AN OVERVIEW ON SEVERAL LARGE DNA VIRUSES IN FRESHWATER ECOSYSTEMS
-
摘要: 淡水生态系统中的大DNA病毒指存在于淡水系统中、基因组大小接近或超过100 kb 的DNA病毒, 它们通常是感染鱼类、虾类及藻类等水生生物以及两栖类的病原体, 影响水产养殖动物的健康及淡水生态平衡。文章以虹彩病毒科(Iridoviridae) 的沼泽绿牛蛙病毒(Rana grylio virus, RGV)和大鲵蛙病毒(Andrias davidianus ranavirus, ADRV)、鱼蛙疱疹病毒科(Alloherpesviridae)的鲫疱疹病毒(Crucian carp herpesvirus, CaHV)、线头病毒科(Nimaviridae)的克氏原螯虾病毒(Procambarus clarkii nimavirus, PCV)及肌尾病毒科(Myoviridae)的铜绿微囊藻肌尾噬藻体-滇池株(Microcystis aeruginosa myovirus isolated from Lake Dianchi, MaMV-DC)为主线, 对淡水生态系统中几种大DNA病毒代表株的研究现状与文献进行概述, 并提出和讨论淡水水生大DNA病毒研究及水生病毒学科发展愿景, 以期为相关科研人员提供参考。Abstract: Large DNA viruses in freshwater ecosystems usually refers to the DNA viruses present in freshwater ecosystems, whose genome size is close to or more than 100 kb. They are usually pathogens that cause infections in aquatic organisms, including amphibians, fish, shrimp, cyanobacteria (blue-green algae) and so on. Viruses affect cultured aquatic animal health and freshwater ecological balance. The research trends and developments are summarized here. Primary literature focused on representative strains of several large DNA viruses in freshwater ecosystems, such as Rana grylio virus (RGV) and Andrias davidianus ranavirus (ADRV) in the family Iridoviridae, crucian carp herpesvirus (CaHV) in tne family Alloherpesviridae, Procambarus clarkii nimavirus (PCV) in the family Nimaviridae, and Microcystis aeruginosa myovirus isolated from Lake Dianchi (MaMV-DC) in the family Myoviridae. The development prospects of freshwater large DNA viruse research and aquatic virology was discussed in order to provide reference for relevant researchers.
-
-
-
[1] Cressey D. Aquaculture: Future fish [J]. Nature, 2009, 458(7237): 398-400. doi: 10.1038/458398a
[2] Godfray H C, Beddington J R, Crute I R, et al. Food security: the challenge of feeding 9 billion people [J]. Science, 2010, 327(5967): 812-818. doi: 10.1126/science.1185383
[3] Gui J F, Tang Q S, Li Z J, et al. Aquaculture in China: Success Stories and Modern Trends [M]. Wiley Blackwell, 2018: 1-711
[4] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会, 2019 中国水生动物卫生状况报告 [M]. 北京: 中国农业出版社, 2019: 1-106 Fisheries and Fisheries Administration Bureau of Ministry of Agriculture and Rural Affairs. National Fisheries Technology Extension Station, China Fisheries Association. Report on the health Status of Aquatic Animals in China [M]. Beijing: China Agriculture Press, 2019: 1-106
[5] Stentiford G D, Neil D M, Peeler E J, et al. Disease will limit future food supply from the global crustacean fishery and aquaculture sectors [J]. Journal of Invertebrate Pathology, 2012, 110(2): 141-157. doi: 10.1016/j.jip.2012.03.013
[6] Zhang Q Y, Gui J F. Virus genomes and virus-host interactions in aquaculture animals [J]. Science China Life Sciences, 2015, 58(2): 156-169. doi: 10.1007/s11427-015-4802-y
[7] Abdelrahman H, ElHady M, Alcivar-Warren A, et al. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research [J]. BMC Genomics, 2017, 18(1): 191. doi: 10.1186/s12864-017-3557-1
[8] 桂建芳, 朱作言. 水产动物重要经济性状的分子基础及其遗传改良 [J]. 科学通报, 2012, 57(15): 1751-1760. Gui J F, Zhu Z Y. Molecular basis and genetic improvement of economically important traits in aquaculture animals [J]. Chinese Science Bulletin, 2012, 57(15): 1751-1760.
[9] 桂建芳. 鱼类生物学和生物技术是水产养殖可持续发展的源泉 [J]. 中国科学: 生命科学, 2014, 44(12): 1195-1197. Gui J F. Fish biology and biotechnology is the source for sustainable aquaculture [J]. Science China Life Sciences, 2014, 44(12): 1195-1197.
[10] Naylor R L, Goldburg R J, Primavera J H, et al. Effect of aquaculture on world fish supplies [J]. Nature, 2000, 405(6790): 1017-1024. doi: 10.1038/35016500
[11] Smith M D, Roheim C A, Crowder L B, et al. Sustainability and global seafood [J]. Science, 2010, 327(5967): 784-786. doi: 10.1126/science.1185345
[12] Raoult D, Forterre P. Redefining viruses: lessons from Mimivirus [J]. Nature Reviews Microbiology, 2008, 6(4): 315-319. doi: 10.1038/nrmicro1858
[13] Jancovich J K, Qin Q, Zhang Q Y, et al. Ranavirus Teplication: Molecular, Cellular, and Immunological Events [M]//Gray M J, Chinchar V G (Eds.), Ranaviruses Lethal Pathogens of Ectothermic Vertebrates. New York: Springer, 2015: 105-139
[14] WikiMili, Nucleocytoplasmic large DNA viruses. https://wikimili.com/en/Nucleocytoplasmic_large_DNA_viruses, 2020
[15] Colson P, La Scola B, Levasseur A, et al. Mimivirus: leading the way in the discovery of giant viruses of amoebae [J]. Nature Reviews Microbiology, 2017, 15(4): 243-254. doi: 10.1038/nrmicro.2016.197
[16] Koonin E V, Yutin N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism [J]. Advances in Virus Research, 2019(103): 167-202. doi: 10.1016/bs.aivir.2018.09.002
[17] Adriaenssens E M, Krupovic M, Knezevic P, et al. Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee [J]. Archives of Virology, 2017, 162(4): 1153-1157. doi: 10.1007/s00705-016-3173-4
[18] Monier A, Claverie J M, Ogata H. Taxonomic distribution of large DNA viruses in the sea [J]. Genome Biology, 2008, 9(7): R106. doi: 10.1186/gb-2008-9-7-r106
[19] Short S M, Short C M. Diversity of algal viruses in various North American freshwater environments [J]. Aquatic Microbial Ecology, 2008, 51(1): 13-21.
[20] Elde N C, Child S J, Eickbush M T, et al. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses [J]. Cell, 2012, 150(4): 831-884. doi: 10.1016/j.cell.2012.05.049
[21] Zhang Q Y, Gui J F. Diversity, evolutionary contribution and ecological roles of aquatic viruses [J]. Science China Life Sciences, 2018, 61(12): 1486-1502. doi: 10.1007/s11427-018-9414-7
[22] Chinchar V G, Hick P, Ince I A, et al. ICTV report consortium. ICTV virus taxonomy profile: iridoviridae [J]. Journal of General Virology, 2017, 98(5): 890-891. doi: 10.1099/jgv.0.000818
[23] Gui L, Zhang Q Y. Disease Prevention and Control [M]//Gui J F, Tang Q S, Li Z J, et al. Aquaculture in China: Success Stories and Modern Trends. Chichester: Wiley-Blackwell, 2018: 577-598
[24] 张奇亚. 噬藻体生物多样性的研究动态 [J]. 微生物学通报, 2014, 41(3): 545-559. Zhang Q Y. Advances in studies on biodiversity of cyanophages [J]. Microbiology China, 2014, 41(3): 545-559.
[25] Schulz F, Yutin N, Ivanova N N, et al. Giant viruses with an expanded complement of translation system components [J]. Science, 2017, 356(6333): 82-85. doi: 10.1126/science.aal4657
[26] Abrahão J, Silva L, Silva L S, et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere [J]. Nature Communications, 2018, 9(749): 1-12.
[27] China Pictorial, April Issue 1955. Prevention and Treatment of Fish Diseases [A]. [人民画报1955年4月号. 防治鱼病] http://www.ihb.cas.cn/sq90/History/sq_lssj/202006/t20200609_5603618.html
[28] 饶钦止, 介绍一个消灭“湖靛”的有效方法 [J]. 科学通报, 1952(Z1): 1-3 Rao Q Z. An effective ways to prevent microsystis blooms in fishpond [J]. Scientific Bulletin, 1952(Z1): 1-3
[29] 中国科学院水生生物研究所第三室病毒组. 草鱼出血病病原的研究 [J]. 水生生物学集刊, 1978, 2(3): 321-330. Section of Virus Study, Third Laboratory, Institute of Hydrobiology, Academia Sinica. Studies on the causative agent of hemorrhage of the grass carp (Ctenopharyn-godon idellus) [J]. Acta Hydrobiologica Sinica, 1978, 2(3): 321-330.
[30] 张奇亚, 李正秋, 江育林, 等. 沼泽绿牛蛙病毒的分离及其细胞感染的研究 [J]. 水生生物学报, 1996, 20(4): 390-392. Zhang Q Y, Li Z Q, Jiang Y L, et al. Preliminary studies on virus isolation and cell infection from diseased frog Rnan grylio [J]. Acta Hydrobiology Sinica, 1996, 20(4): 390-392.
[31] Zhang Q Y, Li Z Q, Gui J F. Studies on morphogenesis and cellular interactions of Rana grylio virus in an infected fish cell line [J]. Aquaculture, 1999, 175(3-4): 185-197. doi: 10.1016/S0044-8486(99)00041-1
[32] Zhang Q Y, Xiao F, Xie J, et al. Complete genome sequence of lymphocystis disease virus (LCDV-C) isolated from China [J]. Journal of Virology, 2004, 78(13): 6982-6994. doi: 10.1128/JVI.78.13.6982-6994.2004
[33] Lei X Y, Ou T, Zhu R L, et al. Sequencing and analysis of the complete genome of Rana grylio virus (RGV) [J]. Archives of Virology, 2012(157): 1559-1564. doi: 10.1007/s00705-012-1316-9
[34] Chen Z Y, Gui J F, Gao X C, et al. Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV) [J]. Veterinary Research, 2013(44): 101. doi: 10.1186/1297-9716-44-101
[35] 谢简, 李正秋, 张奇亚, 等. 免疫组化法检测美国青蛙组织中的蛙虹彩病毒 [J]. 水生生物学报, 2002, 26(5): 438-443. doi: 10.3321/j.issn:1000-3207.2002.05.003 Xie J, Li Z Q, Zhang Q Y, et al. Detection of Rana grylio virus (RGV) in host frog tissues by using immunohistochemisrey assay [J]. Acta Hydrobiologica Sinica, 2002, 26(5): 438-443. doi: 10.3321/j.issn:1000-3207.2002.05.003
[36] Zhang Q Y, Zhao Z, Xiao F, et al. Molecular characterization of three Rana grylio virus (RGV) isolates and Paralichthys olivaceus lymphocystis disease virus (LCDV-C) in iridoviruses [J]. Aquaculture, 2006, 251(1): 1-10. doi: 10.1016/j.aquaculture.2005.05.012
[37] Sun W, Huang Y H, Zhao Z, et al. Characterization of the Rana grylio virus 3β-hydroxysteroid dehydrogenase and its novel role in suppressing virus-induced cytopathic effect [J]. Biochemical and Biophysical Research Communications, 2006, 351(1): 44-50. doi: 10.1016/j.bbrc.2006.09.169
[38] Zhao Z, Shi Y, Ke F, et al. Constitutive expression of thymidylate synthase from LCDV-C induces foci formation and anchorage-independent growth in fish cells [J]. Virology, 2008, 372(1): 118-126. doi: 10.1016/j.virol.2007.10.028
[39] Zhao Z, Ke F, Huang Y H, et al. Identification and characterization of a novel envelope protein in Rana grylio virus [J]. Journal General Virology, 2008(89): 1866-1872. doi: 10.1099/vir.0.2008/000810-0
[40] Zhao Z, Ke F, Shi Y, et al. Rana grylio virus thymidine kinase gene: an early gene of iridovirus encoding for the cytoplasmic protein [J]. Virus Genes, 2009(38): 345-352. doi: 10.1007/s11262-008-0318-x
[41] Ke F, Zhao Z, Zhang QY. Cloning, expression and subcellular distribution of a Rana grylio virus late gene encoding ERV1 homologue [J]. Molecular Biology Reports, 2009(36): 1651-1659. doi: 10.1007/s11033-008-9365-6
[42] He L B, Ke F, Wang J, et al. Rana grylio virus (RGV) envelope protein 2L: subcellular localization and essential roles in virus infectivity revealed by conditional lethal mutant [J]. Journal of General Virology, 2014(95): 679-690. doi: 10.1099/vir.0.058776-0
[43] Gui L, Chinchar V G, Zhang Q Y. Molecular basis of pathogenesis of emerging viruses infecting aquatic animals [J]. Aquaculture and Fisheries, 2018(3): 1-5. doi: 10.1016/j.aaf.2017.12.003
[44] 张奇亚, 桂建芳. 水生病毒学 [M]. 北京: 中国高等教育出版社, 2008: 1-414 Zhang Q Y, Gui J F. Aquatic Virology [M]. Beijing: Higher Education Press, 2008: 1-414
[45] 张奇亚, 桂建芳. 水生病毒及病毒病图鉴 [M]. 北京: 科学出版社, 2012: 1-479 Zhang Q Y, Gui J F. Atlas of Aquatic Viruses and Viral Diseases [M]. Beijing: Science Press, 2012: 1-479
[46] Gray M J, Chinchar V G. Ranaviruses Lethal Pathogens of Ectothermic Vertebrates [M]. New York: Springer, 2015: 1-246
[47] 邓敏, 何建国, 左涛, 等. 鳜鱼传染性脾肾坏死病毒 (ISKNV)PCR检测方法的建立及虹彩病毒新证据 [J]. 病毒学报, 2000, 16(4): 365-369. doi: 10.3321/j.issn:1000-8721.2000.04.017 Deng M, He J G, Zuo T, et al. Infectious spleen and kidney necrosis virus (ISKNV) from Siniperca chuatsi: Development of a PCR detection method and the new evidence of iridovirus [J]. Chinese Journal of Virology, 2000, 16(4): 365-369. doi: 10.3321/j.issn:1000-8721.2000.04.017
[48] Ao J, Chen X W. Identification and characterization of a novel gene encoding an RGD-containing protein in large yellow croaker iridovirus [J]. Virology, 2006, 355(2): 213-222. doi: 10.1016/j.virol.2006.07.004
[49] Shi C Y, Jia K T, Yang B, et al. Complete genome sequence of a Megalocytivirus (family Iridoviridae) associated with turbot mortality in China [J]. Virology Journal, 2010(7): 159. doi: 10.1186/1743-422X-7-159
[50] Song W J, Qin Q W, Qiu J, et al. Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis [J]. Journal of Virology, 2004, 78(22): 12576-12590. doi: 10.1128/JVI.78.22.12576-12590.2004
[51] https://talk.ictvonline.org/ictv-reports/ictv_online_report/dsdna-viruses/w/iridoviridae#Citation
[52] Chinchar V G, Waltzek T B, Subramaniam K. Ranaviruses and other members of the family Iridoviridae: Their place in the virosphere [J]. Virology, 2017(511): 259-271. doi: 10.1016/j.virol.2017.06.007
[53] Boyer M, Yutin N, Pagnier I, et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms [J]. Proceedings of the National Academy of Sciences of The United States of America, 2009, 106(51): 21848-21853. doi: 10.1073/pnas.0911354106
[54] McNeill W H. Plagues and Peoples [M]. Garden City, N Y, Anchor Press/Doubleday, 1976: 1-369
[55] Grubaugh N D, Ladner J T, Lemey P, et al. Tracking virus outbreaks in the twenty-first century [J]. Nature, 2019, 4(1): 10-19.
[56] Lassen K. Virus-Host Interactions [J]. Cell, 2011, 146(2): 183-185. doi: 10.1016/j.cell.2011.07.002
[57] Rothenburg S, Brennan G. Species-specific host-virus interactions: implications for viral host range and virulence [J]. Trends in Microbiology, 2020, 28(1): 46-56. doi: 10.1016/j.tim.2019.08.007
[58] World Organisation for Animal Health (OIE). Benefits of aquatic animals are infinite [C]. https://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/PortalAqua-ticAnimals/EN_Brochure%20Aquatic%20Animals_FINAL_LD.pdf, 2019
[59] Cavalli L S, Brito K C T, Brito B G. One health, one aquaculture: aquaculture under one health umbrella [J]. Journal of Marine Biology and Aquaculture, 2015, 1(1): 1-2.
[60] Wilson W H, Van Etten JL. Allen M J The Phycodnaviridae: the story of how tiny giants rule the world [J]. Current Topics in Microbiology and Immunology, 2009(328): 1-42.
[61] Roitman S, Hornung E, Flores-Uribe J, et al. Cyanophage-encoded lipid desaturases: oceanic distribution, diversity and function [J]. The ISME Journal, 2018(12): 343-355. doi: 10.1038/ismej.2017.159
[62] Chinchar V G, Waltzek T B. Ranaviruses: not just for frogs [J]. PLoS Pathogens, 2014, 10(1): e1003850. doi: 10.1371/journal.ppat.1003850
[63] Li W, Zhang X, Weng S, et al. Virion-associated viral proteins of a Chinese giant salamander (Andrias davidianus) iridovirus (genus Ranavirus) and functional study of the major capsid protein (MCP) [J]. Veterinary Microbiology, 2014, 172(1-2): 129-139. doi: 10.1016/j.vetmic.2014.05.009
[64] Wang N, Zhang M, Zhang L, et al. Complete genome sequence of a ranavirus isolated from Chinese giant salamander (Andrias davidianus) [J]. Genome Announcements, 2014, 2(1): e1032-e1113.
[65] Stohr A C, Lopez-Bueno A, Blahak S, et al. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe [J]. PLoS One, 2015(10): e118633.
[66] Wirth W, Schwarzkopf L, Skerratt L F, et al. Ranaviruses and reptiles [J]. Peer J, 2018(6): e6083. doi: 10.7717/peerj.6083
[67] Garner T W, Stephen I, Wombwell E, et al. The amphibian trade: bans or best practice [J]. Ecohealth, 2009(6): 148-151. doi: 10.1007/s10393-009-0233-1
[68] Fryer J L, Lannan C N. Three decades of fish cell culture: A current listing of cell lines derived from fishes [J]. Journal of Tissue Culture Methods, 1994(16): 87-94. doi: 10.1007/BF01404816
[69] Lakra W S, Swaminathan, T R, Joy K P. Development, characterization, conservation and storage of fish cell lines: A review [J]. Fish Physiology and Biochemistry, 2011, 37(1): 1-20. doi: 10.1007/s10695-010-9411-x
[70] Pandey G. Overview of fish cell lines and their uses [J]. International Journal of Engineering Research and Applications, 2013, 2(3): 580-590.
[71] Sinzelle L, Thuret R, Hwang H Y, et al. Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies [J]. Genesis, 2012(50): 316-324. doi: 10.1002/dvg.20822
[72] Bertin A, Hanna P, Otarola G, et al. Cellular and molecular characterization of a novel primary osteoblast culture from the vertebrate model organism Xenopus tropicalis [J]. Histochemistry and Cell Biology, 2015, 143(4): 431-442. doi: 10.1007/s00418-014-1289-8
[73] Mollard R. Culture, cryobanking and passaging of karyotypically validated native Australian amphibian cells [J]. Cryobiology, 2018(81): 201-205. doi: 10.1016/j.cryobiol.2018.03.004
[74] Yuan J D, Chen Z Y, Huang X, et al. Establishment of three cell lines from Chinese giant salamander and their sensitivities to the wild-type and recombinant ranavirus [J]. Veterinary Research, 2015, 46(1): 58. doi: 10.1186/s13567-015-0197-9
[75] 雷存科, 陈中元, 张奇亚. 三种水生动物细胞系对两株蛙病毒敏感性的比较 [J]. 水产学报, 2016, 40(10): 1643-1647. Lei C K, Chen Z Y, Zhang Q Y. Comparative susceptibility of three aquatic animal cell lines to two ranaviruses [J]. Journal of Fisheries of China, 2016, 40(10): 1643-1647.
[76] Chen Q, Ma J, Fan Y, et al. Identification of type I IFN in Chinese giant salamander (Andrias davidianus) and the response to an iridovirus infection [J]. Molecular Immunology, 2015, 65(2): 350-359. doi: 10.1016/j.molimm.2015.02.015
[77] Robert J, Jancovich J K. Recombinant ranaviruses for studying evolution of hos. t-pathogen interactions in ectothermic [J]. Vertebrates Viruses, 2016, 8(7): E187. doi: 10.3390/v8070187
[78] Chen Z Y, Li T, Gao X C, et al. Protective immunity induced by DNA vaccination against ranavirus infection in Chinese giant salamander Andrias davidianus [J]. Viruses, 2018, 10(2): 52. doi: 10.3390/v10020052
[79] Luo J, Deng Z L, Luo X, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system [J]. Nature Protocols, 2007, 2(5): 1236-1247. doi: 10.1038/nprot.2007.135
[80] Zhao Z, Ke F, Gui J F, et al. Characterization of an early gene encoding for dUTPase from Rana grylio virus [J]. Virus Research, 2007, 123(2): 128-137. doi: 10.1016/j.virusres.2006.08.007
[81] 赵哲, 张奇亚. 中国淋巴囊肿病毒胸苷酸合酶基因结构特点及分析 [J]. 中国病毒学, 2004, 19(6): 602-606. Zhao Z, Zhang Q Y. Structure analysis of thymidylate synthase gene from LCDV-C [J]. Virologica Sinica, 2004, 19(6): 602-606.
[82] Chen G, Ward B M, Yu K H, et al. Improved knockout methodology reveals that frogvirus 3 mutants lacking either the 18K immediate-early gene or the truncated vIF-2 alpha gene are defective for replication and growth in vivo [J]. Journal of Virology, 2011, 85(2): 11131-11138.
[83] He L B, Ke F, Zhang Q Y. Rana grylio virus as a vector for foreign gene expression in fish cell [J]. Virus Research, 2012, 163(1): 66-73. doi: 10.1016/j.virusres.2011.08.012
[84] 黄星, 裴超, 何利波, 等. 一株新的重组蛙病毒Δ67R-RGV的构建及基因67R的功能鉴定 [J]. 病毒学报, 2014, 30(5): 495-501. Huang X, Pei C, He L B, et al. The construction of a novel recombinant virus Δ67R-RGV and analysis of 67R gene function [J]. Chinese Journal Virology, 2014, 30(5): 495-501.
[85] He L B, Gao X C, Ke F, et al. A conditional lethal mutation in Rana grylio virus ORF 53R resulted in a marked reduction in virion formation [J]. Virus Research, 2013, 177(2): 194-200. doi: 10.1016/j.virusres.2013.07.016
[86] Huang X, Fang J, Chen Z Y, et al. Rana grylio virus TK and DUT gene locus could be simultaneously used for foreign gene expression [J]. Virus Research, 2016, 214(2): 33-38.
[87] Plemper R K. Cell entry of enveloped viruses [J]. Current Opinion in Virology, 2011, 1(2): 92-100. doi: 10.1016/j.coviro.2011.06.002
[88] Zeng X T, Gao X C, Zhang Q Y. Rana grylio virus 43R encodes an envelope protein involved in virus entry [J]. Virus Genes, 2018, 54(6): 779-791. doi: 10.1007/s11262-018-1606-8
[89] Eaton H E, Metcalf J, Penny E, et al. Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes [J]. Virology Journal, 2007(4): 11. doi: 10.1186/1743-422X-4-11
[90] Zeng X T, Zhang Q Y. Interaction between two iridovirus core proteins and their effects on ranavirus (RGV) replication in cells from different species [J]. Viruses, 2019, 11(5): E416. doi: 10.3390/v11050416
[91] 张锐, 张奇亚. 大鲵蛙病毒编码的96L蛋白(ADRV-96L)有ATPase活性和促进细胞生长的作用 [J]. 微生物学通报, 2018, 45(5): 1090-1099. Zhang R, Zhang Q Y. Adenosine triphosphatase activity and cell growth promotion of Andrias davidianus ranavirus 96L-encoded protein (ADRV-96L) [J]. Microbiology China, 2018, 45(5): 1090-1099.
[92] 明成玥, 柯飞. 张奇亚 蛙病毒同源蛋白ADRV-85L和RGV-27R的表达及其产物免疫原性分析 [J]. 病毒学报, 2019, 35(6): 926-934. Ming C Y, Ke F, Zhang Q Y. The Expression and immunogenic analysis of ranaviruses homologous proteins RGV-27R and ADRV-85L [J]. Chinese Journal of Virology, 2019, 35(6): 926-934.
[93] Kong B, Moon S, Kim Y, et al. Virucidal nano-perforator of viral membrane trapping viral RNAs in the endosome [J]. Nature Communications, 2019, 10(1): 185. doi: 10.1038/s41467-018-08138-1
[94] Thompson A J, de Vries R P, Paulson J C. Virus recognition of glycan receptors [J]. Current Opinion in Virology, 2019(34): 117-129. doi: 10.1016/j.coviro.2019.01.004
[95] Ke F, Wang Z H, Ming C Y, et al. Ranaviruses bind cells from different species through interaction with heparan sulfate [J]. Viruses, 2019, 11(7): E593. doi: 10.3390/v11070593
[96] Zhang Q Y Xiao F, Li Z Q, et al. Characterization of an iridovirus form the cultured pig frog (Rana grylio) with lethal syndrome [J]. Diseases of Aquatic Organisms, 2001, 48(1): 27-36.
[97] Liu Y, Tran B, Wang F, et al. Visualization of assembly intermediates and budding vacuoles of Singapore grouper iridovirus in grouper embryonic cells [J]. Scientific Reports, 2016(6): 18696. doi: 10.1038/srep18696
[98] Skalsky R L, Cullen B R. Viruses, microRNAs, and host interactions [J]. Annual Review of Microbiology, 2010(64): 123-141. doi: 10.1146/annurev.micro.112408.134243
[99] Kim Y S, Ke F, Lei X Y, et al. Viral envelope protein 53R genehighly specific silencing and iridovirus resistance in fish cells by amiRNA [J]. PLoS One, 2010(5): e10308. doi: 10.1371/journal.pone.0010308
[100] 袁江迪, 陈中元, 张奇亚. 正常和蛙病毒感染后大鲵血清和黏液蛋白图谱比较分析 [J]. 水生生物学报, 2016, 40(3): 594-600. doi: 10.7541/2016.80 Yuan J D, Chen Z Y, Zhang Q Y. Comparative analysis of serum and skin mucus protein profiles between ranavirus-infectud and normal Chinese giant salamander Andrias davidianus [J]. Acta Hydrobiologica Sinica, 2016, 40(3): 594-600. doi: 10.7541/2016.80
[101] Ke F, Gui J F, Chen Z Y, et al. Divergent transcriptomic responses underlying the ranaviruses-amphibian interaction processes on interspecies infection of Chinese giant salamander [J]. BMC Genomics, 2018(19): 211. doi: 10.1186/s12864-018-4596-y
[102] Ke F, Zhang Q Y. Aquatic animal viruses mediated immune evasion in their host [J]. Fish and Shellfish Immunology, 2019(86): 1096-1105. doi: 10.1016/j.fsi.2018.12.027
[103] Jones S, Nelson-Sathi S, Wang Y, et al. Evolutionary, genetic, structural characterization and its functional implications for the influenza A (H1N1) infection outbreak in India from 2009 to 2017 [J]. Scientific Reports, 2019, 9(1): 14690. doi: 10.1038/s41598-019-51097-w
[104] Stöhr A C, Blahak S, Heckers K O, et al. Ranavirus infections associated with skin lesions in lizards [J]. Veterinary Research, 2013, 44(1): 1-10. doi: 10.1186/1297-9716-44-1
[105] Woo H J, Reifman J. Quantitative modeling of virus evolutionary dynamics and adaptation in serial passages using empirically inferred fitness landscapes [J]. Journal of Virology, 2014, 88(2): 1039. doi: 10.1128/JVI.02958-13
[106] Sawyer S L, Elde N C. A cross-species view on viruses [J]. Current Opinion in Virology, 2012, 2(5): 561-568. doi: 10.1016/j.coviro.2012.07.003
[107] McElwee M, Vijayakrishnan S, Rixon F, et al. Structure of the herpes simplex virus portal-vertex [J]. PLoS Biology, 2018, 16(6): e2006191. doi: 10.1371/journal.pbio.2006191
[108] Davison A J, Eberle R, Ehlers B, et al. The order Herpesvirales [J]. Archives of Virology, 2009, 154(1): 171-177. doi: 10.1007/s00705-008-0278-4
[109] 桂朗, 张奇亚. 中国水产动物病毒学研究概述 [J]. 水产学报, 2019, 43(1): 168-187. Gui L, Zhang Q Y. A brief review on aquatic animal virology researches in China [J]. Journal of Fisheries of China, 2019, 43(1): 168-187.
[110] Osterrieder K. Chapter 9 Herpesvirales [M]//James N (Eds.), Fenner’s Veterinary Virology (5th eds.), Elsevier Academic Press, 2017: 189-216
[111] 方进, 邓院生, 王俊, 等. 急性病毒性鲫鳃出血病的病理变化 [J]. 中国水产科学, 2016, 23(2): 336-343. Fang J, Deng Y S, Wang J, et al. Pathological changes of acute viral hemorrhages in the gills of crucian carp [J]. Journal of Fishery Sciences of China, 2016, 23(2): 336-343.
[112] Zeng X T, Chen Z Y, Deng Y S, et al. Complete genome sequence and architecture of crucian carp Carassius auratus herpesvirus (CaHV) [J]. Arch Virology, 2016(161): 3577-3581. doi: 10.1007/s00705-016-3037-y
[113] Sodhi A, Montaner S. Gutkind J Viral hijacking of G-protein-coupled-receptor signalling networks [J]. Nature Reviews Molecular Cell Biology, 2004(5): 998-1012. doi: 10.1038/nrm1529
[114] Wang J, Gui L, Chen Z Y, et al. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR [J]. Virus Genes, 2016(52): 484-494. doi: 10.1007/s11262-016-1325-y
[115] Beilstein F, Cohen G H, Eisenberg R J, et al. Dynamic organization of herpesvirus glycoproteins on the viral envelope revealed by super-resolution microscopy [J]. PLoS Pathogens, 2019, 15(12): e1008209. doi: 10.1371/journal.ppat.1008209
[116] Zhao Y H, Zeng X T, Zhang Q Y. Fish herpesvirus protein (CaHV-138L) can target to mitochondrial protein FoF1 ATPase [J]. Virus Research, 2020(275): 197754. doi: 10.1016/j.virusres.2019.197754
[117] 王子豪, 张奇亚. 鲫疱疹病毒ORF31R(CaHV-31R)的特征及其编码蛋白与细胞器共定位 [J]. 水产学报, 2019, 43(5): 1263-1270. Wang Z H, Zhang Q Y. Characterization of Carassius auratus herpesvirus ORF31R (CaHV-31R) and the encoded protein colocalize with cellular organs [J]. Journal of Fisheries of China, 2019, 43(5): 1263-1270.
[118] Gao F X, Wang Y, Zhang Q Y, et al. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptome [J]. BMC Genomics, 2017(18): 561. doi: 10.1186/s12864-017-3945-6
[119] Lu W J, Gao F X, Wang Y, et al. Differential expression of innate and adaptive immune genes in the survivors of three gibel carp gynogenetic clones after herpesvirus challenge [J]. BMC Genomics, 2019(20): 432. doi: 10.1186/s12864-019-5777-z
[120] Gao F X, Lu W J, Wang Y, et al. Differential expression and functional diversification of diverse immunoglobulin domain-containing protein (DICP) family in three gynogenetic clones of gibel carp [J]. Developmental & Comparative Immunology, 2018(84): 396-407.
[121] Mou C Y, Wang Y, Zhang Q Y, et al. Differential interferon system gene expression profiles in susceptible and resistant gynogenetic clones of gibel carp challenged with herpesvirus CaHV [J]. Developmental & Comparative Immunology, 2018(86): 52-64.
[122] Zang Z X, Dan C, Zhou L, et al. Function characterization and expression regulation of two different-sized 3’ untranslated region-containing interferon genes from clone F of gibel carp Carassius auratus gibelio [J]. Molecular Immunology, 2020(119): 18-26. doi: 10.1016/j.molimm.2020.01.004
[123] Feckaninova A, Koscova J, Mudronova D. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture [J]. Aquaculture, 2017, 469(20): 1-8.
[124] Zorriehzahra M J, Delshad S T, Adel M, et al. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review [J]. Veterinary Quarterly, 2016, 36(4): 228-241. doi: 10.1080/01652176.2016.1172132
[125] Li T, Ke F, Gui J F, et al. Protective effect of Clostridium butyricum against Carassius auratus herpesvirus in gibel carp [J]. Aquaculture International, 2019, 27(3): 905-914. doi: 10.1007/s10499-019-00377-3
[126] Ethier V. Monterey Bay Aquarium, Red swamp frayfish [C]. http://seafood.ocean.org/wp-content/uploads/2016/10/Crawfish-Red-Swamp-China. 2013: 1-34
[127] Longshaw M. Diseases of crayfish: A review [J]. Journal of Invertebrate Pathology, 2011(106): 54-70. doi: 10.1016/j.jip.2010.09.013
[128] Baumgartner W A, Hawke J P, Bowles K, et al. Primary diagnosis and surveillance of white spot syndrome virus in wild and farmed crawfish (Procambarus clarkii, P. zonangulus) in Louisiana, USA [J]. Diseases of Aquatic Organisms, 2009, 85(1): 15-22.
[129] Walker P J, Winton J R. Emerging viral diseases of fish and shrimpEmerging viral diseases of fish and shrimp [J]. Veterinary Research, 2010, 41(6): 51. doi: 10.1051/vetres/2010022
[130] Manfrin C, Souty-Grosset C, Anastácio P, et al. Detection and control of invasive freshwater crayfish: from traditional to innovative methods [J]. Diversity, 2019, 11(1): 5. doi: 10.3390/d11010005
[131] Soowannayan C, Nguyen G T, Pham L N, et al. Australian red claw crayfish (Cherax quadricarinatus) is susceptible to yellow head virus (YHV) infection and can transmit it to the black tiger shrimp (Penaeus monodon) [J]. Aquaculture, 2015(445): 63-69. doi: 10.1016/j.aquaculture.2015.04.015
[132] 潘子豪, 杨政霖, 陆承平. 安徽地区小龙虾白斑综合征的诊断及朔源 [J]. 微生物学报, 2013, 53(5): 492-497. Pan Z H, Yang Z L, Lu C P. Diagnosis of white spot syndrome virus in farm crawfish in Anhui province and its epidemiological source [J]. Acta Microbiologica Sinica, 2013, 53(5): 492-497.
[133] Jiang L, Xiao J, Liu L, et al. Characterization and prevalence of a novel white spot syndrome viral genotype in naturally infected wild crayfish, Procambarus clarkii, in Shanghai, China [J]. Virusdisease, 2017, 28(3): 250-261. doi: 10.1007/s13337-017-0394-4
[134] Shi Z, Huang C, Zhang J, et al. White spot syndrome virus (WSSV) experimental infection of the freshwater crayfish, Cherax quadricarinatus [J]. Journal of Fish Diseases, 2000, 23(4): 285-288. doi: 10.1046/j.1365-2761.2000.00232.x
[135] 张奇亚, 柯飞. 淡水小龙虾线头病毒PCV-87R特异性序列及应用的制作方法 [P]. http://www.xjishu.com/zhuanli/27/201910307663.html, 2019 [136] van Hulten M C W, Witteveldt J, Snippe M, et al. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp [J]. Virology, 2001, 285(2): 228-233. doi: 10.1006/viro.2001.0928
[137] Escobedo-Bonilla C M, Alday-Sanz V, Wille M, et al. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus [J]. Journal of Fish Diseases, 2008, 31(1): 1-18.
[138] Dieu B T, Marks H, Zwart M P, et al. Evaluation of white spot syndrome virus variable DNA loci as molecular markers of virus spread at intermediate spatiotemporal scales [J]. Journal of General Virology, 2010, 91(5): 1164-1172. doi: 10.1099/vir.0.018028-0
[139] Pradeep B, Shekar M, Karunasagar I, et al. Characterization of variable genomic regions of Indian white spot syndrome virus [J]. Virology, 2008, 376(1): 24-30. doi: 10.1016/j.virol.2008.02.037
[140] Zimmer C. A Planet of Viruses (2nd Edition) [M]. Chicago: University of Chicago Press, 2015: 104
[141] Paez-Espino D, Eloe-Fadrosh E A, Pavlopoulos G A, et al. Uncovering earth’s virome [J]. Nature, 2016(536): 425-430. doi: 10.1038/nature19094
[142] Lavigne R, Ceyssens P J. Family Myoviridae [M]//King A M Q, Adams M J, Carstens E B, et al (Eds.), Virus Taxonomy Classification and Nomenclature of Viruses Ninth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press, 2012: 46-62
[143] 张奇亚, 桂建芳. 一类不可忽视的战略生物资源——淡水与海水中的病毒及其在生态系统中的作用 [J]. 中国科学院院刊, 2009, 24(4): 520-526. Zhang Q Y, Gui J F. One kind of strategic bio-resources that cannot be ignored——Freshwater and marine viruses and their roles in the global ecosystem [J]. Bulletin of Chinese Academy of Sciences, 2009, 24(4): 520-526.
[144] Zimmerman A E, Howard-Varona C, Needham D M, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems [J]. Nature Reviews Microbiology, 2019, 18(41): 1-14.
[145] Guidi L, Chaffron S, Bittner L, et al. Plankton networks driving carbon export in the oligotrophic ocean [J]. Nature, 2016(532): 465-470. doi: 10.1038/nature16942
[146] Breitbart M, Bonnain C, Malki K, et al. Phage puppet masters of the marine microbial realm [J]. Nature Microbiology, 2018, 3(7): 754-766. doi: 10.1038/s41564-018-0166-y
[147] Brum J R, Ignacio-Espinoza J C, Roux S, et al. Patterns and ecological drivers of ocean viral communities [J]. Science, 2015, 348(6237): 1261498. doi: 10.1126/science.1261498
[148] Schulz F, Roux S, Paez-Espino D, Jungbluth S, et al. Giant virus diversity and host interactions through global metagenomics [J]. Nature, 2020, 578(7795): 432-436. doi: 10.1038/s41586-020-1957-x
[149] Levasseur A, Bekliz M, Chabrière E, et al. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage [J]. Nature, 2016, 531(7593): 249-252. doi: 10.1038/nature17146
[150] Fischer M G, Allen M J, Wilson W H, et al. Giant virus with a remarkable complement of genes infects marine zooplankton [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19508-19513. doi: 10.1073/pnas.1007615107
[151] Lindell D, Jaffe J D, Coleman M L, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution [J]. Nature, 2007, 449(7158): 83-86. doi: 10.1038/nature06130
[152] Marston M F, Pierciey F J, Shepard A, et al. Rapid diversification of coevolving marine Synechococcus and a virus [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12): 4544-4549. doi: 10.1073/pnas.1120310109
[153] Doron S, Fedida A, Hernández-Prieto M A, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts [J]. The ISME Journal, 2016, 10(6): 1437-1455. doi: 10.1038/ismej.2015.210
[154] Kupczok A, Dagan T. Rates of molecular evolution in a marine synechococcus phage lineage [J]. Viruses, 2019, 11(8): 720. doi: 10.3390/v11080720
[155] Hatzenpichler R, Krukenberg V, Spietz R L, et al. Next-generation physiology approaches to study microbiome function at single cell level [J]. Nature Reviews Microbiology, 2020, 18(4): 241-256. doi: 10.1038/s41579-020-0323-1
[156] 高恶斌, 李三华, 吕波, 等. 水华蓝藻噬藻体对不同条件培养的宿主细胞感染性分析 [J]. 水生生物学报, 2012, 36(3): 420-425. Gao E B, Li S H, Lü B, et al. Analysis of the cyanophage (PaV-LD) infection in host cyanobacteria under different culture conditions [J]. Acta Hydrobiologica Sinica, 2012, 36(3): 420-425.
[157] Pinto D, Santos M A, Chambel L. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms [J]. Critical Reviews in Microbiology, 2015, 41(1): 61-76. doi: 10.3109/1040841X.2013.794127
[158] Li L, Mendis N, Trigui H, et al. The importance of the viable but non-culturable state in human bacterial pathogens [J]. Frontiers in Microbiology, 2014(5): 258.
[159] Ayrapetyan M, Williams T, Oliver J D. Relationship between the viable but nonculturable state and antibiotic persister cells [J]. Journal of Bacteriology, 2018, 200(20): e00249-18. doi: 10.1128/JB.00249-18
[160] Ou T, Li S H, Liao X Y, et al. Cultivation and characterization of the MaMV-DC cyanophage that infects bloom-forming cyanobacterium Microcystis aeruginosa [J]. Virologica Sinica, 2013, 28(5): 266-271. doi: 10.1007/s12250-013-3340-7
[161] 廖湘勇, 欧铜, 高宏, 等. 蓝细菌病毒A-4L在鱼腥藻 (Anabaena variabilis) 藻苔中形成同心圆噬斑的成因 [J]. 微生物学报, 2014, 54(2): 191-199. Liao X Y, Ou T, Gao H, et al. Main reason for concentric rings plaque formation of virus infecting cyanobacteria (A-4L) in lawns of Anabaena variabilis [J]. Acta Microbiologica Sinica, 2014, 54(2): 191-199.
[162] Yoshida T, Nagasaki K, Takashima Y, et al. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies [J]. Journal of Bacteriology, 2008, 190(5): 1762-1772. doi: 10.1128/JB.01534-07
[163] Ou T, Gao X C, Li S H, et al. Genome analysis and gene nblA identification of Microcystis aeruginosa myovirus (MaMV-DC) reveal the evidence for horizontal gene transfer events between cyanomyovirus and host [J]. Journal of General Virology, 2015, 96(12): 3681-3697. doi: 10.1099/jgv.0.000290
[164] Ou T, Liao X Y, Gao X C, et al. Unraveling the genome structure of cyanobacterial podovirus A-4L with long direct terminal repeats [J]. Virus Research, 2015(203): 4-9. doi: 10.1016/j.virusres.2015.03.012
[165] Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption [J]. FEMS Microbiology Letters, 2016, 363(4): 1-11.
[166] Xiong Z Z, Wang Y L, Dong Y L, et al. Cyanophage A-1(L) Adsorbs to lipopolysaccharides of Anabaena sp. Strain PCC 7120 via the tail protein lipopolysaccharideinteracting protein (ORF36) [J]. Journal of Bacteriology, 2019, 201(3): e516-e518.
[167] Gao E B, Gui J F, Zhang Q Y. A novel cyanophage with cyanobacterial non-bleaching protein a gene in the genome [J]. Journal of Virology, 2012, 86(1): 236-245. doi: 10.1128/JVI.06282-11
[168] 李三华, 高恶斌, 欧铜, 等. 噬藻体PaV-LD主要衣壳蛋白、穿孔素和内肽酶基因的克隆及表达分析 [J]. 水生生物学报, 2013, 37(2): 252-259. doi: 10.7541/2013.12 Li S H, Gao E B, Ou T, et al. Cloning and expression analysis of major capsid protein gene, endopeptidase and holin gene of cyanophage PaV-LD [J]. Acta. Hydrobiologica Sinica, 2013, 37(2): 252-259. doi: 10.7541/2013.12
[169] Fridman S, Flores-Uribe J, Larom S, et al. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells [J]. Nature Microbiology, 2017, 2(10): 1350-1357. doi: 10.1038/s41564-017-0002-9
[170] Sawa N, Tatsuke T, Ogawa A, et al. Modification of carbon metabolism in Synechococcus elongatus PCC 7942 by cyanophage-derived sigma factors for bioproduction improvement [J]. Journal of Bioscience and Bioengineering, 2019, 127(2): 256-264. doi: 10.1016/j.jbiosc.2018.07.019
[171] Xiao Y, Luo M, Hayes R P, et al. Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR-Cas system [J]. Cell, 2017, 170(1): 48-60. doi: 10.1016/j.cell.2017.06.012
[172] Niewoehner O, Garcia-Doval C, Rostøl J T, et al. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers [J]. Nature, 2017, 548(7669): 543-548. doi: 10.1038/nature23467
[173] Yan W X, Hunnewell P, Alfonse L E, et al. Functionally diverse type V CRISPR-Cas systems [J]. Science, 2019, 363(6422): 88-91. doi: 10.1126/science.aav7271
[174] Šulčius S, Šimoliūnas E, Alzbutas G, et al. Genomic characterization of cyanophage vB_AphaS-CL131 infecting filamentous diazotrophic cyanobacterium Aphanizomenon flos-aquae reveals novel insights into virus-bacterium interactions [J]. Applied and Environmental Microbiology, 2019, 85(1): 1311-1118.
[175] Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems [J]. Nature Reviews Microbiology, 2017(15): 169-182. doi: 10.1038/nrmicro.2016.184
[176] Marino N D, Zhang J Y, Borges A L, et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors [J]. Science, 2018, 362(6411): 240-242. doi: 10.1126/science.aau5174
[177] Wang J P, Bai P, Li Q, et al. Interaction between cyanophage MaMV-DC and eight Microcystis strains, revealed by genetic defense systems [J]. Harmful Algae, 2019(85): 101699. doi: 10.1016/j.hal.2019.101699
[178] Knott G J, Doudna J A. CRISPR-Cas guides the future of genetic engineering [J]. Science, 2018, 361(6405): 866-869. doi: 10.1126/science.aat5011
[179] Salmond G P, Fineran P C. A century of the phage: past, present and future [J]. Nature Reviews Microbiology, 2015, 13(12): 777-786. doi: 10.1038/nrmicro3564
[180] Liao H K, Gu Y, Diaz A, et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV 1 infection in human cells [J]. Nature Communications, 2015(6): 6413. doi: 10.1038/ncomms7413
[181] 桂建芳, 包振民, 张晓娟. 水产遗传育种与水产种业发展战略研究 [J]. 中国工程科学, 2016, 18(3): 8-14. doi: 10.3969/j.issn.1009-1742.2016.03.003 Gui J F, Bao Z M, Zhang X, J. Development strategy for aquaculture genetic breeding and seed industry [J]. Chinese Journal of Engineering Science, 2016, 18(3): 8-14. doi: 10.3969/j.issn.1009-1742.2016.03.003
[182] Kauffman K M, Hussain F A, Yang J, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria [J]. Nature, 2018, 554(7691): 118-122.
[183] Liu J, Yu C, Gui J F, et al. Real-time dissecting the entry and intracellular dynamics of single reovirus particle [J]. Frontiers in Microbiology, 2018(9): 2797. doi: 10.3389/fmicb.2018.02797
[184] Claussnitzer M, Cho J H, Collins R, et al. A brief history of human disease genetics [J]. Nature, 2020, 577(7789): 179-189. doi: 10.1038/s41586-019-1879-7
[185] Yoshikawa G, Blanc-Mathieu R, Song C, et al. Medusavirus, a novel large DNA virus discovered from hot spring water [J]. Journal of Virology, 2019, 93(8): 2130-2218.
[186] Iyer L M, Aravind L, Koonin E V. Common origin of four diverse families of large eukaryotic DNA viruses [J]. Journal of Virology, 2001, 75(23): 11720-11734. doi: 10.1128/JVI.75.23.11720-11734.2001
[187] Subramaniam K, Behringer D C, Bojko J, et al. A new family of DNA viruses causing disease in crustaceans from diverse aquatic biomes [J]. mBio, 2020(11): 2938-3019.
[188] Wessner D R. The Origins of Viruses [J]. Nature Education, 2010, 3(9): 37.
[189] Koonin E V, Yutin N. Origin and evolution of eukaryotic large nucleo-cytoplasmic DNA viruses [J]. Intervirology, 2010, 53(5): 284-92. doi: 10.1159/000312913
[190] Roossinck M J. The good viruses: viral mutualistic symbioses [J]. Nature Reviews Microbiology, 2011(9): 99-108. doi: 10.1038/nrmicro2491
[191] Engering A, Hogerwerf L. Pathogen-host-environment interplay and disease emergence [J]. Emerging Microbes and Infections, 2013, 2(2): e5.
[192] Vörösmarty C J, McIntyre P B, Gessner M O, et al. Global threats to human water security and river biodiversity [J]. Nature, 2010, 468(7321): 555-561.
[193] 宋林生. 海水养殖贝类病害预警预报技术及其应用 [J]. 大连海洋大学学报, 2020, 35(1): 1-9. Song LS. An early warning system for diseases during mollusc mariculture: exploration and utilization [J]. Journal of Dalian Ocean University, 2020, 35(1): 1-9.
[194] Assefa A, Abunna F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish [J]. Veterinary Medicine International, 2018, Article ID 5432497: 1-10
[195] Jeney G. Fish Diseases: Prevention and Control Strategies [M]. London: Academic Press, 2017: 1-278