水域生态学中生物稳定同位素样品采集、处理与保存

徐军, 王玉玉, 王康, 曾庆飞, 张敏, 张欢

徐军, 王玉玉, 王康, 曾庆飞, 张敏, 张欢. 水域生态学中生物稳定同位素样品采集、处理与保存[J]. 水生生物学报, 2020, 44(5): 989-997. DOI: 10.7541/2020.114
引用本文: 徐军, 王玉玉, 王康, 曾庆飞, 张敏, 张欢. 水域生态学中生物稳定同位素样品采集、处理与保存[J]. 水生生物学报, 2020, 44(5): 989-997. DOI: 10.7541/2020.114
XU Jun, WANG Yu-Yu, WANG Kang, ZENG Qing-Fei, ZHANG Min, ZHANG Huan. PROTOCOLS FOR SAMPLE COLLECTION, PRETREATMENT AND PRESERVATION OF AQUATIC ORGANISMS IN STABLE ISOTOPE ECOLOGY[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 989-997. DOI: 10.7541/2020.114
Citation: XU Jun, WANG Yu-Yu, WANG Kang, ZENG Qing-Fei, ZHANG Min, ZHANG Huan. PROTOCOLS FOR SAMPLE COLLECTION, PRETREATMENT AND PRESERVATION OF AQUATIC ORGANISMS IN STABLE ISOTOPE ECOLOGY[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 989-997. DOI: 10.7541/2020.114

水域生态学中生物稳定同位素样品采集、处理与保存

基金项目: 国家重点研发计划项目(2018YFD0900904); 中国科学院国际合作重点项目(152342KYSB20190025)资助
详细信息
    通信作者:

    徐军(1978—), 男, 研究员, 博士生导师; 主要从事水域生态学与同位素生态学研究。E-mail: xujun@ihb.ac.cn

  • 中图分类号: Q-34

PROTOCOLS FOR SAMPLE COLLECTION, PRETREATMENT AND PRESERVATION OF AQUATIC ORGANISMS IN STABLE ISOTOPE ECOLOGY

Funds: Supported by the National Key Research and Development Program of China (2018YFD0900904); the International Cooperation Project of the Chinese Academy of Sciences (152342KYSB20190025)
    Corresponding author:
  • 摘要: 稳定同位素分析技术由于能够刻画复杂的食物网结构并追踪食物网中的能量流而成为水域生态学研究中的重要手段。但是当水生生物样品采集、处理和保存过程中存在不确定性时, 营养关系分析中的同位素结果可能会产生误导性解释。文章采用数据模拟分析和文献总结的方法, 研究了水域生态系统中样品采集、处理和保存对于稳定同位素的影响, 概括性地建议了水域生态系统中适合应用稳定同位素分析技术开展生态学研究的样品采集、处理和保存的注意事项。但今后仍需进一步评估样品采集、处理和保存对稳定同位素比值的影响效果, 确定化学动力学在水生生物样品采集、处理和保存中的作用, 以进一步完善水生生物样品的采集、处理和保存稳定同位素生态学研究规范。
    Abstract: Stable isotope studies are extremely useful for improving general descriptions of aquatic ecosystems due to their ability to simultaneously summarize complex trophic networks and track the energy flow through them. However, when considering that trophic relationships involve the uncertainty of sample collection, handling and preservation of aquatic organisms, application of general isotopic interpretations may easily lead to misleading conclusions. In these cases, an accepted protocol for the current process in the isotopic research should be considered. In this review, we first measured the uncertainty (isotopic shift) due to sample collection, handling and preservation in a system composed of one consumer and four potential food sources; we then showed four extreme cases to interpret the effect on the relative proportions of sources in the consumer’s diet due to uncertainty in a mixing-polygon model in Isosource. The effects of sample collection, handling and preservation of aquatic organisms on stable isotopes were briefly listed. All these methods had mixed results concerning their effect on the samples tested. For the sample collection, factors, such as, the uniformity, species composition, species life cycles, habitats, tissue difference and turnover, can affect the stable isotope composition. For sample handling, inorganic carbon, gut contents of small animals, and lipid content in the samples were considered as the common factors. For sample preservation, the effects of preservative, time, species or tissue were common on the stable isotope signals. Protocols for sample collection, handling and preservation of aquatic organisms in stable isotope ecology were then recommended. For sample collection, we advise using homogeneous and species-specific samples whenever possible, or performing complementary testing of the bulk- and tissue-specific sampling method. For sample handling, we advocate the gut evacuation for the samples using whole individual, acidification for the particulate organic samples, and lipid extraction and normalization for the samples with high lipid content. For sample preservation, we advocate using fresh material prepared immediately whenever possible, or using drying and freeze-drying when the immediate analysis is not possible, or conducting complementary testing of the preservative method for museum samples. In conclusion, we suggest suitable methods for sample collection, handling and preservation of aquatic organisms for ecological applications of isotopic analysis. The effects of sample collection, handling and preservation on stable isotope ratios need further evaluation. Research is also needed to determine the chemical dynamics in aquatic organisms responsible for the isotopic differences observed among different methods of sample collection, handling and preservation. We encourage further studies of method-specific isotopic variability to improve the normalization for sample collection, handling and preservation of aquatic organisms in stable isotope ecology.
  • 图  1   不确定性度量及消费者与四种食物来源的营养关系定义

    a. 测试由于样品收集, 处理和保存引起的不确定性(同位素位移); Δ13C测量水平距离, Δ15N测量垂直距离, 不确定性(同位素位移)测量坐标空间中经解析的真值(T)和不确定性值(U)之间的直线距离; b. 由一个消费者及其四个潜在食物来源组成的明确的营养体系; 实线表示在IsoSource中定义为混合多边形的潜在源周围的凸包; 阴影区域表示不确定性, 圆圈数字表示潜在的食物来源, A、B、C和D表示四种极端情况, 以便于解释由于不确定性而导致的对消费者饮食中各种来源的相对比例的影响(图 2)

    Figure  1.   Measurement of uncertainty and the defined trophic system composed of one consumer and its four potential food sources

    a. Measurement of uncertainty (isotopic shift) due to sample collection, handling and preservation. Δ13C measures the horizontal distance, Δ15N measures the vertical distance, and uncertainty (isotopic shift) measures the straight-line distance between the pared truth value (T) and uncertainty value (U) in coordinate space; b. A defined trophic system composed of one consumer and its four potential food sources. Solid lines show the convex hull around potential sources defined as mixing polygons in IsoSource. Shaded area represents the uncertainty, numbers in circles represent the potential food sources, and A, B, C, and D represent four extreme cases to facilitate interpretation of effect on the relative proportions of sources in the consumer diet resulted from uncertainty (Fig. 2)

    图  2   消费者四种食物来源不同情境下的分布频次特征

    直方图表示从上述来源到消费者摄食中可行的IsoSource贡献分布。显示值的分布范围为1%—99%

    Figure  2.   Frequency of consumer’s four food sources in different contexts

    The histograms provided the distribution of feasible IsoSource contributions from these sources to the consumer diet. The displayed values are the 1%—99% percentile ranges for these distributions

    图  3   建议在稳定同位素生态学中对水生生物样品收集、处理和保存的步骤图

    Figure  3.   Diagram of the logical steps suggested for sample collection, handling and preservation of aquatic organisms in stable isotope ecology

  • [1]

    Gannes L Z, O’Brien D M, del Rio C M. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments [J]. Ecology, 1997, 78(4): 1271-1276. doi: 10.1890/0012-9658(1997)078[1271:SIIAEA]2.0.CO;2

    [2]

    Robinson D. δ15N as an integrator of the nitrogen cycle [J]. Trends in Ecology and Evolution, 2001, 16(3): 153-162. doi: 10.1016/S0169-5347(00)02098-X

    [3]

    Post D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions [J]. Ecology, 2002, 83(3): 703-718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

    [4]

    Rubenstein D R, Hobson K A. From birds to butterflies: animal movement patterns and stable isotopes [J]. Trends in Ecology and Evolution, 2004, 19(5): 256-263. doi: 10.1016/j.tree.2004.03.017

    [5]

    Vander Zanden M J, Cabana G, Rasmussen J B. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(5): 1142-1158. doi: 10.1139/f97-016

    [6]

    Vander Zanden M J, Shuter B J, Lester N, et al. Patterns of food chain length in lakes: a stable isotope study [J]. American Naturalist, 1999, 154(4): 406-416. doi: 10.1086/303250

    [7]

    Lorrain A, Savoye N, Chauvaud L, et al. Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material [J]. Analytica Chimica Acta, 2003, 491(2): 125-133. doi: 10.1016/S0003-2670(03)00815-8

    [8]

    Barrow L M, Bjorndal K A, Reich K J. Effects of preservation method on stable carbon and nitrogen isotope values [J]. Physiological and Biochemical Zoology, 2008, 81(5): 688-693. doi: 10.1086/588172

    [9]

    Syvaranta J, Vesala S, Rask M, et al. Evaluating the utility of stable isotope analyses of archived freshwater sample materials [J]. Hydrobiologia, 2008, 600(1): 121-130. doi: 10.1007/s10750-007-9181-3

    [10]

    Vander Zanden M J, Casselman J M, Rasmussen J B. Stable isotope evidence for the food web consequences of species invasions in lakes [J]. Nature, 1999, 401(6752): 464-467. doi: 10.1038/46762

    [11]

    Perga M E, Gerdeaux D. Using the δ13C and δ15N of whitefish scales for retrospective ecological studies: changes in isotope signatures during the restoration of Lake Geneva, 1980–2001 [J]. Journal of Fish Biology, 2003, 63(5): 1197-1207. doi: 10.1046/j.1095-8649.2003.00239.x

    [12]

    Kelly B, Dempson J B, Power M. The effects of preservation on fish tissue stable isotope signatures [J]. Journal of Fish Biology, 2006, 69(6): 1595-1611. doi: 10.1111/j.1095-8649.2006.01226.x

    [13]

    Peterson B J, Fry B. Stable isotopes in ecosystem studies [J]. Annual Review of Ecology and Systematics, 1987, 18(1): 293-320. doi: 10.1146/annurev.es.18.110187.001453

    [14] 徐军. 应用碳、氮稳定性同位素探讨淡水湖泊的食物网结构和营养级关系 [D]. 武汉: 中国科学院水生生物研究所, 2005: 18-19

    Xu J. Ecological studies on the food web structures and trophic relationships of freshwater lakes in China using stable carbon and nitrogen isotopes [D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2005: 18-19

    [15]

    France R L. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications [J]. Marine Ecology Progress Series, 1995, 124(1): 307-312.

    [16]

    Deniro M J, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis [J]. Science, 1977, 197(4300): 261-263. doi: 10.1126/science.327543

    [17]

    Macko S A, Estep M L F, Engel M H, et al. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination [J]. Geochimica et Cosmochimica Acta, 1986, 50(10): 2143-2146. doi: 10.1016/0016-7037(86)90068-2

    [18]

    Minagawa M, Wada E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age [J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 1135-1140. doi: 10.1016/0016-7037(84)90204-7

    [19] 徐军, 张敏, 谢平. 氮稳定同位素基准的可变性及对营养级评价的影响 [J]. 湖泊科学, 2010, 22(1): 10-23.

    Xu J, Zhang M, Xie P. Variability of stable nitrogen isotopic baselines and its consequence for trophic modeling [J]. Journal of Lake Sciences, 2010, 22(1): 10-23.

    [20]

    Phillips D L, Gregg J W. Source partitioning using stable isotopes: coping with too many sources [J]. Oecologia, 2003, 136(2): 261-269. doi: 10.1007/s00442-003-1218-3

    [21]

    Jardine T D, McGeachy S A, Paton C M, et al. Stable isotopes in aquatic systems: Sample preparation, analysis and interpretation [J]. Canadian Manuscript Report of Fisheries and Aquatic Sciences, 2003(2656): 39.

    [22]

    Lehmann M F, Bernasconi S M, Barbieri A, et al. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis [J]. Geochimica et Cosmochimica Acta, 2002, 66(20): 3573-3584. doi: 10.1016/S0016-7037(02)00968-7

    [23]

    Hamilton S K, Sippel S J, Bunn S E. Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica [J]. Limnology and Oceanography: Methods, 2005, 3(3): 149-157. doi: 10.4319/lom.2005.3.149

    [24]

    Marty J, Planas D. Comparison of methods to determine algal δ13C in freshwater [J]. Limnology and Oceanography: Methods, 2008, 6(1): 51-63. doi: 10.4319/lom.2008.6.51

    [25]

    Price C A, Reardon E M, Guillard R R L. Collection of dinoflagellates and other marine microalgae by centrifugation in density gradients of a modified silica sol [J]. Limnology and Oceanography, 1978, 23(3): 548-553. doi: 10.4319/lo.1978.23.3.0548

    [26]

    Bidigare R R, Kennicutt M C, Keeney-Kennicutt W L, et al. Isolation and purification of chlorophylls a and b for the determination of stable carbon and nitrogen isotope compositions [J]. Analytical Chemistry, 1991, 63(2): 130-133. doi: 10.1021/ac00002a008

    [27]

    Pel R, Hoogveld H, Floris V. Using the hidden isotopic heterogeneity in phyto-and zooplankton to unmask disparity in trophic carbon transfer [J]. Limnology and Oceanography, 2003, 48(6): 2200-2207. doi: 10.4319/lo.2003.48.6.2200

    [28]

    Hamilton S K, Lewis Jr W M. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela [J]. Geochimica et Cosmochimica Acta, 1992, 56(12): 4237-4246. doi: 10.1016/0016-7037(92)90264-J

    [29]

    Eller G, Deines P, Grey J, et al. Methane cycling in lake sediments and its influence on chironomid larval δ13C [J]. FEMS Microbiology Ecology, 2005, 54(3): 339-350. doi: 10.1016/j.femsec.2005.04.006

    [30]

    Grey J, Kelly A, Ward S, et al. Seasonal changes in the stable isotope values of lake-dwelling chironomid larvae in relation to feeding and life cycle variability [J]. Freshwater Biology, 2004, 49(6): 681-689. doi: 10.1111/j.1365-2427.2004.01217.x

    [31]

    Grey J, Jones R I, Sleep D. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness as indicated by stable isotope analysis [J]. Limnology and Oceanography, 2001, 46(3): 505-513. doi: 10.4319/lo.2001.46.3.0505

    [32]

    Ventura M, Catalan J. Incorporating life histories and diet quality in stable isotope interpretations of crustacean zooplankton [J]. Freshwater Biology, 2008, 53(7): 1453-1469. doi: 10.1111/j.1365-2427.2008.01976.x

    [33]

    Church M R, Ebersole J L, Rensmeyer K M, et al. Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(1): 1-5. doi: 10.1139/F08-206

    [34]

    Vander Zanden M J, Clayton M K, Moody E K, et al. Stable isotope turnover and half-life in animal tissues: A literature synthesis [J]. PLoS One, 2015, 10(1): e0116182. doi: 10.1371/journal.pone.0116182

    [35]

    Pitt K A, Connolly R M, Meziane T. Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review [J]. Hydrobiologia, 2009, 616(1): 119-132. doi: 10.1007/s10750-008-9581-z

    [36]

    Feuchtmayr H, Grey J. Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton [J]. Rapid Communications in Mass Spectrometry, 2003, 17(23): 2605-2610. doi: 10.1002/rcm.1227

    [37]

    Grey J, Kelly A, Jones R I. High intraspecific variability in carbon and nitrogen stable isotope ratios of lake chironomid larvae [J]. Limnology and Oceanography, 2004, 49(1): 239-244. doi: 10.4319/lo.2004.49.1.0239

    [38]

    Hobson K A, Welch H E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis [J]. Marine Ecology Progress Series, 1992(84): 9-18. doi: 10.3354/meps084009

    [39]

    Schlacher T A, Connolly R M. Effects of acid treatment on carbon and nitrogen stable isotope ratios in ecological samples: a review and synthesis [J]. Methods in Ecology and Evolution, 2014, 5(6): 541-550. doi: 10.1111/2041-210X.12183

    [40]

    Bosley K L, Wainright S C. Effects of preservatives and acidification on the stable isotope ratios (15N: 14N, 13C: 12C) of two species of marine animals [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56(11): 2181-2185. doi: 10.1139/f99-153

    [41]

    Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification [J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917. doi: 10.1139/o59-099

    [42]

    Radin N S. Extraction of tissue lipids with a solvent of low toxicity [J]. Methods in Enzymology, 1981(72): 5-7. doi: 10.1016/S0076-6879(81)72003-2

    [43]

    Logan J M, Jardine T D, Miller T J, et al. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods [J]. Journal of Animal Ecology, 2008, 77(4): 838-846. doi: 10.1111/j.1365-2656.2008.01394.x

    [44]

    McConnaughy T, McRoy C P. Food-web structure and the fractionation of carbon isotopes in the Bering Sea [J]. Marine Biology, 1979, 53(3): 257-262. doi: 10.1007/BF00952434

    [45]

    Post D M, Layman C A, Arrington D A, et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses [J]. Oecologia, 2007, 152(1): 179-189. doi: 10.1007/s00442-006-0630-x

    [46]

    Tarroux A, Ehrich D, Lecomte N, et al. Sensitivity of stable isotope mixing models to variation in isotopic ratios: evaluating consequences of lipid extraction [J]. Methods in Ecology and Evolution, 2010, 1(3): 231-241.

    [47]

    Edwards M S, Turner T F, Sharp Z D. Short-and long-term effects of fixation and preservation on stable isotope values (13C, 15N, 34S) of fluid-preserved museum specimens [J]. Copeia, 2002(4): 1106-1112.

    [48]

    Sarakinos H C, Johnson M L, Zanden M J V. A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures [J]. Canadian Journal of Zoology, 2002, 80(2): 381-387. doi: 10.1139/z02-007

    [49]

    Mateo M A, Serrano O, Serrano L, et al. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes [J]. Oecologia, 2008, 157(1): 105-115. doi: 10.1007/s00442-008-1052-8

    [50]

    Syvaranta J, Martino A, Kopp D, et al. Freezing and chemical preservatives alter the stable isotope values of carbon and nitrogen of the Asiatic clam (Corbicula fluminea) [J]. Hydrobiologia, 2011, 658(1): 383-388. doi: 10.1007/s10750-010-0512-4

    [51]

    Xu J, Yang Q, Zhang M, et al. Preservation effects on stable isotope ratios and consequences for the reconstruction of energetic pathways [J]. Aquatic Ecology, 2011, 45(4): 483-492. doi: 10.1007/s10452-011-9369-5

    [52]

    Brearley F Q. How does sample preparation affect the δ15N values of terrestrial ecological materials [J]? Journal of Plant Nutrition and Soil Science, 2009, 172(4): 461-463. doi: 10.1002/jpln.200900005

    [53]

    Kaehler S, Pakhomov E A. Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms [J]. Marine Ecology Progress Seriesr, 2001(219): 299-304. doi: 10.3354/meps219299

    [54]

    Arrington D A, Winemiller K O. Preservation effects on stable isotope analysis of fish muscle [J]. Transactions of the American Fisheries Society, 2002, 131(2): 337-342. doi: 10.1577/1548-8659(2002)131<0337:PEOSIA>2.0.CO;2

图(3)
计量
  • 文章访问数:  2533
  • HTML全文浏览量:  592
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-17
  • 修回日期:  2020-07-20
  • 网络出版日期:  2020-09-14
  • 发布日期:  2020-09-29

目录

    /

    返回文章
    返回