REVIEW ON PHENOTYPIC PLASTICITY OF ROTIFERS AND ITS ECOLOGICAL EFFECTS
-
摘要: 在水域生态系统中, 单巢纲的部分轮虫具有在环境压力下快速形成形态防御的能力。这种能力是其在复杂多变的生活环境中维持生存的一种重要的防御策略。轮虫的形态防御主要表现为被甲棘刺的变化(发生、增强或缩短), 个体大小的适应和被甲增厚等形态反应。文章对目前已知的轮虫形态防御响应进行整理, 综述了诱导轮虫形态防御的主要环境因子包括捕食者和竞争者信息素、环境温度和食物浓度等, 以及影响形态防御响应的内在因素。并探讨了轮虫的形态防御特征、防御的适合度收益及适合度代价。Abstract: Some rotifers of Monogononta can quickly produce morphological defenses under different environmental factors, and the generation of defense is the essential protection strategy in a changing environment. In the presence of environmental factors, rotifers respond with morphological defenses such as longer or shorter spine, larger or smaller body, and thicker lorica. This essay categorizes rotifer defensive morphological changes and summarizes environmentally induced factors including kairomone, temperature, food deficiency, and other internal factors. We then discuss the fitness benefits and costs of the morphological responses.
-
Keywords:
- Rotifer /
- Morphological defenses /
- Phenotypic plasticity /
- Kairomone /
- Maternal effect
-
-
图 1 轮虫形态改变对比图
A1基础形态萼花臂尾轮虫(B. calyciflorus); A2防御形态萼花臂尾轮虫; B1基础形态热带龟甲轮虫(K. tropica); B2防御形态热带龟甲轮虫; C1基础形态螺旋龟甲轮虫(K. cochlearis); C2防御形态螺旋龟甲轮虫; D1基础形态B. havanaensis; D2防御形态B. havanaensis, 改自文献[7, 10, 21, 25]
Figure 1. Comparison of rotifer morphology
A1 basic form of B. calyciflorus; A2 defensive form of B. calyciflorus; B1 basic form of K. tropica; B2 defensive form of K. tropica; C1 basic form of K. cochlearis; C2 defensive form of K. cochlearis; D1 basic form of B. havanaensis; D2 defensive form of B. havanaensis. Cited from [7, 10, 21, 25]
表 1 已知对环境因素产生形态塑形响应的轮虫种类
Table 1 Rotifer species known to respond to environmental factors at present
属Genus 学名Scientific name 信息素
Kairo-mone低温Low tempera-ture 食物缺乏Food deficiency 参考文献
Reference臂尾轮属Brachio-nus 角突臂尾轮虫B.angularis + - - [28] 双棘臂尾轮虫B. bidentatus + - - [19] 萼花臂尾轮虫B. calyciflorus + + + [4, 33, 34] 剪形臂尾轮虫B. forficula + - - [35] 方形臂尾轮虫B. quadridentatus + - - [36] B. havanaensis + - - [8] 十指臂尾轮虫B. patulus + - - [37] B. sericus + - - [38] 壶状臂尾轮虫B. urceolaris + - - [37] 变异臂尾轮虫B. variabilis + - - [39] 三肢轮属Filinia 跃进三肢轮虫F. passa + - - [38] F. pejleri - + - [31] F. temtinalis - + - [31, 40] 龟甲轮属Keratella 螺旋龟甲轮虫K.cochlearis + + - [25, 41—43] K. morenoi + - - [10] k. slacki + - - [18] 龟形龟甲轮虫K. testudo + - - [12] 热带龟甲轮虫K. tropica + + + [10, 13, 44] 腔轮属Lecane L. stokesii + - - [45] 平甲轮属Plationus P. macracanthus + - - [5] 镜轮属Testudin-ella 微凹镜轮虫T. mucronata 未探明 [32] 盘镜轮虫T. patina 未探明 [32] 注: “+”表示轮虫对该种影响因素响应, “-”表示轮虫未对影响因素响应或目前没有进行观测Note: “+” represents response to the influencing factor, “-” represents no response to the factor or not determined 表 2 可诱导轮虫产生形态响应的捕食者
Table 2 Predators induced morphological response in rotifers
捕食者
Predators学名Scientific name 防御类型
Response参考文献
Reference捕食者
Predators学名Scientific name 防御类型
Response参考文献
Reference轮虫
Asplanchna brightwellii角突臂尾轮虫
B. angularis兜甲增厚 [28] 龟形龟甲轮虫
K. testudo尾部棘刺轻微增长 [12] 双棘臂尾轮虫
B. bidentatus尾部棘刺增长 [19] Asplanchnopus multiceps L. stokesii 尾部棘刺增长, 兜甲增厚 [45] 萼花臂尾轮虫
B. calyciflorus尾部及体后侧棘刺增长, 兜甲增厚 [4, 28] 桡足类
Epischura lacustris龟形龟甲轮虫
K. testudo尾部棘刺轻微增长 [12] 十指臂尾轮虫
B. patulus左侧棘刺和右后棘刺显著延长 [37] Mesocyclops pehpeiensis B. havanaensis 尾部棘刺适度增长 [21] 壶状臂尾轮虫
B. urceolaris前棘刺显著延长 [37] Notodiaptomus incompositus 热带龟甲轮虫
K. tropica右后侧棘刺增长 [52] 龟形龟甲轮虫
K. testudo尾部棘刺增长 [12] Tropocyclops prasinus K. slacki 尾部棘刺增长 [18] 热带龟甲轮虫
K. tropica体右后侧棘刺增长 [10] 螺形龟甲轮虫
K. cochlearis尾部棘刺增长 [25] K. morenoi 体右后侧棘刺增长 [10] 龟形龟甲轮虫
K. testudo尾部棘刺增长 [12] P. macracanthus 体后侧棘刺轻微
增长[5] Acanthocyclopsrobustus copepodites 热带龟甲轮虫
K. tropica尾部棘刺较明显
增长[52] Asplanchna girodi 萼花臂尾轮虫
B. calyciflorus尾部及体后侧棘刺增长 [51] Cyclops sp. 螺形龟甲轮虫
K. cochlearis棘刺轻微缩短 [9] 方形臂尾轮虫
B. quadridentatus体后侧棘刺增长 [36] 昆虫类
Buenoa fuscipennis热带龟甲轮虫
K. tropica棘刺缩短 [13] B. havanaensis 尾部棘刺增长 [8] Chaoborus punctipennis 龟形龟甲轮虫
K. testudo没有显著变化 [12] 变异臂尾轮虫
B. variabilis头部及尾部棘刺增长, 兜甲增厚 [39] Chaoborus flavicans 螺形龟甲轮虫
K. cochlearis棘刺明显缩短 [9] K. slacki 体型增大, 头部棘刺增长, 右后侧棘刺增长, 部分左后侧棘刺缩小 [18] 扁虫
Stenostomum leucopeB. havanaensis 尾部棘刺轻微增长 [21] 龟形龟甲轮虫
K. testudo尾部棘刺增长 [12] 介形类
Cypris pubera热带龟甲轮虫
K. tropica棘刺缩小, 左侧棘刺消失 [55] Asplanchna silvestrii 龟形龟甲轮虫
K. testudo尾部棘刺增长 [12] 鱼类
Paracheirodon innesi螺形龟甲轮虫
K. cochlearis棘刺明显缩短 [9] Asplanchna sieboldii 萼花臂尾轮虫
B. calyciflorus尾部及体后侧棘刺增长 [51, 56] Rutilus rutilus 螺形龟甲轮虫
K. cochlearis棘刺明显缩短 [43] Asplanchna priodonta 螺形龟甲轮虫
K. cochlearis尾部棘刺增长 [25] Abramis brama 螺形龟甲轮虫
K. cochlearis棘刺明显缩短 [43] 表 3 可诱导轮虫产生形态响应的竞争者
Table 3 Interference competitors induced morphological response in rotifers
竞争者Competitors 学名Scientific name 响应类型Response 参考文献Reference 枝角类
Daphnia pulex热带龟甲轮虫K. tropica 尾部棘刺增长, 右侧棘刺略长于左侧 [50] 螺形龟甲轮虫K. cochlearis 右后侧棘刺与体长比增大 [25] 龟形龟甲轮虫K. testudo 尾部棘刺增长, 或右侧棘刺略长于左侧 [12] Daphnia rosea 龟形龟甲轮虫K. testudo 尾部棘刺增长, 或右侧棘刺略长于左侧 [12] Bosmina longirostris 龟形龟甲轮虫K. testudo 尾部棘刺轻微增长, 体宽增大 [12] Bosmina huaronensis 热带龟甲轮虫K. tropica 左后侧棘刺增长 [52] Ceriodaphnia cornuta 热带龟甲轮虫K. tropica 右后侧棘刺增长 [52] Ceriodaphnia dubia 热带龟甲轮虫K. tropica 右后侧棘刺增长 [52] Moina micrura 热带龟甲轮虫K. tropica 右后侧棘刺增长 [52] Diaphanosoma birgei 热带龟甲轮虫K. tropica 右后侧棘刺增长 [52] 桡足类
Mesocyclops edax螺形龟甲轮虫K. cochlearis 尾部棘刺增长 [25] Acanthocyclops americanus B. havanaensis 尾部棘刺轻微增长 [21] -
[1] Segers H. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution [J]. Zootaxa, 2007(1564): 1-104.
[2] Miner B G, Sultan S E, Morgan S G, et al. Ecological consequences of phenotypic plasticity [J]. Trends in Ecology & Evolution, 2005, 20(12): 685-692.
[3] Gilbert J J. Spine development in two taxa of Brachionus calyciflorus from Lake Littra, Australia: constitutive and induced defenses against Asplanchna [J]. Journal of Plankton Research, 2017, 39(6): 962-971. doi: 10.1093/plankt/fbx048
[4] Gilbert J J, Waage J K. Asplanchna, Asplanchna-substance, and posterolateral spine length variation of the rotifer Brachionus calyciflorus in a natural environment [J]. Ecology, 1967, 48(6): 1027-1031. doi: 10.2307/1934559
[5] Sarma S S S, Resendiz R A L, Nandini S. Morphometric and demographic responses of brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae) [J]. Hydrobiologia, 2011, 662(1): 179-187. doi: 10.1007/s10750-010-0494-2
[6] Agrawal A A. Ecology-Phenotypic plasticity in the interactions and evolution of species [J]. Science, 2001, 294(5541): 321-326. doi: 10.1126/science.1060701
[7] Gilbert J J. Non-genetic polymorphisms in rotifers: environmental and endogenous controls, development, and features for predictable or unpredictable environments [J]. Biological Reviews, 2017, 92(2): 964-992. doi: 10.1111/brv.12264
[8] Pavon-Meza E L, Sarma S S S, Nandini S. Combined effects of temperature, food (Chlorella vulgaris) concentration and predation (Asplanchna girodi) on the morphology of Brachionus havanaensis (Rotifera) [J]. Hydrobiologia, 2007(593): 95-101. doi: 10.1007/s10750-007-9068-3
[9] Zhang H, Hollander J, Hansson L A. Bi-directional plasticity: Rotifer prey adjust spine length to different predator regimes [J]. Scientific Reports, 2017: 7
[10] Gilbert J J. Temperature, kairomones, and phenotypic plasticity in the rotifer Keratella tropica (Apstein, 1907) [J]. Hydrobiologia, 2011, 678(1): 179-190. doi: 10.1007/s10750-011-0847-5
[11] de Beauchamp P. Un facteur de la variabilité chez les Rotifères du genre Brachionus [J]. Comptes Rendus des Seances de l’Academie des Sciences, 1952(234): 573-575.
[12] Stemberger R S, Gilbert J J. Multiple-species induction of morphological defenses in the rotifer Keratella testudo [J]. Ecology, 1987, 68(2): 370-378. doi: 10.2307/1939268
[13] Zagarese H E, Marinone M C. Induction and inhibition of spine development in the rotifer Keratella tropica [J]. Freshwater Biology, 1992, 28(3): 289-300. doi: 10.1111/j.1365-2427.1992.tb00587.x
[14] Stelzer C P. Phenotypic plasticity of body size at different temperatures in a planktonic rotifer: mechanisms and adaptive significance [J]. Functional Ecology, 2002, 16(6): 835-841. doi: 10.1046/j.1365-2435.2002.00693.x
[15] Gilbert J J. Predator-induced defense in rotifers: developmental lags for morph transformations, and effect on population growth [J]. Aquatic Ecology, 2012, 46(4): 475-486. doi: 10.1007/s10452-012-9416-x
[16] Baião C F, Caramujo M-J, Boavida M-J. Morphological variation of Keratella cochlearis in the presence of cyclopoid copepods in Meimoa Reservoir [J]. Limnetica, 1999(16): 33-38.
[17] Stemberger R S. Reproductive costs and hydrodynamic benefits of chemically-induced defenses in Keratella testudo [J]. Limnology and Oceanography, 1988, 33(4): 593-606. doi: 10.4319/lo.1988.33.4.0593
[18] Gilbert J J, Stemberger R S. Asplanchna-induced polymorphism in the rotifer Keratella slacki [J]. Limnology and Oceanography, 1984, 29(6): 1309-1316. doi: 10.4319/lo.1984.29.6.1309
[19] Pourriot R. Predator-prey relationships in rotifers - effect of Asplanchna substance on morphology of prey (Brachionus bidentata) [J]. Annales d'Hydrobiologie, 1974, 5(1): 43-55.
[20] Stemberger R S. Food limitation, spination, and reproduction in Brachionus calyciflorus [J]. Limnology and Oceanography, 1990, 35(1): 33-44. doi: 10.4319/lo.1990.35.1.0033
[21] Nandini S, Zuniga-Juarez F S, Sarma S S S. Direct and indirect effects of invertebrate predators on population level responses of the rotifer Brachionus havanaensis (Rotifera) [J]. International Review of Hydrobiology, 2014, 99(1-2): 107-116. doi: 10.1002/iroh.201301709
[22] Li X X, Niu C J. Maternal effects via resting eggs in predator defense of the rotifer Brachionus calyciflorus [J]. Zoological Science, 2018, 35(1): 49-56. doi: 10.2108/zs170062
[23] Yin X W, Zhao N X, Wang B H, et al. Transgenerational and within-generational induction of defensive morphology in Brachionus calyciflorus (Rotifera): importance of maternal effect [J]. Hydrobiologia, 2015, 742(1): 313-325. doi: 10.1007/s10750-014-1995-1
[24] Gilbert J J, McPeek M A. Maternal age and spine development in a rotifer: ecological implications and evolution [J]. Ecology, 2013, 94(10): 2166-2172. doi: 10.1890/13-0768.1
[25] Stemberger R S, Gilbert J J. Spine development in the rotifer Keratella cochlearis: Induction by Cyclopoid Copepods and Asplanchna [J]. Freshwater Biology, 1984, 14(6): 639-647. doi: 10.1111/j.1365-2427.1984.tb00183.x
[26] Murren C J, Auld J R, Callahan H, et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity [J]. Heredity, 2015, 115(4): 293-301. doi: 10.1038/hdy.2015.8
[27] Auld J R, Agrawal A A, Relyea R A. Re-evaluating the costs and limits of adaptive phenotypic plasticity [J]. Proceedings of the Royal Society B-Biological Sciences, 2010, 277(1681): 503-511. doi: 10.1098/rspb.2009.1355
[28] Yin X W, Jin W, Zhou Y C, et al. Hidden defensive morphology in rotifers: benefits, costs, and fitness consequences [J]. Scientific Reports, 2017: 7
[29] Gilbert J J. The cost of predator-induced morphological defense in rotifers: experimental studies and synthesis [J]. Journal of Plankton Research, 2013, 35(3): 461-472. doi: 10.1093/plankt/fbt017
[30] Aranguiz-Acuna A, Ramos-Jiliberto R, Sarma N, et al. Benefits, costs and reactivity of inducible defences: an experimental test with rotifers [J]. Freshwater Biology, 2010, 55(10): 2114-2122. doi: 10.1111/j.1365-2427.2010.02471.x
[31] Sanoamuang L O. The effect of temperature on morphology, life-history and growth-rate of Filinia terminalis (Plate) and Filinia cf. Pejleri Hutchinson in culture [J]. Freshwater Biology, 1993, 30(2): 257-267. doi: 10.1111/j.1365-2427.1993.tb00807.x
[32] Coelho P N, Braghin L S M, Lansac-Toha F A, et al. Occurrence of concavities on the lorica of two species of Testudinella (Rotifera, Monogononta, Testudinellidae) [J]. Biota Neotropica, 2019, 19(2): e20180633. doi: 10.1590/1676-0611-bn-2018-0633
[33] Halbach U. Factors determining temporal variation in Brachionus calyciflorus Pallas (Rotatoria) [J]. Oecologia, 1970, 4(3): 262-318. doi: 10.1007/BF00377250
[34] Pourriot R. Rapports entre la température, la taille des adultes, la longueur des œufs et le taux de dévelopment embryonnaire chez Brachionus calyciflorus Pallas (Rotifère) [J]. Annales d’Hydrobiologie, 1973(4): 103-115.
[35] Ge Y L, Luo T, Ge C C, et al. Comparison of the life-history parameters and competition outcome with Moina macrocopa between two morphs of Brachionus forficula [J]. Scientific Reports, 2018: 8.
[36] Gilbert J J. Spine development in Brachionus quadridentatus from an Australian billabong: genetic variation and induction by Asplanchna [J]. Hydrobiologia, 2001(446): 19-28.
[37] 殷旭旺, 赵文, 毕进红, 等. 卜氏晶囊轮虫对4种臂尾轮虫形态可塑性的影响 [J]. 大连水产学院学报, 2009, 24(6): 493-496. Yin X W, Zhao W, Bi J H, et al. Rotifer Asplanchna brightwellii induced morphological plasticity in four Brachionus rotifer species [J]. Journal of Dalian Fisheries University, 2009, 24(6): 493-496.
[38] Pourriot R. Étude experimentale de variations morphologiques chez certaines espéces de Rotiféres [J]. Bulletin de la Société Zoologiques de France, 1964(89): 555-561.
[39] Gilbert J J. Morphological and behavioral responses of a rotifer to the predator Asplanchna [J]. Journal of Plankton Research, 2014, 36(6): 1576-1584. doi: 10.1093/plankt/fbu075
[40] Schaber P, Schrimpf A. On morphology and ecology of the Filinia terminalis-Longiseta-group (Rotatoria) in Bavarian and Tyrolean Lakes [J]. Archiv Fur Hydrobiologie, 1984, 101(1-2): 247-257.
[41] Gilbert J J, Macisaac H J. The susceptibility of Keratella cochlearis to interference from small cladocerans [J]. Freshwater Biology, 1989, 22(2): 333-339. doi: 10.1111/j.1365-2427.1989.tb01106.x
[42] Lindstrom K, Pejler B. Experimental studies on the seasonal variation of the rotifer Keratella cochlearis (Gosse) [J]. Hydrobiologia, 1975, 46(2-3): 191-197. doi: 10.1007/BF00043139
[43] Zhang H, Bronmark C, Hansson L A. Predator ontogeny affects expression of inducible defense morphology in rotifers [J]. Ecology, 2017, 98(10): 2499-2505. doi: 10.1002/ecy.1957
[44] Gilbert J J. Predator-specific inducible defenses in the rotifer Keratella tropica [J]. Freshwater Biology, 2009, 54(9): 1933-1946. doi: 10.1111/j.1365-2427.2009.02246.x
[45] Soto C S, Sarma S S S. Morphometric changes in Lecane stokesii (Pell, 1890) (Rotifera: Lecanidae) induced by allelochemicals from the predator Asplanchnopus multiceps (Schrank, 1793) [J]. Allelopathy Journal, 2009, 24(1): 215-221.
[46] Schoeppner N M, Relyea R A. Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences [J]. Ecology Letters, 2005, 8(5): 505-512. doi: 10.1111/j.1461-0248.2005.00744.x
[47] Weiss L C, Albada B, Becker S M, et al. Identification of Chaoborus kairomone chemicals that induce defences in Daphnia [J]. Nature Chemical Biology, 2018, 14(12): 1133-1139. doi: 10.1038/s41589-018-0164-7
[48] Gilbert J J. Asplanchna and postero-lateral spine production in Brachionus calyciflorus [J]. Archiv Fur Hydrobiologie, 1967, 64(1): 1-8.
[49] Halbach U. Influence of temperature on population dynamics of rotifer Brachionus calyciflorus Pallas [J]. Oecologia, 1970, 4(2): 176-207. doi: 10.1007/BF00377100
[50] Gilbert J J. Induction of different defences by two enemies in the rotifer Keratella tropica: response priority and sensitivity to enemy density [J]. Freshwater Biology, 2011, 56(5): 926-938. doi: 10.1111/j.1365-2427.2010.02538.x
[51] Gilbert J J. Rotifer ecology and embryological induction [J]. Science, 1966, 151(3715): 1234-1237. doi: 10.1126/science.151.3715.1234
[52] Marinone M C, Zagarese H E. A field and laboratory study on factors affecting polymorphism in the rotifer Keratella tropica [J]. Oecologia, 1991, 86(3): 372-377. doi: 10.1007/BF00317603
[53] Gilbert J J. Kairomone-induced Morphological Defenses in Rotifers [M]//Tollrian R, Harvell C D (Eds.), The Ecology and Evolution of Inducible Defenses. Princeton, NJ: Princeton University Press, 1999: 127-141
[54] Riessen H P, Gilbert J J. Divergent developmental patterns of induced morphological defenses in rotifers and Daphnia: Ecological and evolutionary context [J]. Limnology and Oceanography, 2018: 1-17.
[55] Gilbert J J. Effects of an ostracod (Cypris pubera) on the rotifer Keratella tropica: predation and reduced spine development [J]. International Review of Hydrobiology, 2012, 97(5): 445-453. doi: 10.1002/iroh.201201455
[56] Pan L, Xi Y L, Gu J, et al. Interactive effects of algal level and predator density (Asplanchna sieboldi) on the life-history strategy and morphology of Brachionus calyciflorus [J]. Journal of Experimental Zoology Part a-Ecological and Integrative Physiology, 2017, 327(8): 523-531. doi: 10.1002/jez.2139
[57] Otake Y, Kagami M, Kuriyama T, et al. Spatial heterogeneity in induced defense of Brachionus calyciflorus within a single lake caused by a bed of floating-leaved macrophyte Trapa species [J]. Limnology, 2019, 20(1): 29-38. doi: 10.1007/s10201-017-0534-y
[58] Kielbasa A, Walczynska A, Fialkowska E, et al. Seasonal changes in the body size of two rotifer species living in activated sludge follow the temperature-size rule [J]. Ecology and Evolution, 2014, 4(24): 4678-4689. doi: 10.1002/ece3.1292
[59] Green J. Morphological variation of Keratella cochlearis (Gosse) in a backwater of the River Thames [J]. Hydrobiologia, 2005(546): 189-196. doi: 10.1007/s10750-005-4121-6
[60] 项贤领, 朱凌云, 陈莹莹, 等. 微囊藻毒素和温度对萼花臂尾轮虫(Brachionus calyciflorus)形态学特征的影响 [J]. 湖泊科学, 2018, 30(4): 1027-1040. doi: 10.18307/2018.0416 Xiang X L, Zhu L Y, Chen Y Y, et al. Combined effects of the microcytin MC-LR and temperature on the morphological features of Brachionus calyciflorus [J]. Journal of Lake Sciences, 2018, 30(4): 1027-1040. doi: 10.18307/2018.0416
[61] 王金霞. 萼花臂尾轮虫形态和生态特征在中国东部的空间分化 [D]. 合肥: 安徽师范大学, 2010 Wang J X. Spatial variation of morphological and ecological characteristics of Brachionus calyciflorus (Rotifera) from East China [D]. Hefei: Anhui Normal University, 2010
[62] Carlin B. Die Die Planktonrotatorien des Motalaström: zur Taxonomie und Ökologie der Planktonrotatorien (Vol. No. 5) [M]. Meddelanden från Lunds Universtets Limnologiska Institution 1943
[63] Pejler B. On the variation of the rotifer Keratella cochlearis (Gosse) [J]. Zoologiska Bidrag från Uppsala, 1962(35): 1-17.
[64] Wolf J B, Wade M J. What are maternal effects (and what are they not) [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364(1520): 1107-1115. doi: 10.1098/rstb.2008.0238
[65] Heath D D, Blouw D M. Are maternal effects in fish adaptive or merely physiological side effects [J]. Maternal Effects as Adaptations, 1998: 178-201.
[66] Schroder T, Gilbert J J. Maternal age and spine development in the rotifer Brachionus calyciflorus: increase of spine length with birth orders [J]. Freshwater Biology, 2009, 54(5): 1054-1065. doi: 10.1111/j.1365-2427.2008.02153.x
[67] Gilbert J J. Morphological variation and its significance in a polymorphic rotifer: environmental, endogenous, and genetic controls [J]. Bioscience, 2018, 68(3): 169-181. doi: 10.1093/biosci/bix162
[68] Gilbert J J. Further observations on developmental polymorphism and its evolution in the rotifer Brachionus calyciflorus [J]. Freshwater Biology, 1980, 10(3): 281-294. doi: 10.1111/j.1365-2427.1980.tb01202.x
[69] Hammill E, Rogers A, Beckerman A P. Costs, benefits and the evolution of inducible defences: a case study with Daphnia pulex [J]. Journal of Evolutionary Biology, 2008, 21(3): 705-715. doi: 10.1111/j.1420-9101.2008.01520.x
[70] Yin X W, Zhou Y C, Li X C, et al. Reduced investment in sex as a cost of inducible defence in Brachionus calyciflorus (Rotifera) [J]. Freshwater Biology, 2015, 60(1): 89-100. doi: 10.1111/fwb.12469
[71] Halbach U. Adaptive value of cyclomorphic spine production in Brachionus calyciflorus Pallas (Rotatoria).1. Predator-prey relationships in short term experiments [J]. Oecologia, 1971, 6(3): 267-288. doi: 10.1007/BF00344919
[72] Gilbert J J. Polymorphism and sexuality in rotifer Asplanchna, with special reference to effects of prey-type and clonal variation [J]. Archiv Fur Hydrobiologie, 1975, 75(4): 442-483.
[73] Tollrian R, Harvell C D. The Ecology and Evolution of Inducible Defenses [M]. Princeton: Princeton University Press. 1999
[74] 赵乃锡. 萼花臂尾轮虫反捕食形态可塑性研究 [D]. 大连: 大连海洋大学, 2014 Zhao N X. Predator induced morphology plasticity in the rotifer Brachionus calciflorus [D]. Dalian: Dalian Ocean University, 2014
[75] Sarma S S S, Fernández Araiza M A, Nandini S. Competition between Brachionus calyciflorus Pallas and Brachionus patulus (Müller) (Rotifera) in relation to algal food concentration and initial population density [J]. Aquatic Ecology, 1999, 33(4): 339-345. doi: 10.1023/A:1009912816400
[76] Bogdan K G, Gilbert J J. The effects of posterolateral spine length and body length on feeding rate in the Rotifer, Brachionus calyciflorus [J]. Hydrobiologia, 1982, 89(3): 263-268. doi: 10.1007/BF00005713
[77] Halbach U, Jacobs J. Seasonal selection as a factor in rotifer cyclomorphosis [J]. Naturwissenschaften, 1971, 58(6): 326.
[78] DeWitt T J, Sih A, Wilson D S. Costs and limits of phenotypic plasticity [J]. Trends in Ecology & Evolution, 1998, 13(2): 77-81.
-
期刊类型引用(11)
1. 韩书煜, 梁静真, 覃志彪, 黄艳华, 韦慕兰, 蒙兰丽, 黄维, 胡大胜, 黄钧. 山瑞鳖细菌性败血症病原菌的分离鉴定及其毒力基因检测. 水产学报. 2017(09): 1443-1454 . 百度学术
2. 牛志伟, 吕小丽, 黄钧, 韩书煜, 黎姗梅, 梁静真, 韦慕兰, 邓小红. 基于Meta分析的国内鱼、鳖源嗜水气单胞菌毒力基因研究. 西南农业学报. 2017(03): 711-716 . 百度学术
3. 林永润, 李章程, 刀丽梅, 程方俊, 曹立亭, 蒋梦娜, 孙莹莹, 张婷婷. 牛源麦氏弧菌ASP基因的克隆与原核表达. 中国兽医科学. 2017(07): 884-889 . 百度学术
4. Jinhui HOU, Jishuang CHEN, Bosong LUO, Aijun DING, Yanhua HU. Cloning, Expression and Activity Analysis of a Bacterial Serine Protease. Agricultural Biotechnology. 2015(01): 48-51 . 必应学术
5. 杜娜, 顾泽茂, 袁军法, 林蠡, 翟艳花, 刘学芹, 罗宇良. 嗜水气单胞菌气溶素的原核表达及其多克隆抗血清的制备. 华中农业大学学报. 2014(03): 65-71 . 百度学术
6. 胡秀彩, 李雪, 兰云, 张培, 沈晓静, 吕爱军, 朱爱华. 嗜水气单胞菌丝氨酸蛋白酶基因克隆与序列分析. 生物技术. 2014(03): 5-8 . 百度学术
7. 方一风, 潘晓艺, 蔺凌云, 沈锦玉, 尹文林, 姚嘉赟, 郝贵杰, 徐洋. 嗜水气单胞菌对喹诺酮类药物耐药的分子机制. 微生物学报. 2014(02): 174-182 . 百度学术
8. 邰光富, 鄢庆枇, 徐晓津, 李芊, 覃映雪. 鳗鲡外周血白细胞体外吞噬嗜水气单胞菌数量模型的建立. 渔业科学进展. 2013(06): 68-74 . 百度学术
9. 黄钧, 黄艳华, 胡大胜, 罗华平, 施金谷, 彭民毅, 禤均成, 覃丽芬, 滕忠作, 曾桂忠. 黄沙鳖白底板病病原菌的分离鉴定及6种毒力基因检测. 水生生物学报. 2013(05): 844-854 . 本站查看
10. 黄艳华, 黄钧, 胡大胜, 施金谷, 彭民毅, 彭亚. 黄沙鳖红底板病病原菌的分离鉴定及其毒力基因检测. 西南农业学报. 2013(05): 2116-2121+2179 . 百度学术
11. 刘玮, 倪穗, 邱军强, 乐韵, 王建平. 嗜水气单胞菌BYKAH2008AC株外膜蛋白和溶血素双基因的融合表达及免疫原性分析. 生物学杂志. 2012(04): 17-21 . 百度学术
其他类型引用(8)