Phytoplankton community responses to nutrient addition in Lake 226, Experimental Lakes Area, Northwestern Ontario [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1987(44): 35-46.

    [67]

    Shearer J A, Fee E J, DeBruyn E R, et al. Phytoplankton productivity changes in a small, double-basin lake in response to termination of experimental fertilization [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1987, 44(S1): 47-54.

    [68]

    Findlay D L, Kasian S E M. Phytoplankton communities of lakes experimentally acidified with sulfuric and nitric acids [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1990, 47(7): 1378-1386.

    [69]

    Kelly C A, Rudd J W M, Schindler D W. Acidification by nitric acid-future considerations [J]. Water,Air & Soil Pollution, 1990, 50(1-2): 49-61.

    [70]

    Flett R J, Schindler D W, Hamilton R D, et al. Nitrogen fixation in canadian precambrian shield lakes [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1980, 37(3): 494-505.

    [71]

    Schindler D W, Hesslein R H, Turner M A. Exchange of nutrients between sediments and water after 15 years of experimental eutrophication [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1987, 44(S1): 26-33.

    [72]

    Higgins S N, Paterson M J, Hecky R E, et al. Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: evidence from a 46-year whole-lake experiment [J]. Ecosystems, 2018, 21(6): 1088-1100. doi: 10.1007/s10021-017-0204-2

    [73]

    May, L. The effect of lake fertilization on the rotifers of Seathwaite Tarn, an acidified lake in the English Lake District[J]. Hydrobiologia, 1995(313/314): 330-340.

    [74]

    Welch H E, Legault J A, Kling H J. Phytoplankton, nutrients, and primary production in fertilized and natural lakes at Saqvaqjuac, N W T [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1989, 46(1): 90-107.

    [75]

    Wang H J, Li Y, Feng W S, et al. Can short-term, small experiments reflect nutrient limitation on phytoplankton in natural lakes[J]? Chinese Journal of Limnology & Oceanography, 2016, 35(3): 1−11.

    [76]

    Kondo M, Kobayashi M, Takahashi E. Effect of phosphorus and temperature on the growth and nitrogenase activity in Azolla-Anabaena association [J]. Soil Science & Plant Nutrition, 1989, 35(2): 217-226.

    [77]

    Gallon J R, Pederson D. M, Smith G D The effect of temperature on the sensitivity of nitrogenase to oxyen in the cyanobacteria Anabaena cylindrical (Lemmermann) and Gloeothece (Nägeli) [J]. New Phytologist, 1993, 124(2): 251-257. doi: 10.1111/j.1469-8137.1993.tb03814.x

    [78]

    Laamanen M, Kuosa H. Annual variability of biomass and heterocysts of the N2-fixing cyanobacterium Aphanizonmen flos-aquae in Baltic Sea with reference to Anabaena spp. and Nodularia spumigena [J]. Boreal Environment Research, 2005(10): 19-30.

    [79]

    Granhall U, Lundgren A. Nitrogen fixation in Lake Erken [J]. Limnology & Oceanography, 1971(16): 711-719.

    [80]

    Dove A, Chapra S C. Long-term trends of nutrients and trophic response variables for the Great Lakes [J]. Limnology & Oceanography, 2015, 60(20): 696-721.

    [81]

    Nicholls K H, Hopkins G J. Recent changes in Lake Erie (North Shore) phytoplankton: Cumulative impacts of phosphorus loading reductions and the Zebra mussel introduction [J]. Journal of Great Lakes Research, 1993, 19(4): 637-647. doi: 10.1016/S0380-1330(93)71251-4

    [82]

    Schanz F. Oligotrophication of Lake Zürich as reflected in Secchi depth measurements [J]. Annales de Limnologie-International Journal of Limnology, 1994, 30(1): 57-65. doi: 10.1051/limn/1994005

    [83]

    Willén E. Phytoplankton and reversed eutrophication in Lake Mälaren, Central Sweden, 1965-1983 [J]. British Phycological Journal, 1987, 22(2): 193-208. doi: 10.1080/00071618700650241

    [84]

    Willén E. Phytoplankton and water quality characterization: experiences from the Swedish large lakes Mälaren, Hjälmaren, Vättern and Vänern [J]. Ambio, 2001(30): 529-537.

    [85]

    Sommer U, Gaedke U, Schweizer A. The first decade of oligotrophication of lake Constance. Ⅱ. The response of phytoplankton taxonomic composition [J]. Oecologia, 1993, 93(2): 276-284. doi: 10.1007/BF00317682

    [86]

    Stich H B, Brinker A. Oligotrophication outweighs effects of global warming in a large, deep, stratified lake ecosystem [J]. Global Change Biology, 2010(16): 877-888.

    [87]

    Salmaso N, Morabito G, Garibaldi L, et al. Trophic development of the deep lakes south of the Alps: a comparative analysis [J]. Fundamental & Applied Limnology, 2007, 170(3): 177-196.

    [88]

    Welch E B. Should nitrogen be reduced to manage eutrophication if it is growth limiting? Evidence from Moses Lake [J]. Lake & Reservoir Management, 2009, 25(4): 401-409.

    [89]

    Welch E B, Cooke G D. Effectiveness and longevity of phosphorus inactivation with alum [J]. Lake & Reservoir Management, 1999, 15(1): 5-27.

    [90]

    Miquel L, Frank V O. Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation [J]. Water Research, 2013, 47(17): 6527-6537. doi: 10.1016/j.watres.2013.08.019

    [91] 韩伟明. 底泥释磷及其对西湖富营养化的影响

    J]. 环境污染与防治, 1991, 13(5): 31-34.

    [92] 陆开宏, 姚礼一, 周少勤. 杭州西湖引流冲污前后浮游藻类变化及防治富营养化效果评价 [J]. 应用生态学报, 1992, 3(3): 266-272.

    Lu K H, Yao L Y, Zhou S Q. Population variation of phytoplankton in West Lake of Hangzhou before and after diluting sewages with erupting into river water and effect of controlling eutrophication [J]. Chinese Journal of Applied Ecology, 1992, 3(3): 266-272.

    [93] 马玖兰. 西湖引水前后氮、磷、叶绿素a含量的年周期变化 [J]. 湖泊科学, 1996, 8(2): 144-150. doi: 10.18307/1996.0209

    Ma J L. Annual cyclical changes of nitrogen, phosphorus and chlorophyll a concentration in West Lake before/after the water diversion [J]. Journal of Lake Sciences, 1996, 8(2): 144-150. doi: 10.18307/1996.0209

    [94] 张国勋, 傅建华, 吴意跃, 等. 杭州西湖富营养化防治设施最佳运行方式探讨 [J]. 环境污染与防治, 2000, 22(1): 35-36.

    Zhang G X, Fu J H, Wu Y Y, et al. On the best operational way of control apparatus for eutrophication of West Lake in Hangzhou [J]. Environmental Pollution & Control, 2000, 22(1): 35-36.

    [95] 吴洁, 虞左明. 西湖浮游植物的演替及富营养化治理措施的生态效应 [J]. 中国环境科学, 2001, 21(6): 540-544.

    Wu J, Yu Z M. The succession of phytoplankton and the ecological effects of eutrophication control measures in Hangzhou West Lake [J]. China Environmental Science, 2001, 21(6): 540-544.

    [96] 裴洪平, 郑晓君. 引水后杭州西湖主要水质参数的因子分析 [J]. 生物数学学报, 2005, 20(1): 86-90.

    Pei H P, Zheng X J. Factors analysis of water quality in West Lake, Hangzhou [J]. Journal of Biomathematics, 2005, 20(1): 86-90.

    [97] 李红仙. 西湖流场和浓度场对引水工程响应的数值模拟研究 [D]. 杭州: 浙江大学, 2006

    Li H X. Numerical simulation of flow and pollutant distribution in West Lake in response to abstraction works [D]. Hangzhou: Zhejiang University, 2006

    [98] 李共国, 吴芝瑛, 虞左明. 引水和疏浚工程支配下杭州西湖浮游动物的群落变化 [J]. 生态学报, 2006, 26(10): 3508-3515.

    Li G G, Wu Z Y, Yu Z M. Changes in the structure of zooplankton community in Lake Xihu (West Lake), Hangzhou after water pumping and dredging treatments [J]. Acta Ecologica Sinica, 2006, 26(10): 3508-3515.

    [99] 邓开宇, 吴芝瑛, 张国亮, 等. 从叶绿素a的变化浅析西湖综合保护工程效益(1998-2007年) [J]. 湖泊科学, 2009, 21(4): 518-522. doi: 10.18307/2009.0410

    Deng K Y, Wu Z Y, Zhang G L, et al. Benefits of the restoration projects on West Lake: evidence of chlorophyll-a change (1998-2007) [J]. Journal of Lake Sciences, 2009, 21(4): 518-522. doi: 10.18307/2009.0410

    [100] 毛成责, 余雪芳, 邵晓阳. 杭州西湖总氮、总磷周年变化与水体富营养化研究 [J]. 水生态学杂志, 2010, 3(4): 1-7.

    Mao C Z, Yu X F, Shao X Y. Study on the annual variations of TN and TP and the eutrophication in Hangzhou West Lake [J]. Journal of Hydroecology, 2010, 3(4): 1-7.

    [101] 尤爱菊, 吴芝瑛, 韩曾萃, 等. 引水等综合整治后杭州西湖氮、磷营养盐时空变化 (1985-2013年) [J]. 湖泊科学, 2015, 27(3): 371-377. doi: 10.18307/2015.0301

    You A J, Wu Z Y, Han Z C, et al. Spatial and temporal distributions and variations of nutrients in the West Lake, Hangzhou, after the implementation of integrated water management program (1985-2013) [J]. Journal of Lake Sciences, 2015, 27(3): 371-377. doi: 10.18307/2015.0301

    [102] 张志兵, 施心路, 刘桂杰, 等. 杭州西湖浮游藻类变化规律与水质的关系 [J]. 生态学报, 2009, 29(6): 2980-2988.

    Zhang Z B, Shi X L, Liu G J, et al. The relationship between planktonic algae changes and the water quality of the West Lake, Hangzhou, China [J]. Acta Ecological Sinica, 2009, 29(6): 2980-2988.

    [103]

    Coveney M F, Lowe E F, Battoe L E, et al. Response of a eutrophic, shallow subtropical lake to reduced nutrient loading [J]. Freshwater Biology, 2005, 50(10): 1718-1730. doi: 10.1111/j.1365-2427.2005.01435.x

    [104]

    Howarth R W, Marino R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades [J]. Limnology & Oceanography, 2006, 51(51): 364-376.

    [105]

    Marino R, Chan F, Howarth R W, et al. Ecological constraints on planktonic nitrogen fixation in saline estuaries. I. Nutrient and trophic controls [J]. Marine Ecology Progress, 2006(309): 25-39.

    [106]

    Lewis W M, Wurtsbaugh W A. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm [J]. International Review of Hydrobiology, 2008, 93(4-5): 446-465. doi: 10.1002/iroh.200811065

    [107]

    Oviatt C A, Doering P, Nowicki B, et al. An ecosystem-level experiment on nutrient limitation in temperate coastal marine environments [J]. Marine Ecology Progress Series, 1995, 116(1-30): 171-179.

    [108]

    Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium, a globally significant marine cyanobacterium [J]. Science, 1997, 276(5316): 1221-1229. doi: 10.1126/science.276.5316.1221

    [109]

    Bergman B, Gallon J R, Rai A N, et al. N2 Fixation by non-heterocystous cyanobacteria [J]. FEMS Microbiology Reviews, 1997, 19(3): 139-185. doi: 10.1016/S0168-6445(96)00028-9

    [110]

    Zehr J P. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean [J]. Nature, 2001, 412(6847): 635-638. doi: 10.1038/35088063

    [111]

    Montoya J P, Holl C M, Zehr J P, et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean [J]. Nature, 2004, 430(7003): 1027-1032. doi: 10.1038/nature02824

    [112]

    Fulweiler R W, Nixon S W, Buckley B A, et al. Reversal of the net dinitrogen gas flux in coastal marine sediments [J]. Nature, 2007, 448(7150): 180-182. doi: 10.1038/nature05963

    [113]

    Newell S E, Mccarthy M J, Gardner W S, et al. Sediment nitrogen fixation: a call for re-evaluating coastal N budgets [J]. Estuaries & Coasts, 2016, 39(6): 1626-1638.

    [114]

    Gardner W S, McCarthy M J, An S, et al. Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries [J]. Limnology & Oceanography, 2006, 51(1): 558-568.

    [115]

    Cole C V, Heil R D. Phosphorus effects on terrestrial nitrogen cycling [J]. Ecological Bulletins, 1981(33): 363-374.

    [116]

    Walker T W, Adams A F R. Studies on soil organic matter: 1. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils [J]. Soil Science, 1958(85): 307-318.

    [117]

    Walker T W, Adams A F R. Studies on soil organic matter: 2. Influence of increased leaching at various stages of weathering on levels of carbon, nitrogen, sulfur, and organic and total phosphorus [J]. Soil Science, 1959(87): 1-10.

    [118]

    Westin F C, Buntley G J. Soil phosphorus in south Dakota: Ⅲ. Phosphorus fractions of some borolls and ustolls [J]. Soil Science Society of America Journal, 1967, 31(4): 521-528. doi: 10.2136/sssaj1967.03615995003100040028x

    [119]

    Gates C T. Nodule and plant development in stylosanthes-humilis HBK-symbiotic response to phosphorus and sulphur [J]. Australian Journal of Botany, 1974, 22(1): 45-55. doi: 10.1071/BT9740045

    [120]

    Andrew C S, Robins M F. The effect of phosphorus on the growth and chemical composition of some tropical pasture legumes. Ⅱ. Nitrogen, calcium, magnesium, potassium, and sodium contents [J]. Australian Journal of Agricultural Research, 1969, 20(4): 675-685. doi: 10.1071/AR9690675

    [121]

    Tansey M R. Microbial Facilitation of Plant Mineral Nutrition[M]//Weinberg E D (Eds.), Microorganisms and Minerals. New York: Marcel Dekker, Inc, 1977: 343-385

    [122]

    Crews T E, Farrington H, Vitousek P M. Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long-term ecosystem development in Hawaii [J]. Ecosystems, 2000(3): 386-395.

    [123]

    Xu H, Paerl H W, Qin B Q, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Taihu Lake, China [J]. Limnology & Oceanography, 2010, 55(1): 420-432.

    [124]

    Paerl H W, Xu H, Hall N S, et al. Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms [J]. Journal of Freshwater Ecology, 2015, 30(1): 5-24. doi: 10.1080/02705060.2014.994047

    [125]

    Kolzau S, Wiedner C, Rücker J, et al. Seasonal patterns of nitrogen and phosphorus limitation in four German lakes and the predictability of limitation status from ambient nutrient concentrations [J]. PLoS One, 2014, 9(4): e96065. doi: 10.1371/journal.pone.0096065

    [126]

    Yan Z, Han W, Josep P, et al. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts [J]. Ecology Letters, 2016, 19(10): 1237-1246. doi: 10.1111/ele.12658

    [127]

    Quirós R. The Nitrogen to Phosphorus Ratio for Lakes: a Cause or a Consequence of Aquatic Biology[M]//Cirelli A F, Marquisa G C (Eds.), El Agua en Ibero- america: De la Limnologia a la Gestion en Sudamerica. CYTED XVⅡ, Centro de Estudios Transdiciplinarios del Agua, Facultad de Veterinaria, Universidad de Buenos Aires. Argentina, Buenos Aires, 2002: 11-26

    [128] 吴世凯, 谢平, 王松波, 等. 长江中下游地区浅水湖泊群中无机氮和TN/TP变化的模式及生物调控机制 [J]. 中国科学D辑: 地球科学, 2005, 35(S2): 114-123
    [129]

    Saunders D L, Kalff J. Nitrogen retention in wetlands, lakes and rivers [J]. Hydrobiologia, 2001, 443(1): 205-212

    [130]

    Seitzinger S, Harrison J A, Böhlke J K, et al. Denitrification across landscapes and waterscapes: a synthesis [J]. Ecological Applications, 2006, 16(6): 2064-2090

    [131]

    Søndergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003(506-509): 135-145.

    [132]

    Hou J, Song C, Cao X, et al. Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu) [J]. Water Research, 2013, 47(7): 2285-2296. doi: 10.1016/j.watres.2013.01.042

    [133]

    Grantz E M, Haggard B E, Thad S J. Stoichiometric imbalance in rates of nitrogen and phosphorus retention, storage, and recycling can perpetuate nitrogen deficiency in highly-productive reservoirs [J]. Limnology & Oceanography, 2014, 59(6): 2203-2216.

    [134]

    Schindler D W. Replication versus realism: the need for ecosystem-scale experiments [J]. Ecosystems, 1998, 1(4): 323-334. doi: 10.1007/s100219900026

    [135]

    Levine S N, Schindler D W. Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada [J]. Canadian Journal of Fish Aquatic Sciences, 1999, 56(3): 451-466. doi: 10.1139/f98-183

    [136]

    Schitüter L, Riemann B, Søndergaard M. Nutrient limitation in relation to phytoplankton carotenoid/chiorophyll a ratios in freshwater mesocosms [J]. Journal of Plankton Research, 1997, 19(7): 891-906. doi: 10.1093/plankt/19.7.891

    [137]

    Paerl H W, Xu H, McCarthy M J, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy [J]. Water Research, 2011, 45(5): 1973-1983. doi: 10.1016/j.watres.2010.09.018

    [138]

    Scott J T, Mccarthy M J. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management [J]. Limnology & Oceanography, 2010, 55(3): 1265-1270.

    [139]

    Smith V H, Schindler D W. Eutrophication science: where do we go from here[J]? Trends in Ecology & Evolution, 2009, 24(4): 201-207.

    [140]

    Steunou A S, Bhaya D, Bateson M M, et al. From the Cover: In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats [J]. Proceedings of the National Academy of Sciences, 2006, 103(7): 2398-2403. doi: 10.1073/pnas.0507513103

    [141]

    Jeppesen E, Søndergaard M, Jensen J P, et al. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies [J]. Freshwater Biology, 2005, 50(10): 1747-1771. doi: 10.1111/j.1365-2427.2005.01415.x

    [142]

    Köhler J, Hilt S, Adrian R, et al. Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading [J]. Freshwater Biology, 2005, 50(10): 1639-1650. doi: 10.1111/j.1365-2427.2005.01430.x

    [143]

    Davis T W, Harke M J, Marcoval M A, et al. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms [J]. Aquatic Microbial Ecology, 2010(61): 149-162.

    [144]

    Finlay K, Patoine A, Donald D B, et al. Experimental evidence that pollution with urea can degrade water quality in phosphorus-rich lakes of the northern great plains [J]. Limnology & Oceanography, 2010, 55(3): 1213-1230.

    [145]

    Ferber L R, Levine S N, Lini A, et al. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen[J]? Freshwater Biology, 2004, 49(6): 690-708.

    [146]

    Trimbee A M, Prepas E E. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta Lakes [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1987, 44(7): 1337-1342.

    [147]

    Hakånson L, Bryhn, A C, Hytteborn J K. On the issue of limiting nutrient and predictions of cyanobacteria in aquatic systems [J]. Science of the Total Environment, 2007, 379(1): 89-108. doi: 10.1016/j.scitotenv.2007.03.009

    [148]

    Wang H J, Liang X M, Jiang P H, et al. TN:TP ratio and planktivorous fish do not affect nutrient-chlorophyll relationships in shallow lakes [J]. Freshwater Biology, 2008(53): 935-944.

    [149]

    Russo R C. Ammonia, Nitrite and Nitrate [M]//Rand G M, Petrocelli S R (Eds.), Fundamentals of Aquatic Toxicicology. Washington D C: Hemisphere Publishing Corporation, 1985: 455-471

    [150]

    Kroupova H, Machova J, Svobodova Z. Nitrite influence on fish: A review [J]. Veterinarni Medicina, 2005, 50(11): 461-471.

    [151]

    Camargo J A, Alonso A, Salamanca A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates [J]. Chemosphere, 2005, 58(9): 1255-1267. doi: 10.1016/j.chemosphere.2004.10.044

    [152]

    Camargo J A, Alonso Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment [J]. Environment International, 2006, 32(6): 831-849. doi: 10.1016/j.envint.2006.05.002

    [153]

    Constable M, Charlton M, Jensen F, et al. An ecological risk assessment of ammonia in the aquatic environment [J]. Human & Ecological Risk Assessment, 2003, 9(2): 527-548.

    [154]

    Lewis W M, Morris D P. Toxicity nitrite to fish-A review [J]. Transactions of the American Fisheries Society, 1986, 115(2): 183-195. doi: 10.1577/1548-8659(1986)115<183:TONTF>2.0.CO;2

    [155]

    Williams, E M, Ed dy, F B. Some effects of adrenaline on anion transport and nitrite-induced methaemoglobin formation in the rainbow trout (Salmo gairdneri Richardson) [J]. Journal of Experimental Zoology, 1987, 241(2): 269-273. doi: 10.1002/jez.1402410215

    [156]

    Harris R R, Coley S. The effects of nitrite on chloride regulation in the crayfish Pacifastacus leniusculus Dana (Crustacea: Decapoda) [J]. Journal of Comparative Physiology B-Biochemical Systemic & Environmental Physiology, 1991, 161(2): 199-206.

    [157]

    Jensen F B. Nitrite disrupts multiple physiological functions in aquatic animals [J]. Comparative Biochemistry and Physiology-Part A Molecular & Integrative Physiology, 2003, 135(1): 9-24.

    [158]

    USEPA[United States Environmental Protection Agency]. 2013 Update of Ambient Water Quality Criteria for Ammonia [M]. Washington D C: Environmental Protection Agency, 2013

    [159]

    Wang H J, Xiao X C, Wang H Z, et al. Effects of high ammonia concentrations on three cyprinid fish: Acute and whole-ecosystem chronic tests [J]. Science of the Total Environment, 2017(598): 900-909.

    [160]

    Cao T, Ni L Y, Xie P. Acute biochemical responses of a submersed macrophyte, Potamogeton crispus L., to high ammonium in an aquarium experiment [J]. Journal of Freshwater Ecology, 2004, 19(2): 279-284. doi: 10.1080/02705060.2004.9664542

    [161]

    Su S Q, Zhou Y M, Qin J G, et al. Physiological responses of Egeria densa to high ammonium concentration and nitrogen deficiency [J]. Chemosphere, 2012, 86(5): 538-545. doi: 10.1016/j.chemosphere.2011.10.036

    [162]

    Zaman T, Asaeda T. Effects of NH4-N concentrations and gradient redox level on growth and allied biochemical parameters of Elodea nuttallii (Planch.) [J]. Functional Ecology of Plants, 2013, 208(3): 211-219. doi: 10.1016/j.flora.2013.02.009

    [163]

    Wang C, Zhang S H, Wang P F, et al. Effects of ammonium on the antioxidative response in Hydrilla verticillata (L.f.) Royle plants [J]. Ecotoxicology & Environmental Safety, 2010(73): 189-195.

    [164]

    Nimptsch J, Pflugmacher S. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense [J]. Chemosphere, 2007, 66(4): 708-714. doi: 10.1016/j.chemosphere.2006.07.064

    [165]

    Gao J Q, Li L S, Hu Z Y, et al. Ammonia stress on the carbon metabolism of Ceratophyllum demersum [J]. Environmental Toxicology & Chemistry, 2015, 34(4): 843-849.

    [166]

    Krupa S V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review [J]. Environmental Pollution, 2003, 124(2): 179-221. doi: 10.1016/S0269-7491(02)00434-7

    [167]

    Cao T, Xie P, Li Z Q, et al. Physiological stress of high NH4+ concentration in water column on the submersed macrophyte Vallisneria natans L. [J]. Bulletin of Environmental Contamination & Toxicology, 2009(82): 296-299.

    [168]

    Best E P H. Effects of nitrogen on the growth and nitrogenous compounds of Ceratophyllum demersum [J]. Aquatic Botany, 1980, 8(2): 197-206.

    [169]

    Li W, Zhang Z, Jeppesen E. The response of Vallisneria spinulosa (Hydrocharitaceae) to different loadings of ammonia and nitrate at moderate phosphorus concentration: a mesocosm approach [J]. Freshwater Biology, 2008, 53(11): 2321-2330.

    [170]

    González S M A, Jeppesen E, Goma J, et al. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations[J]? Freshwater Biology, 2005, 50(1): 27-41

    [171]

    Jeppesen E, Sondergaard M, Meerhoff M, et al. Shallow lake restoration by nutrient loading reduction-some recent findings and challenges ahead [J]. Hydrobiologia, 2007(584): 239-252.

    [172]

    James C, Fisher J, Russell V, et al. Nitrate availability and hydrophyte species richness in shallow lakes [J]. Freshwater Biology, 2005, 50(6): 1049-1063. doi: 10.1111/j.1365-2427.2005.01375.x

    [173]

    Feuchtmayr H, Moran R, Hatton K, et al. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms [J]. Journal of Applied Ecology, 2009, 46(3): 713-723. doi: 10.1111/j.1365-2664.2009.01644.x

    [174]

    Yu Q, Wang H Z, Li Y, et al. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations [J]. Water Research, 2015(83): 385-395.

    [175]

    Yu Q, Wang H J, Wang H Z, et al. Does the responses of Vallisneria natans (Lour.) Hara to high nitrogen loading differ between the summer high-growth season and the low-growth season [J]? Science of the Total Environment, 2017(601-602): 1513-1521.

    [176]

    Yu Q, Wang H Z, Xu C, et al. Higher tolerance of canopy-forming Potamogeton crispus than rosette-forming Vallisneria natans to high nitrogen concentration as evidenced from experiments in 10 ponds with contrasting nitrogen levels [J]. Frontiers in Plant Science, 2018(9): 1845.

    [177]

    Boar R R, Crook C E, Moss B. Regression of Phragmites australis reedswamps and recent changes of water chemistry in the Norfolk Broadland, England [J]. Aquatic Botany, 1989, 35(1): 41-55. doi: 10.1016/0304-3770(89)90065-X

    [178]

    Andersen J M. Effect of nitrate concentration in lake water on phosphorus release from sediment [J]. Water Research, 1982, 16(7): 1119-1126. doi: 10.1016/0043-1354(82)90128-2

    [179]

    Foy R H. Suppression of phosphorus release from lake sediments by the addition of nitrate [J]. Water Research, 1986, 20(11): 1345-1351. doi: 10.1016/0043-1354(86)90132-6

    [180]

    Søndergaard M, Jeppesen E, Jensen J P. Hypolimnetic nitrate treatment to reduce internal phosphorus loading in a stratified lake [J]. Lake & Reservoir Management, 2000, 16(3): 195-204.

    [181]

    Matthews D A, Babcock D B, Nolan J G, et al. Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga lake, NY [J]. Environmental Research, 2013(125): 52-60.

    [182]

    Dondajewska R, Kozak A, Kowalczewska-Madura K, et al. The response of a shallow hypertrophic lake to innovative restoration measures-Uzarzewskie lake case study [J]. Ecology Engineering, 2018(121): 72-82.

    [183]

    Keeney D R, Hatfield J L. The Nitrogen Cycle, Historical Perspective, and Current and Potential Future Concerns[M]//Hatfield J L, Follett R F (Eds.), Nitrogen in the Environment: Sources, Problems, and Management. Pittsburgh: Academic Press, 2008: 1−18

    [184]

    Wang H J, Wang H Z, Liang X M, et al. Total phosphorus thresholds for regime shifts are nearly equal in subtropical and temperate shallow lakes with moderate depths and areas [J]. Freshwater Biology, 2014, 59(8): 1659-1671. doi: 10.1111/fwb.12372

    [185]

    Carpenter S R, Ludwig D, Brock W D. Management of eutrophication for lakes subject to potentially irreversible change [J]. Ecological Applications, 1999, 9(3): 751-771. doi: 10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2

    [186]

    Carpenter S R. Regime Shifts in Lake Ecosystems: Pattern and Variation [M]. Excellence in Ecology Series 15. Ecology Institute, Germany: Oldendorf/Luhe, 2003

    [187]

    Vollenweider R A. Advances in defining critical loading levels for phosphorus in lake eutrophication [J]. Memorie dell’ Istituto Italiano di Idrobiologia, 1976(33): 53-83.

    [188]

    USEPA. Update of Ambient Water Quality Criteria for Ammonia [M]. Washington D C: Environmental Protection Agency, 1999

    [189]

    Holdren C W J, Taggart J. Managing Lakes and Reservoirs [M]. North American Lake Management Society and Terrene Institute, University of Wisconsin Press, 2002

    [190]

    Søndergaard M, Jensen J P, Jeppesen E. Retention and internal loading of Phosphorus in shallow, Eutrophic Lakes [J]. The Scientific World Journal, 2001(1): 427-442.

    [191]

    Jensen J P, Andersen F. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of 4 shallow, eutrophic lakes [J]. Limnology & Oceanography, 1992, 37(3): 577-589.

    [192]

    Golterman H L. Phosphate release from anoxic sediments or ‘What did Mortimer really write[J]? Hydrobiologia, 2001(450): 99-106

    [193]

    Sterner R W, Elser J J. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere [M]. Amazon: Princeton University Press, 2002

    [194]

    Zhou Y Y, Song C L, Cao X Y, et al. Phosphorus fractions and alkaline phosphatase activity in sediments of a large eutrophic Chinese lake (Lake Taihu) [J]. Hydrobiologia, 2008(599): 119-125

    [195]

    Li H, Song C L, Cao X Y, et al. The phosphorus release pathways and their mechanisms driven by organic carbon and nitrogen in sediments of eutrophic shallow lakes [J]. Science of the Total Environment, 2016(572): 280-288.

    [196]

    Holdren C W J, Taggart J. Managing Lakes and Reservoirs [M]. North American Lake Management Society and Terrene Institute: University of Wisconsin Press, 2001

    [197]

    Cooke G D, Welch E B, Peterson S A, et al. Restoration and Management of Lakes and Reservoirs [M]. Florida: CRC Press, 2005

    [198]

    Kennedy R H, Cook G D. Control of lake phosphorus with aluminum sulfate: dose determination and application techniques [J]. Water Resources Bulletin, 1982, 18(3): 389-395. doi: 10.1111/j.1752-1688.1982.tb00005.x

    [199]

    Rydin, Welch E B. Dosing alum to Wisconsin Lake sediments based on in vitro formation of aluminum bound phosphate [J]. Lake & Reservoir Management, 1999, 15(4): 324-331.

    [200]

    Cooke G D, Welch E B, Martin A B, et al. Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading in shallow and deep lakes [J]. Hydrobiologia, 1993, 253(1-3): 323-335. doi: 10.1007/BF00050758

    [201]

    Huser B J, Egemose S, Harper H, et al. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality [J]. Water Research, 2016(97): 122-132.

    [202]

    Haghseresht F, Wang S, Do D D. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters [J]. Applied Clay Science, 2009, 46(4): 369-375. doi: 10.1016/j.clay.2009.09.009

    [203]

    Robb M, Greenop B, Goss Z, et al. Application of phoslock T M, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings [J]. Hydrobiologia, 2003, 494(1-3): 237-243. doi: 10.1023/A:1025478618611

    [204]

    Fan Y, Li Y, Wu D, et al. Application of zeolite/hydrous zirconia composite as a novel sediment capping material to immobilize phosphorus [J]. Water Research, 2017(123): 1-11.

    [205]

    Gu B W, Lee C G, Lee T G, et al. Evaluation of sediment capping with activated carbon and nonwoven fabric mat to interrupt nutrient release from lake sediments [J]. Science of the Total Environment, 2017(599): 413-421.

    [206]

    Zou Y, Grace M R, Roberts K L, et al. Thin ferrihydrite sediment capping sequestrates phosphorus experiencing redox conditions in a shallow temperate lacustrine wetland [J]. Chemosphere, 2017(185): 673-680.

    [207]

    Ripl W. Biochemical oxidation of polluted lake sediment with nitrate: A new lake restoration method [J]. Ambio, 1976, 5(3): 132-135.

    [208]

    Zalewski M. Ecohydrology-the scientific background to use ecosystem properties as management tools toward sustainability of water resources [J]. Ecological Engineering, 2000, 16(1): 1-8. doi: 10.1016/S0925-8574(00)00071-9

    [209]

    Liu X Q, Yang Z D, Yuan S B, et al. A novel methodology for the assessment of water level requirements in shallow lakes [J]. Ecological Engineering, 2017(102): 31-38.

    [210]

    Yuan S B, Yang Z D, Liu X Q, et al. Water level requirements of a Carex hygrophyte in Yangtze floodplain lakes [J]. Ecological Engineering, 2019(129): 29-37.

    [211] 谢平. 论蓝藻水华的发生机制: 从生物进化、生物地球化学和生态学的视点 [M]. 北京: 科学出版社, 2008
    [212]

    Gulati R D, Pires L M D, Donk E V. Lake restoration studies: Failures, bottlenecks and prospects of new ecotechnological measures [J]. Limnologica, 2008, 38(3): 233-247.

    [213] 杨东妹, 陈宇炜, 刘正文, 等. 背角无齿蚌滤食对营养盐和浮游藻类结构影响的模拟 [J]. 湖泊科学, 2008, 20(2): 228-234. doi: 10.18307/2008.0215

    Yang D M, Chen Y W, Liu Z W, et al. Top-down effects of Anodonta woodiana on nutrient concentration & phytoplankton community composition in a microcosm ecosystem [J]. Journal of Lake Sciences, 2008, 20(2): 228-234. doi: 10.18307/2008.0215

    [214] 孙秀敏, 万旗东, 郑培忠, 等. 生物杀藻剂-溶藻微生物的研究进展 [J]. 现代农药, 2011, 10(3): 1-6.

    Sun X M, Wan Q D, Zheng P Z, et al. Research progress of biological algaecide-algae-lysing microorganisms [J]. Modern Agrochemicals, 2011, 10(3): 1-6.

    [215] 吴定心, 杨文静, 柯雪佳, 等. 利用复合微生物菌剂控制水华的治理工程试验 [J]. 环境科学与技术, 2010, 33(7): 156-160.

    Wu D X, Yang W J, Ke X J, et al. Control of water blooms of urban eutrophic lake with compound microorganisms in restoration project [J]. Environmental Sciences & Technology, 2010, 33(7): 156-160.

    [216] 徐敏, 毕永红, 赵先富, 等. 大麦杆在控制水华藻类中的应用 [J]. 水生生物学报, 2002, 26(6): 704-711.

    Xu M, Bi Y H, Zhao X F, et al. The application of barley straw in controlling of algal bloom [J]. Acta Hydrobiologica Sinica, 2002, 26(6): 704-711.

    [217]

    Shen Y, Liu Y, Wu G, et al. Mechanical removal of heavy cyanobacterial bloom in the hyper-eutrophic lake Dianchi [J]. Acta Hydrobiologica Sinica, 2004, 28(2): 131-136.

    [218] 王惠, 朱喜. 太湖蓝藻打捞和资源化利用的实践与思考

    J]. 江苏水利, 2009(7): 35-37.

    [219]

    Li H, Pan G. Simultaneous removal of harmful algal blooms and microcystins using microorganism and chitosan modified local soil [J]. Environmental Science & Technology, 2015, 49(10): 6249-6256.

    [220]

    Lee T J, Nakano K, Matsumura M. A novel strategy for cyanobacterial bloom control by ultrasonic irradiation [J]. Water Science Technology, 2002, 46(6-7): 207-215. doi: 10.2166/wst.2002.0681

    [221]

    Wu X, Joyce E M, Mason T J. The effects of ultrasound on cyanobacteria [J]. Harmful Algae, 2011, 10(6): 738-743. doi: 10.1016/j.hal.2011.06.005

图(6)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-01
  • 修回日期:  2020-07-17
  • 网络出版日期:  2020-09-14
  • 发布日期:  2020-09-29

目录

    /

    返回文章
    返回