三峡水库蓄水后期香溪河库湾浮游甲壳动物群落结构

陈星, 叶麟, 谭路, 蔡庆华

陈星, 叶麟, 谭路, 蔡庆华. 三峡水库蓄水后期香溪河库湾浮游甲壳动物群落结构[J]. 水生生物学报, 2020, 44(5): 1070-1079. DOI: 10.7541/2020.124
引用本文: 陈星, 叶麟, 谭路, 蔡庆华. 三峡水库蓄水后期香溪河库湾浮游甲壳动物群落结构[J]. 水生生物学报, 2020, 44(5): 1070-1079. DOI: 10.7541/2020.124
CHEN Xing, YE Lin, TAN Lu, CAI Qing-Hua. CRUSTACEAN ZOOPLANKTON COMMUNITY IN XIANGXI BAY DURING THE LATER IMPOUNDMENT PERIOD OF THE THREE GORGES RESERVOIR[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 1070-1079. DOI: 10.7541/2020.124
Citation: CHEN Xing, YE Lin, TAN Lu, CAI Qing-Hua. CRUSTACEAN ZOOPLANKTON COMMUNITY IN XIANGXI BAY DURING THE LATER IMPOUNDMENT PERIOD OF THE THREE GORGES RESERVOIR[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 1070-1079. DOI: 10.7541/2020.124

三峡水库蓄水后期香溪河库湾浮游甲壳动物群落结构

基金项目: 科技部科技基础性工作专项(2014FY120200); 支撑长江经济带可持续发展的生态环境保护战略对策研究; 国家自然科学基金(31670534)资助
详细信息
    作者简介:

    陈星(1992—), 男, 硕士研究生; 主要从事浮游动物生态学研究。E-mail: chenxing@ihb.ac.cn

    通信作者:

    蔡庆华(1964—), 主要从事流域生态学研究。E-mail: qhcai@ihb.ac.cn

  • 中图分类号: Q145+.1

CRUSTACEAN ZOOPLANKTON COMMUNITY IN XIANGXI BAY DURING THE LATER IMPOUNDMENT PERIOD OF THE THREE GORGES RESERVOIR

Funds: Supported by the Special Project of Science and Technology Basic Work of Ministry of Science Technology of China (2014FY120200), the Strategic Countermeasures of Ecological and Environmental Protection in Supporting Sustainable Development of the Yangtze Economic Belt, the National Natural Science Foundation of China (31670534)
    Corresponding author:
  • 摘要: 为了解三峡水库蓄水后期香溪河库湾浮游甲壳动物群落结构及其时空变化, 于2015年1月至2017年12月对香溪河库湾浮游甲壳动物进行了逐月采样分析。共鉴定出浮游甲壳动物23种, 其中枝角类10种, 桡足类13种。出现频率较高的物种均为长江流域常见种, 生物量和密度峰值分别出现在5月和6月, 在1月和2月则未能采集到标本, 生物量和密度在年际间差异显著, 但群落组成差异不显著, 群落季节变化规律表现为春季-夏季以蚤状溞(Daphnia pulex)和僧帽溞(Daphnia cucullata)大型枝角类占优势, 秋季以简弧象鼻溞(Bosmina coregoni)小型种占优势。库中生物多样性指数高于库首和库尾, 库首和库尾生物多样性指数差异不明显, 生物多样性在季节上同样具有一定差异。CCA分析表明水温、叶绿素浓度和水深是解释浮游甲壳动物群落变化重要因素。我们的研究结果表明尽管香溪河库湾营养盐、水温、浮游甲壳动物生物量和密度均未达到稳定状态, 但群落组成在年际间无显著性差异, 浮游甲壳动物物种丰富度也高于蓄水初期, 生物多样性指数存在一定的时空差异, 适当程度的干扰有利于维持浮游甲壳动物较高的生物多样性。
    Abstract: To understand the community structure, temporal and spatial changes of crustacean zooplankton in Xiangxi Bay of the Three Gorges Reservoir during the later impoundment period, monthly sampling from January 2015 to December 2017 and analysis of crustacean zooplankton in Xiangxi Bay of the Three Gorges Reservoir were conducted. A total of 23 species of crustacean zooplankton were identified, of which 10 species belong to Cladocera, and 13 species belong to Copepoda. Species with a higher frequency are the common species in the Yangtze River Basin. The peaks of biomass and density occurred in May and June, respectively. We did not collect specimens in January and February. The interannual differences in biomass and density vary significantly, and the difference of community composition was not significant. Community seasonal pattern in spring and summer was dominated by large size Cladocera (Daphnia pulex and Daphnia cucullata), and in autumn was dominated by small size Cladocera (Bosmina coregoni). The biodiversity index in the middle reservoir was higher than that of the upper regions and downstream parts. There was no significant difference in biodiversity index between upper regions and downstream parts, and there was also difference in biodiversity index of some seasons. Results from CCA showed that water temperature, chlorophyll concentrate and water depth were important factors explaining the change of crustacean zooplankton community. The results showed that nutrient, water temperature, crustacean zooplankton biomass and density all have not reached a stable state, but the community composition in different years was not significant. The richness of Crustacean zooplankton species was higher than that of early reservoir. The biological diversity index has a certain difference in time and space, and an appropriate degree of interference may help maintain high biodiversity diversity.
  • 图  1   采样点在三峡水库香溪河库湾中的位置

    Figure  1.   Location of sampling sites at Xiangxi Bay of the Three Gorges Reservoir

    图  2   三峡水库香溪河库湾TN、NO3-N、TP、PO4-P时空变化

    Figure  2.   Spatial and temporal variations of TN, NO3-N, TP and PO4-P in Xiangxi Bay of the Three Gorges Reservoir

    图  3   三峡水库香溪河库湾浮游甲壳动物密度、生物量时间变化

    Figure  3.   Temporal variations of crustacean zooplankton density and biomass in Xiangxi Bay of the Three Gorges Reservoir

    图  4   香溪河库湾不同区域基于个体自疏曲线

    实线表示模型插值部分, 虚线表示模型外推部分, 阴影区域表示估算值95%的置信区间; 下同

    Figure  4.   Individual-based rarefactions curve for each areas in Xiangxi Bay

    Solid lines refer to the interpolation component of the model, dotted lines refer to the extrapolation component of the model. Shaded areas indicate the 95% confidence interval of the estimative. The same applies below

    图  5   香溪河库湾不同季节基于个体自疏曲线

    Figure  5.   Individual-based rarefactions curve for each seasons in Xiangxi Bay

    图  6   浮游甲壳动物与环境因子的典范对应分析排序图

    文本表示物种编号, 物种编号见表 2, 箭头代表环境因子

    Figure  6.   Ordination plot of canonical correspondence analysis for crustacean zooplankton with selected environmental variables

    Text represent species code, species code shown in Tab. 2, environmental factors shown as an arrow

    表  1   三峡水库香溪河库湾水体理化指标的统计描述

    Table  1   Statistical description of physical and chemical indexes of Xiangxi Bay of the Three Gorges Reservoir

    环境因子Environmental factors210520162017P
    平均值Mean标准差Standard deviation平均值Mean标准差Standard deviation平均值Mean标准差Standard deviation
    水温Water temperature (℃) 17.77 7.38 21.48 5.56 20.16 5.22<0.01
    总氮Total nitrogen (mg/L) 1.75 0.19 1.68 0.32 1.84 0.19<0.01
    硝氮Nitrate nitrogen (mg/L) 1.58 0.26 1.54 0.33 1.70 0.15<0.01
    氨氮Ammonia nitrogen (mg/L) 0.09 0.10 0.07 0.05 0.07 0.08 0.58
    总磷Total phosphorous (mg/L) 0.16 0.08 0.16 0.11 0.10 0.05 <0.001
    磷酸盐Phosphate (mg/L) 0.13 0.07 0.14 0.10 0.09 0.04 <0.001
    可溶性硅Dissolved silicon (mg/L) 3.50 0.62 3.35 0.55 3.19 0.78 0.09
    溶解碳Dissolved carbon (mg/L) 1.82 0.68 1.71 0.47 1.78 0.94 0.93
    电导率Conductivity (μs/cm)372.1150.92331.9719.80349.4938.87 0.19
    pH 8.60 0.42 8.85 0.73 8.66 0.82 0.29
    浊度Turbidity (NTU) 4.02 3.92 3.59 3.14 4.85 3.89 0.42
    水深Depth (m) 39.7315.63 37.2313.49 36.1012.99 0.38
    透明度Secchi depth (cm)199.8390.60200.0078.89176.8876.64 0.34
    叶绿素a Chlorophyll a (μg/L) 10.0013.29 9.8512.03 7.37 7.96 0.06
    下载: 导出CSV

    表  2   三峡水库香溪河库湾浮游甲壳动物不同年际相对丰度、出现频率

    Table  2   The relative abundance and frequency of crustacean zooplankton in Xiangxi Bay of Three Gorges Reservoir in different years (%)

    编号Code物种Species201520162017
    相对丰度Relative abundance出现频率Occurrence frequency相对丰度Relative abundance出现频率Occurrence frequency相对丰度Relative abundance出现频率Occurrence frequency
    SP1裸腹溞属Moina sp.<1 2.8 1.4 5.6 3.113.9
    SP2短尾秀体溞Diaphanosoma brachyurum<116.7<1 2.8 2.925
    SP3蚤状溞Daphnia pulex 9.216.7 5.716.711.827.8
    SP4僧帽溞Daphnia cucullata48.730.6 6.819.418.830.6
    SP5点滴尖额溞Alona guttata<1 8.3 1.3 8.3<113.9
    SP6简弧象鼻溞Bosmina coregoni13.038.910.822.2 4.219.4
    SP7低额溞属Simocephalus sp.00 3.1 5.6 1.1 8.3
    SP8圆形盘肠溞Chydornus sphaericus<116.7<1 8.3 1.316.7
    SP9透明薄皮溞Leptodora kindti<1 5.6<1 2.8 1.111.1
    SP10网纹溞属Ceriodaphnia sp.<1 8.3<1 5.6<1 5.6
    SP11汤匙华哲水蚤Sinocalanus dorrii 1.616.717.519.4 1.419.4
    SP12大型中镖水蚤Sinodiaptomus sarsi00<1 5.600
    SP13右突新镖水蚤Neodiaptomus schmackeri00<1 5.6<1 5.6
    SP14指状许水蚤Schmackeria inopinus<1 2.8<1 2.8<1 5.6
    SP15球状许水蚤Schmackeria forbesi00<1 5.6<1 8.3
    SP16长江新镖水蚤Neodiaptomus yangtsekiangensis<1 2.8 5.113.9<1 8.3
    SP17英勇剑水蚤Cyclops strenuuss 1.430.6 3.316.7 1.511.1
    SP18广布中剑水蚤Mesocyclops leuckarti 1.733.312.536.1 7.119.4
    SP19北碚中剑水蚤Mesocyclops pehpeiesis00<113.9<1 8.3
    SP20台湾温剑水蚤Thermocyclops taihokuensis 1.511.111.1 8.3<1 8.3
    SP21毛饰拟剑水蚤Paracyclops fimbriatus<1 2.8 1.1 8.3<1 2.8
    SP22锯缘真剑水蚤Eucyclops serrulatus<1 8.3<1 5.6<1 2.8
    SP23跨立小剑水蚤Microcyclops varicans20.047.214.936.131.038.9
    下载: 导出CSV

    表  3   广义线性模型的统计结果

    Table  3   Statistic results of general linear models

    变量
    Varia-bles
    回归系数
    Esti-mate
    标准误
    Standard
    deviation
    P
    P value
    AIC解释率Percentage
    of explana-tion (%)
    密度DensityChl. a0.220.07<0.001***45.8918.9
    NH4-N4.591.34<0.001***45.759.5
    DOC–1.150.420.007**41.790.3
    生物量BiomassChl. a1.220.26<0.001***304.6227.6
    WT3.340.87<0.001***298.509.6
    NO3-N7.392.570.005**292.442.4
    PO4-P11.114.010.007**291.681.6
    下载: 导出CSV
  • [1] 蔡庆华, 孙志禹. 三峡水库水环境与水生态研究的进展与展望 [J]. 湖泊科学, 2012, 24(2): 169-177. doi: 10.3969/j.issn.1003-5427.2012.02.001

    Cai Q H, Sun Z Y. Water environment and aquatic ecosystem of Three Gorges Reservoir, China: progress and prospects [J]. Journal of Lake Sciences, 2012, 24(2): 169-177. doi: 10.3969/j.issn.1003-5427.2012.02.001

    [2]

    Guzy J C, Eskew E A, Halstead B J, et al. Influence of damming on anuran species richness in riparian areas: A test of the serial discontinuity concept [J]. Ecology and Evolution, 2018, 8(4): 2268-2279.

    [3]

    Ward J V, Stanford J A. The serial discontinuity concept-extending the model to floodplain rivers [J]. Regulated Rivers-Research & Management, 1995, 10(2-4): 159-168.

    [4]

    Kennedy R H, Tundisi J G, Straskraba V. Reservoirs and the limnologist’s growing role in sustainable water resource management [J]. Hydrobiologia, 2003, 504(1-3): xi-xii. doi: 10.1023/B:HYDR.0000008470.25059.f2

    [5]

    Ye L, Xu Y Y, Han X Q, et al. Daily dynamics of nutrients and chlorophyll a during a spring phytoplankton bloom in Xiangxi Bay of the Three Gorges Reservoir [J]. Journal of Freshwater Ecology, 2006, 21(2): 315-321. doi: 10.1080/02705060.2006.9665001

    [6]

    Xu Y Y, Cai Q H, Shao M L, et al. Seasonal dynamics of suspended solids in a giant subtropical reservoir (China) in relation to internal processes and hydrological features [J]. Quaternary International, 2009, 208(1): 138-144.

    [7] 郑飞燕, 谭路, 陈星, 等. 三峡水库香溪河库湾氮磷分布状况及沉积物污染评价 [J]. 生态毒理学报, 2018, 13(4): 49-59. doi: 10.7524/AJE.1673-5897.20180505001

    Zheng F Y, Tan L, Chen X, et al. Spatial distribution of nitrogen and phosphorus, and pollution evaluation for sediment in Xiangxi Bay, Three Gorges Reservoir [J]. Asian Journal of Ecotoxicology, 2018, 13(4): 49-59. doi: 10.7524/AJE.1673-5897.20180505001

    [8]

    Liu L, Liu D F, Johnson D M, et al. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: implications for management [J]. Water Research, 2012, 46(7): 2121-2130. doi: 10.1016/j.watres.2012.01.029

    [9] 况琪军, 毕永红, 周广杰, 等. 三峡水库蓄水前后浮游植物调查及水环境初步分析 [J]. 水生生物学报, 2005, 29(4): 353-358. doi: 10.3321/j.issn:1000-3207.2005.04.001

    Kuang Q J, Bi Y H, Zhou G J, et al. Study on the phytoplankton in the Three Gorges Reservoir before and after sluice and the protection of water quality [J]. Acta Hydrobiologica Sinica, 2005, 29(4): 353-358. doi: 10.3321/j.issn:1000-3207.2005.04.001

    [10]

    Zhou S C, Huang X F, Cai Q H. Vertical distribution and migration of planktonic rotifers in Xiangxi Bay of the Three Gorges Reservoir, China [J]. Journal of Freshwater Ecology, 2007, 22(3): 441-449. doi: 10.1080/02705060.2007.9664174

    [11]

    Shao M L, Xie Z C, Ye L, et al. Changes in the benthic macroinvertebrates in Xiangxi Bay following Dam closure to form the Three Gorges Reservoir [J]. Journal of Freshwater Ecology, 2006, 21(4): 717-719. doi: 10.1080/02705060.2006.9664135

    [12]

    Zhang K, Xiong X, Hu H, et al. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China [J]. Environmental Science & Technology, 2017, 51(7): 3794-3801.

    [13] 薛俊增, 叶麟, 蔡庆华, 等. 三峡水库坝前段蓄水前后枝角类的周年变化 [J]. 水生生物学报, 2006, 30(1): 58-63. doi: 10.3321/j.issn:1000-3207.2006.01.011

    Xue J Z, Ye L, Cai Q H, et al. Variation of cladocerans from maoping to Guizhou in the Three Gorges Reservoir before and after impoundment [J]. Acta Hydrobiologica Sinica, 2006, 30(1): 58-63. doi: 10.3321/j.issn:1000-3207.2006.01.011

    [14] 薛俊增, 叶麟, 蔡庆华. 三峡水库坝前段蓄水前后桡足类种类组成的变化 [J]. 水生生物学报, 2006, 30(1): 113-115. doi: 10.3321/j.issn:1000-3207.2006.01.021

    Xue J Z, Ye L, Cai Q H. Variation of copepod from maoping to Guizhou in the Three Gorges Reservoir before and after impoundment [J]. Acta Hydrobiologica Sinica, 2006, 30(1): 113-115. doi: 10.3321/j.issn:1000-3207.2006.01.021

    [15]

    Vijverberg J, Boersma M. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus [J]. Hydrobiologia, 1997, 360(1): 233-242.

    [16]

    Sommer U, Gliwicz Z M, Lampert W, et al. The peg-model of seasonal succession of planktonic events in fresh waters [J]. Archiv Fur Hydrobiologie, 1986, 106(4): 433-471.

    [17]

    Dodson S I, Lillie R A, Will-Wolf S. Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes [J]. Ecological Applications, 2005, 15(4): 1191-1198. doi: 10.1890/04-1494

    [18]

    Tang T, Cai Q H, Liu R Q, et al. Distribution of epilithic algae in the Xiangxi River system and their relationships with environmental factors [J]. Journal of Freshwater Ecology, 2002, 17(3): 345-352. doi: 10.1080/02705060.2002.9663907

    [19]

    Ye L, Han X Q, Xu Y Y, et al. Spatial analysis for spring bloom and nutrient limitation in Xiangxi bay of Three Gorges Reservoir [J]. Environmental Monitoring and Assessment, 2007, 127(1-3): 135-145. doi: 10.1007/s10661-006-9267-9

    [20] 韩博平. 中国水库生态学研究的回顾与展望 [J]. 湖泊科学, 2010, 22(2): 151-160.

    Han B P. Reservoir ecology and limnoogy in China: a retrospective comment [J]. Journal of Lake Sciences, 2010, 22(2): 151-160.

    [21] 蒋燮治, 堵南山. 中国动物志·节肢动物门·甲壳纲·淡水枝角类 [M]. 北京: 科学出版社, 1979: 79-273

    Jiang X Z, Du N S. Fauna Sinica; Crustacea: freshwater Cladocera [M]. Beijing: Science Press, 1979: 79-273

    [22] 中国科学院动物研究所甲壳动物研究组. 中国动物志·节肢动物门·甲壳纲·淡水桡足类 [M]. 北京: 科学出版社, 1979: 53-420

    Research Group of Carcinology, Institute of Zoology. Fauna Sinica; Crustacea: Freshwater Copepoda [M]. Beijing: Science Press, 1979: 53-420

    [23] 向贤芬, 虞功亮, 陈受忠. 长江流域的枝角类 [M]. 北京: 中国科学技术出版社, 2016: 34-130

    Xiang X F, Yu G L, Chen S Z. Cladocera in Yangtze River Basin [M]. Beijing: China Science and Technology Press, 2016: 34-130

    [24]

    Błędzki L A, Rybak J I. Freshwater Crustacean Zooplankton of Europe [M]. Berlin: Springer International Publishing, 2016: 103-473

    [25] 章宗涉, 黄祥飞. 淡水浮游生物研究方法 [M]. 北京: 科学出版社, 1991: 367-370

    Zhang Z S, Huang X F. Methods for Study on Freshwater Plankton [M]. Beijing: Science Press, 1991: 367-370

    [26] 蔡庆华. 水域生态系统观测规范—中国生态系统研究网络(CERN)长期观测规范丛书 [M]. 北京: 中国环境科学出版社, 2007: 31-104

    Cai Q H. Specifications for Observation of Aquatic Ecosystems-Chinese Ecosystem Research Network (CERN) Series of Specifications for Long-term Observation [M]. Beijing: China Environment Science Press, 2007: 31-104

    [27]

    Gotelli N J, K. C R Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness [J]. Ecology Letters, 2001, 4(4): 370-391.

    [28]

    Chao A, J. Gotelli N, Hsieh T C, et al Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies [J]. Ecological Monographs, 2014, 84(1): 45-67. doi: 10.1890/13-0133.1

    [29]

    Maicher V, Sáfián S, Murkwe M, et al. Flying between raindrops: Strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon [J]. Ecology and Evolution, 2018, 8(2): 12761-12772.

    [30]

    Chiu C-H, Chao A. Distance-based functional diversity measures and their decomposition: a framework based on hill numbers [J]. PLoS One, 2014, 9(7): e100014. doi: 10.1371/journal.pone.0100014

    [31]

    Luke S H, Dow R A, Butler S, et al. The impacts of habitat disturbance on adult and larval dragonflies (Odonata) in rainforest streams in Sabah, Malaysian Borneo [J]. Freshwater Biology, 2017, 62(3): 491-506. doi: 10.1111/fwb.12880

    [32]

    Hsieh T C, Chao A. Rarefaction and extrapolation: making fair comparison of abundance-sensitive phylogenetic diversity among multiple assemblages [J]. Systematic Biology, 2016, 66(1): 100-111.

    [33]

    Hsieh T C, Ma K H, Chao A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers) [J]. Methods in Ecology & Evolution, 2016, 7(12): 1451-1456.

    [34]

    Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO [M]. Cambridge: Cambridge University Press, 2003: 43-59

    [35]

    Oksanen J, Blanchet F G, Friendly M, et al. Package “vegan”: community ecology package. 2018, R package version, 2.5-3

    [36]

    Seda J, Devetter M. Zooplankton community structure along a trophic gradient in a canyon-shaped dam reservoir [J]. Journal of Plankton Research, 2000, 22(10): 1829-1840. doi: 10.1093/plankt/22.10.1829

    [37]

    Simões N R, Nunes A H, Dias J D, et al. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments [J]. Hydrobiologia, 2015, 758(1): 3-17. doi: 10.1007/s10750-015-2260-y

    [38]

    Yang Y F, Huang X F, Liu J K. Long-term changes in crustacean zooplankton and water quality in a shallow, eutrophic Chinese lake densely stocked with fish [J]. Hydrobiologia, 1998, 391(1-3): 193-201.

    [39]

    Havel J E, Medley K A, Dickerson K D, et al. Effect of main-stem dams on zooplankton communities of the Missouri River (USA) [J]. Hydrobiologia, 2009, 628(1): 121-135. doi: 10.1007/s10750-009-9750-8

    [40]

    Pinel-Alloul P. Spatial heterogeneity as a multiscale characteristic of zooplankton community [J]. Hydrobiologia, 1995, 300(1): 17-42.

    [41]

    Massicotte P, Frenette J J, Proulx R, et al. Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem [J]. Landscape Ecology, 2014, 29(1): 67-79. doi: 10.1007/s10980-013-9946-1

    [42]

    Sarvala J. Effect of temperature on the duration of egg, nauplius and copepodite development of some freshwater benthic Copepoda [J]. Freshwater Biology, 2010, 9(6): 515-534.

    [43]

    Beaver J R, Tausz C E, Renicker T R, et al. The late summer crustacean zooplankton in western U. S. A reservoirs reflects ecoregion, temperature and latitude [J]. Freshwater Biology, 2014, 59(6): 1173-1186. doi: 10.1111/fwb.12338

    [44]

    Shurin J B, Monika W, Rita A, et al. Environmental stability and lake zooplankton diversity-contrasting effects of chemical and thermal variability [J]. Ecology Letters, 2010, 13(4): 453-463. doi: 10.1111/j.1461-0248.2009.01438.x

    [45]

    Yvon-Durocher G, Montoya J M, Trimmer M, et al. Warming alters the size spectrum and shifts the distribution of biomass in aquatic ecosystems [J]. Global Change Biology, 2011, 17(4): 1681-1694. doi: 10.1111/j.1365-2486.2010.02321.x

    [46]

    Pijanowska J, Dawidowicz P. The lack of vertical migration in Daphnia: the effect of homogenously distributed food [J]. Hydrobiologia, 1987, 148(2): 175-181. doi: 10.1007/BF00008403

    [47]

    Nizan S, Dimentman C, Shilo M. Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna [J]. Limnology and Oceanography, 1986, 31(3): 497-502. doi: 10.4319/lo.1986.31.3.0497

    [48]

    Chislock M F, Orlando S, Jernigan L M, et al. Do high concentrations of microcystin prevent Daphnia control of phytoplankton [J]? Water Research, 2013, 47(6): 1961-1970. doi: 10.1016/j.watres.2012.12.038

    [49]

    Geraldes A M, Boavida M J. Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels [J]. Aquatic Ecology, 2007, 41(2): 273-284. doi: 10.1007/s10452-006-9057-z

    [50]

    Burdis R M, Hirsch J K. Crustacean zooplankton dynamics in a natural riverine lake, Upper Mississippi River [J]. Journal of Freshwater Ecology, 2017, 32(1): 240-258.

  • 期刊类型引用(2)

    1. 鲁媛晨,李艳华,余丽华,韩丹翔,马海燕. 液相色谱-串联质谱法定量分析莱茵衣藻1, 3-二油酸-2-棕榈酸甘油三酯. 水生生物学报. 2022(07): 1052-1059 . 本站查看
    2. 任慧莹,刘炎清,常明向. 国内10种粮食中总半乳糖脂提取及含量研究. 食品安全质量检测学报. 2022(20): 6734-6740 . 百度学术

    其他类型引用(0)

图(6)  /  表(3)
计量
  • 文章访问数:  2473
  • HTML全文浏览量:  1066
  • PDF下载量:  65
  • 被引次数: 2
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2019-06-16
  • 网络出版日期:  2020-07-05
  • 发布日期:  2020-09-29

目录

    /

    返回文章
    返回