CRUSTACEAN ZOOPLANKTON COMMUNITY IN XIANGXI BAY DURING THE LATER IMPOUNDMENT PERIOD OF THE THREE GORGES RESERVOIR
-
摘要: 为了解三峡水库蓄水后期香溪河库湾浮游甲壳动物群落结构及其时空变化, 于2015年1月至2017年12月对香溪河库湾浮游甲壳动物进行了逐月采样分析。共鉴定出浮游甲壳动物23种, 其中枝角类10种, 桡足类13种。出现频率较高的物种均为长江流域常见种, 生物量和密度峰值分别出现在5月和6月, 在1月和2月则未能采集到标本, 生物量和密度在年际间差异显著, 但群落组成差异不显著, 群落季节变化规律表现为春季-夏季以蚤状溞(Daphnia pulex)和僧帽溞(Daphnia cucullata)大型枝角类占优势, 秋季以简弧象鼻溞(Bosmina coregoni)小型种占优势。库中生物多样性指数高于库首和库尾, 库首和库尾生物多样性指数差异不明显, 生物多样性在季节上同样具有一定差异。CCA分析表明水温、叶绿素浓度和水深是解释浮游甲壳动物群落变化重要因素。我们的研究结果表明尽管香溪河库湾营养盐、水温、浮游甲壳动物生物量和密度均未达到稳定状态, 但群落组成在年际间无显著性差异, 浮游甲壳动物物种丰富度也高于蓄水初期, 生物多样性指数存在一定的时空差异, 适当程度的干扰有利于维持浮游甲壳动物较高的生物多样性。Abstract: To understand the community structure, temporal and spatial changes of crustacean zooplankton in Xiangxi Bay of the Three Gorges Reservoir during the later impoundment period, monthly sampling from January 2015 to December 2017 and analysis of crustacean zooplankton in Xiangxi Bay of the Three Gorges Reservoir were conducted. A total of 23 species of crustacean zooplankton were identified, of which 10 species belong to Cladocera, and 13 species belong to Copepoda. Species with a higher frequency are the common species in the Yangtze River Basin. The peaks of biomass and density occurred in May and June, respectively. We did not collect specimens in January and February. The interannual differences in biomass and density vary significantly, and the difference of community composition was not significant. Community seasonal pattern in spring and summer was dominated by large size Cladocera (Daphnia pulex and Daphnia cucullata), and in autumn was dominated by small size Cladocera (Bosmina coregoni). The biodiversity index in the middle reservoir was higher than that of the upper regions and downstream parts. There was no significant difference in biodiversity index between upper regions and downstream parts, and there was also difference in biodiversity index of some seasons. Results from CCA showed that water temperature, chlorophyll concentrate and water depth were important factors explaining the change of crustacean zooplankton community. The results showed that nutrient, water temperature, crustacean zooplankton biomass and density all have not reached a stable state, but the community composition in different years was not significant. The richness of Crustacean zooplankton species was higher than that of early reservoir. The biological diversity index has a certain difference in time and space, and an appropriate degree of interference may help maintain high biodiversity diversity.
-
-
图 4 香溪河库湾不同区域基于个体自疏曲线
实线表示模型插值部分, 虚线表示模型外推部分, 阴影区域表示估算值95%的置信区间; 下同
Figure 4. Individual-based rarefactions curve for each areas in Xiangxi Bay
Solid lines refer to the interpolation component of the model, dotted lines refer to the extrapolation component of the model. Shaded areas indicate the 95% confidence interval of the estimative. The same applies below
表 1 三峡水库香溪河库湾水体理化指标的统计描述
Table 1 Statistical description of physical and chemical indexes of Xiangxi Bay of the Three Gorges Reservoir
环境因子Environmental factors 2105 2016 2017 P 平均值Mean 标准差Standard deviation 平均值Mean 标准差Standard deviation 平均值Mean 标准差Standard deviation 水温Water temperature (℃) 17.77 7.38 21.48 5.56 20.16 5.22 <0.01 总氮Total nitrogen (mg/L) 1.75 0.19 1.68 0.32 1.84 0.19 <0.01 硝氮Nitrate nitrogen (mg/L) 1.58 0.26 1.54 0.33 1.70 0.15 <0.01 氨氮Ammonia nitrogen (mg/L) 0.09 0.10 0.07 0.05 0.07 0.08 0.58 总磷Total phosphorous (mg/L) 0.16 0.08 0.16 0.11 0.10 0.05 <0.001 磷酸盐Phosphate (mg/L) 0.13 0.07 0.14 0.10 0.09 0.04 <0.001 可溶性硅Dissolved silicon (mg/L) 3.50 0.62 3.35 0.55 3.19 0.78 0.09 溶解碳Dissolved carbon (mg/L) 1.82 0.68 1.71 0.47 1.78 0.94 0.93 电导率Conductivity (μs/cm) 372.11 50.92 331.97 19.80 349.49 38.87 0.19 pH 8.60 0.42 8.85 0.73 8.66 0.82 0.29 浊度Turbidity (NTU) 4.02 3.92 3.59 3.14 4.85 3.89 0.42 水深Depth (m) 39.73 15.63 37.23 13.49 36.10 12.99 0.38 透明度Secchi depth (cm) 199.83 90.60 200.00 78.89 176.88 76.64 0.34 叶绿素a Chlorophyll a (μg/L) 10.00 13.29 9.85 12.03 7.37 7.96 0.06 表 2 三峡水库香溪河库湾浮游甲壳动物不同年际相对丰度、出现频率
Table 2 The relative abundance and frequency of crustacean zooplankton in Xiangxi Bay of Three Gorges Reservoir in different years (%)
编号Code 物种Species 2015 2016 2017 相对丰度Relative abundance 出现频率Occurrence frequency 相对丰度Relative abundance 出现频率Occurrence frequency 相对丰度Relative abundance 出现频率Occurrence frequency SP1 裸腹溞属Moina sp. <1 2.8 1.4 5.6 3.1 13.9 SP2 短尾秀体溞Diaphanosoma brachyurum <1 16.7 <1 2.8 2.9 25 SP3 蚤状溞Daphnia pulex 9.2 16.7 5.7 16.7 11.8 27.8 SP4 僧帽溞Daphnia cucullata 48.7 30.6 6.8 19.4 18.8 30.6 SP5 点滴尖额溞Alona guttata <1 8.3 1.3 8.3 <1 13.9 SP6 简弧象鼻溞Bosmina coregoni 13.0 38.9 10.8 22.2 4.2 19.4 SP7 低额溞属Simocephalus sp. 0 0 3.1 5.6 1.1 8.3 SP8 圆形盘肠溞Chydornus sphaericus <1 16.7 <1 8.3 1.3 16.7 SP9 透明薄皮溞Leptodora kindti <1 5.6 <1 2.8 1.1 11.1 SP10 网纹溞属Ceriodaphnia sp. <1 8.3 <1 5.6 <1 5.6 SP11 汤匙华哲水蚤Sinocalanus dorrii 1.6 16.7 17.5 19.4 1.4 19.4 SP12 大型中镖水蚤Sinodiaptomus sarsi 0 0 <1 5.6 0 0 SP13 右突新镖水蚤Neodiaptomus schmackeri 0 0 <1 5.6 <1 5.6 SP14 指状许水蚤Schmackeria inopinus <1 2.8 <1 2.8 <1 5.6 SP15 球状许水蚤Schmackeria forbesi 0 0 <1 5.6 <1 8.3 SP16 长江新镖水蚤Neodiaptomus yangtsekiangensis <1 2.8 5.1 13.9 <1 8.3 SP17 英勇剑水蚤Cyclops strenuuss 1.4 30.6 3.3 16.7 1.5 11.1 SP18 广布中剑水蚤Mesocyclops leuckarti 1.7 33.3 12.5 36.1 7.1 19.4 SP19 北碚中剑水蚤Mesocyclops pehpeiesis 0 0 <1 13.9 <1 8.3 SP20 台湾温剑水蚤Thermocyclops taihokuensis 1.5 11.1 11.1 8.3 <1 8.3 SP21 毛饰拟剑水蚤Paracyclops fimbriatus <1 2.8 1.1 8.3 <1 2.8 SP22 锯缘真剑水蚤Eucyclops serrulatus <1 8.3 <1 5.6 <1 2.8 SP23 跨立小剑水蚤Microcyclops varicans 20.0 47.2 14.9 36.1 31.0 38.9 表 3 广义线性模型的统计结果
Table 3 Statistic results of general linear models
变量
Varia-bles回归系数
Esti-mate标准误
Standard
deviationP值
P valueAIC 解释率Percentage
of explana-tion (%)密度Density Chl. a 0.22 0.07 <0.001*** 45.89 18.9 NH4-N 4.59 1.34 <0.001*** 45.75 9.5 DOC –1.15 0.42 0.007** 41.79 0.3 生物量Biomass Chl. a 1.22 0.26 <0.001*** 304.62 27.6 WT 3.34 0.87 <0.001*** 298.50 9.6 NO3-N 7.39 2.57 0.005** 292.44 2.4 PO4-P 11.11 4.01 0.007** 291.68 1.6 -
[1] 蔡庆华, 孙志禹. 三峡水库水环境与水生态研究的进展与展望 [J]. 湖泊科学, 2012, 24(2): 169-177. doi: 10.3969/j.issn.1003-5427.2012.02.001 Cai Q H, Sun Z Y. Water environment and aquatic ecosystem of Three Gorges Reservoir, China: progress and prospects [J]. Journal of Lake Sciences, 2012, 24(2): 169-177. doi: 10.3969/j.issn.1003-5427.2012.02.001
[2] Guzy J C, Eskew E A, Halstead B J, et al. Influence of damming on anuran species richness in riparian areas: A test of the serial discontinuity concept [J]. Ecology and Evolution, 2018, 8(4): 2268-2279.
[3] Ward J V, Stanford J A. The serial discontinuity concept-extending the model to floodplain rivers [J]. Regulated Rivers-Research & Management, 1995, 10(2-4): 159-168.
[4] Kennedy R H, Tundisi J G, Straskraba V. Reservoirs and the limnologist’s growing role in sustainable water resource management [J]. Hydrobiologia, 2003, 504(1-3): xi-xii. doi: 10.1023/B:HYDR.0000008470.25059.f2
[5] Ye L, Xu Y Y, Han X Q, et al. Daily dynamics of nutrients and chlorophyll a during a spring phytoplankton bloom in Xiangxi Bay of the Three Gorges Reservoir [J]. Journal of Freshwater Ecology, 2006, 21(2): 315-321. doi: 10.1080/02705060.2006.9665001
[6] Xu Y Y, Cai Q H, Shao M L, et al. Seasonal dynamics of suspended solids in a giant subtropical reservoir (China) in relation to internal processes and hydrological features [J]. Quaternary International, 2009, 208(1): 138-144.
[7] 郑飞燕, 谭路, 陈星, 等. 三峡水库香溪河库湾氮磷分布状况及沉积物污染评价 [J]. 生态毒理学报, 2018, 13(4): 49-59. doi: 10.7524/AJE.1673-5897.20180505001 Zheng F Y, Tan L, Chen X, et al. Spatial distribution of nitrogen and phosphorus, and pollution evaluation for sediment in Xiangxi Bay, Three Gorges Reservoir [J]. Asian Journal of Ecotoxicology, 2018, 13(4): 49-59. doi: 10.7524/AJE.1673-5897.20180505001
[8] Liu L, Liu D F, Johnson D M, et al. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: implications for management [J]. Water Research, 2012, 46(7): 2121-2130. doi: 10.1016/j.watres.2012.01.029
[9] 况琪军, 毕永红, 周广杰, 等. 三峡水库蓄水前后浮游植物调查及水环境初步分析 [J]. 水生生物学报, 2005, 29(4): 353-358. doi: 10.3321/j.issn:1000-3207.2005.04.001 Kuang Q J, Bi Y H, Zhou G J, et al. Study on the phytoplankton in the Three Gorges Reservoir before and after sluice and the protection of water quality [J]. Acta Hydrobiologica Sinica, 2005, 29(4): 353-358. doi: 10.3321/j.issn:1000-3207.2005.04.001
[10] Zhou S C, Huang X F, Cai Q H. Vertical distribution and migration of planktonic rotifers in Xiangxi Bay of the Three Gorges Reservoir, China [J]. Journal of Freshwater Ecology, 2007, 22(3): 441-449. doi: 10.1080/02705060.2007.9664174
[11] Shao M L, Xie Z C, Ye L, et al. Changes in the benthic macroinvertebrates in Xiangxi Bay following Dam closure to form the Three Gorges Reservoir [J]. Journal of Freshwater Ecology, 2006, 21(4): 717-719. doi: 10.1080/02705060.2006.9664135
[12] Zhang K, Xiong X, Hu H, et al. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China [J]. Environmental Science & Technology, 2017, 51(7): 3794-3801.
[13] 薛俊增, 叶麟, 蔡庆华, 等. 三峡水库坝前段蓄水前后枝角类的周年变化 [J]. 水生生物学报, 2006, 30(1): 58-63. doi: 10.3321/j.issn:1000-3207.2006.01.011 Xue J Z, Ye L, Cai Q H, et al. Variation of cladocerans from maoping to Guizhou in the Three Gorges Reservoir before and after impoundment [J]. Acta Hydrobiologica Sinica, 2006, 30(1): 58-63. doi: 10.3321/j.issn:1000-3207.2006.01.011
[14] 薛俊增, 叶麟, 蔡庆华. 三峡水库坝前段蓄水前后桡足类种类组成的变化 [J]. 水生生物学报, 2006, 30(1): 113-115. doi: 10.3321/j.issn:1000-3207.2006.01.021 Xue J Z, Ye L, Cai Q H. Variation of copepod from maoping to Guizhou in the Three Gorges Reservoir before and after impoundment [J]. Acta Hydrobiologica Sinica, 2006, 30(1): 113-115. doi: 10.3321/j.issn:1000-3207.2006.01.021
[15] Vijverberg J, Boersma M. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus [J]. Hydrobiologia, 1997, 360(1): 233-242.
[16] Sommer U, Gliwicz Z M, Lampert W, et al. The peg-model of seasonal succession of planktonic events in fresh waters [J]. Archiv Fur Hydrobiologie, 1986, 106(4): 433-471.
[17] Dodson S I, Lillie R A, Will-Wolf S. Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes [J]. Ecological Applications, 2005, 15(4): 1191-1198. doi: 10.1890/04-1494
[18] Tang T, Cai Q H, Liu R Q, et al. Distribution of epilithic algae in the Xiangxi River system and their relationships with environmental factors [J]. Journal of Freshwater Ecology, 2002, 17(3): 345-352. doi: 10.1080/02705060.2002.9663907
[19] Ye L, Han X Q, Xu Y Y, et al. Spatial analysis for spring bloom and nutrient limitation in Xiangxi bay of Three Gorges Reservoir [J]. Environmental Monitoring and Assessment, 2007, 127(1-3): 135-145. doi: 10.1007/s10661-006-9267-9
[20] 韩博平. 中国水库生态学研究的回顾与展望 [J]. 湖泊科学, 2010, 22(2): 151-160. Han B P. Reservoir ecology and limnoogy in China: a retrospective comment [J]. Journal of Lake Sciences, 2010, 22(2): 151-160.
[21] 蒋燮治, 堵南山. 中国动物志·节肢动物门·甲壳纲·淡水枝角类 [M]. 北京: 科学出版社, 1979: 79-273 Jiang X Z, Du N S. Fauna Sinica; Crustacea: freshwater Cladocera [M]. Beijing: Science Press, 1979: 79-273
[22] 中国科学院动物研究所甲壳动物研究组. 中国动物志·节肢动物门·甲壳纲·淡水桡足类 [M]. 北京: 科学出版社, 1979: 53-420 Research Group of Carcinology, Institute of Zoology. Fauna Sinica; Crustacea: Freshwater Copepoda [M]. Beijing: Science Press, 1979: 53-420
[23] 向贤芬, 虞功亮, 陈受忠. 长江流域的枝角类 [M]. 北京: 中国科学技术出版社, 2016: 34-130 Xiang X F, Yu G L, Chen S Z. Cladocera in Yangtze River Basin [M]. Beijing: China Science and Technology Press, 2016: 34-130
[24] Błędzki L A, Rybak J I. Freshwater Crustacean Zooplankton of Europe [M]. Berlin: Springer International Publishing, 2016: 103-473
[25] 章宗涉, 黄祥飞. 淡水浮游生物研究方法 [M]. 北京: 科学出版社, 1991: 367-370 Zhang Z S, Huang X F. Methods for Study on Freshwater Plankton [M]. Beijing: Science Press, 1991: 367-370
[26] 蔡庆华. 水域生态系统观测规范—中国生态系统研究网络(CERN)长期观测规范丛书 [M]. 北京: 中国环境科学出版社, 2007: 31-104 Cai Q H. Specifications for Observation of Aquatic Ecosystems-Chinese Ecosystem Research Network (CERN) Series of Specifications for Long-term Observation [M]. Beijing: China Environment Science Press, 2007: 31-104
[27] Gotelli N J, K. C R Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness [J]. Ecology Letters, 2001, 4(4): 370-391.
[28] Chao A, J. Gotelli N, Hsieh T C, et al Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies [J]. Ecological Monographs, 2014, 84(1): 45-67. doi: 10.1890/13-0133.1
[29] Maicher V, Sáfián S, Murkwe M, et al. Flying between raindrops: Strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon [J]. Ecology and Evolution, 2018, 8(2): 12761-12772.
[30] Chiu C-H, Chao A. Distance-based functional diversity measures and their decomposition: a framework based on hill numbers [J]. PLoS One, 2014, 9(7): e100014. doi: 10.1371/journal.pone.0100014
[31] Luke S H, Dow R A, Butler S, et al. The impacts of habitat disturbance on adult and larval dragonflies (Odonata) in rainforest streams in Sabah, Malaysian Borneo [J]. Freshwater Biology, 2017, 62(3): 491-506. doi: 10.1111/fwb.12880
[32] Hsieh T C, Chao A. Rarefaction and extrapolation: making fair comparison of abundance-sensitive phylogenetic diversity among multiple assemblages [J]. Systematic Biology, 2016, 66(1): 100-111.
[33] Hsieh T C, Ma K H, Chao A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers) [J]. Methods in Ecology & Evolution, 2016, 7(12): 1451-1456.
[34] Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO [M]. Cambridge: Cambridge University Press, 2003: 43-59
[35] Oksanen J, Blanchet F G, Friendly M, et al. Package “vegan”: community ecology package. 2018, R package version, 2.5-3
[36] Seda J, Devetter M. Zooplankton community structure along a trophic gradient in a canyon-shaped dam reservoir [J]. Journal of Plankton Research, 2000, 22(10): 1829-1840. doi: 10.1093/plankt/22.10.1829
[37] Simões N R, Nunes A H, Dias J D, et al. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments [J]. Hydrobiologia, 2015, 758(1): 3-17. doi: 10.1007/s10750-015-2260-y
[38] Yang Y F, Huang X F, Liu J K. Long-term changes in crustacean zooplankton and water quality in a shallow, eutrophic Chinese lake densely stocked with fish [J]. Hydrobiologia, 1998, 391(1-3): 193-201.
[39] Havel J E, Medley K A, Dickerson K D, et al. Effect of main-stem dams on zooplankton communities of the Missouri River (USA) [J]. Hydrobiologia, 2009, 628(1): 121-135. doi: 10.1007/s10750-009-9750-8
[40] Pinel-Alloul P. Spatial heterogeneity as a multiscale characteristic of zooplankton community [J]. Hydrobiologia, 1995, 300(1): 17-42.
[41] Massicotte P, Frenette J J, Proulx R, et al. Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem [J]. Landscape Ecology, 2014, 29(1): 67-79. doi: 10.1007/s10980-013-9946-1
[42] Sarvala J. Effect of temperature on the duration of egg, nauplius and copepodite development of some freshwater benthic Copepoda [J]. Freshwater Biology, 2010, 9(6): 515-534.
[43] Beaver J R, Tausz C E, Renicker T R, et al. The late summer crustacean zooplankton in western U. S. A reservoirs reflects ecoregion, temperature and latitude [J]. Freshwater Biology, 2014, 59(6): 1173-1186. doi: 10.1111/fwb.12338
[44] Shurin J B, Monika W, Rita A, et al. Environmental stability and lake zooplankton diversity-contrasting effects of chemical and thermal variability [J]. Ecology Letters, 2010, 13(4): 453-463. doi: 10.1111/j.1461-0248.2009.01438.x
[45] Yvon-Durocher G, Montoya J M, Trimmer M, et al. Warming alters the size spectrum and shifts the distribution of biomass in aquatic ecosystems [J]. Global Change Biology, 2011, 17(4): 1681-1694. doi: 10.1111/j.1365-2486.2010.02321.x
[46] Pijanowska J, Dawidowicz P. The lack of vertical migration in Daphnia: the effect of homogenously distributed food [J]. Hydrobiologia, 1987, 148(2): 175-181. doi: 10.1007/BF00008403
[47] Nizan S, Dimentman C, Shilo M. Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna [J]. Limnology and Oceanography, 1986, 31(3): 497-502. doi: 10.4319/lo.1986.31.3.0497
[48] Chislock M F, Orlando S, Jernigan L M, et al. Do high concentrations of microcystin prevent Daphnia control of phytoplankton [J]? Water Research, 2013, 47(6): 1961-1970. doi: 10.1016/j.watres.2012.12.038
[49] Geraldes A M, Boavida M J. Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels [J]. Aquatic Ecology, 2007, 41(2): 273-284. doi: 10.1007/s10452-006-9057-z
[50] Burdis R M, Hirsch J K. Crustacean zooplankton dynamics in a natural riverine lake, Upper Mississippi River [J]. Journal of Freshwater Ecology, 2017, 32(1): 240-258.
-
期刊类型引用(2)
1. 鲁媛晨,李艳华,余丽华,韩丹翔,马海燕. 液相色谱-串联质谱法定量分析莱茵衣藻1, 3-二油酸-2-棕榈酸甘油三酯. 水生生物学报. 2022(07): 1052-1059 . 本站查看
2. 任慧莹,刘炎清,常明向. 国内10种粮食中总半乳糖脂提取及含量研究. 食品安全质量检测学报. 2022(20): 6734-6740 . 百度学术
其他类型引用(0)