GENETIC DIVERSITY OF THE BREEDING POPULATIONS OF GIANT FRESHWATER PRAWN MACROBRACHIUM ROSENBERGII
-
摘要: 为深入了解罗氏沼虾(Macrobrachium rosenbergii)不同种质资源的遗传背景, 研究采用微卫星标记和线粒体基因相结合, 对罗氏沼虾4个育种群体, 即选育3代的数丰核心群体(SF)、引进的正大群体(ZD)、正大和数丰杂交的群体(ZDS)、正大子代和数丰杂交的群体(ZD2S)的遗传多样性进行了研究。150个个体的微卫星分析结果显示, 7个微卫星位点均表现出高度多态性(PIC>0.5), 4个群体平均的等位基因数(Na)、期望杂合度(He)和多态信息含量(PIC)分别为19.43、0.8980和0.8867。SF群体的平均He (0.874)和PIC (0.854)最高, ZD2S的He (0.863)和PIC (0.834)其次, ZDS群体的He (0.798)和PIC (0.761)最低。4个群体间的遗传分化指数(FST)为0.04166—0.10438, 处于中低水平的遗传分化, 其中, ZD和ZDS的遗传分化最大, FST为0.10438。线粒体COⅠ和12S rRNA基因组合序列分析结果显示, 149个个体共识别27个单倍型, 平均单倍型多样性(Hd)和核苷酸多样性(π)分别为0.846和0.00313。在4个群体中, ZD2S群体的Hd值最高, 其次为SF群体, ZDS的最低; 对于π值, SF群体的最高, 其次为ZD2S群体, ZD群体的则最低, 该结果与微卫星的结果基本一致。但基于线粒体基因的群体间遗传分化较小, FST值为–0.02226—0.07310, 小于微卫星估计的结果。微卫星和线粒体基因一致表明, SF和ZD2S两个群体均保持着较高的遗传多样性, 具有进一步选育的潜力。Abstract: To learn the genetic background of the giant freshwater prawn (Macrobrachium rosenbergii), four different breeding populations, including Shufeng nucleus breeding population selected for three generations (SF), introduced Zhengda population (ZD), hybrid population between the introduced Zhengda population and Shufeng population (ZDS), and hybrid population between the progeny of the introduced Zhengda population and Shufeng population (ZD2S), were investigated by using both microsatellite loci and mitochondrial COⅠand 12S rRNA genes as molecular markers. The microsatellite data of 150 individuals revealed that all the seven loci had high diversity with PIC>0.5. The average number of alleles (Na), expected heterozygosity (He) and polymorphism information content (PIC) were 19.43, 0.8980 and 0.8867, respectively. Among seven loci of four populations, the average He (0.874) and PIC (0.854) of the SF were the highest, followed by He (0.863) and PIC (0.834) of the ZD2S, and the lowest He (0.798) and PIC (0.761) of the ZDS. The pairwised genetic differentiation indices (FST) among the four populations was 0.04166—0.10438, suggesting low to moderate genetic differentiations. The FST between ZD and ZDS was the highest with a value of 0.10438. Based on the concatenated mitochondrial COⅠ and 12S rRNA gene sequences, 149 individuals contained 27 haplotypes, with the average haplotype diversity (Hd) and nucleotide diversity (π) of 0.846 and 0.00313, respectively. Among four populations, the Hd of the ZD2S was the highest, followed by the SF, and ZDS was the lowest. For the π values, the SF was the highest, followed by ZD2S, and ZD was the lowest, which was generally consistent with the genetic diversity results analyzed based on microsatellite data. However, the genetic differentiation among four populations based on mitochondrial genes was low with FST values of –0.02226—0.07310, which is much lower than those based on microsatellite. These results indicated that both SF and ZD2S maintain high genetic diversity and have the potential for further selective breeding of Macrobrachium rosenbergii.
-
Keywords:
- Macrobrachium rosenbergii /
- Microsatellite loci /
- COⅠ /
- 12S rRNA /
- Genetic diversity /
- Breeding
-
-
图 1 罗氏沼虾COⅠ和12S rRNA基因组合序列单倍型间的聚类分析
节点处的数值代表支持率, 括弧中代表对应单倍型包含的种群
Figure 1. Phylogenetic tree for the combined COⅠ and 12S rRNA sequence haplotypes of Macrobrachium rosenbergii
Values at the nodes correspond to the support values, and the populations included by the corresponding haplotype are listed in the parentheses
表 1 用于本研究的微卫星引物相关信息
Table 1 Primers used in the present study
位点Locus 引物序列Primer sequence (5′—3′) 退火温度Tm 片段大小Size range (bp) 来源Resource 6CT55 FAM-CAGCTCTAACCTGATTGAAAGAC 55 220—264 钟丹丹等[3] GCAGGCATTATCGTTACTTCTCC 12AG57 HEX-GGAACAAATGAAGACTTGGATGC 57.6 232—294 钟丹丹等[3] CTCTCTCTCCCTCAAGGTGTTGG 27AG62 FAM-CAACTCTATGTTTCGGCATTTGG 62 224—276 孙成飞等[8] GGGGAATTTTACCGATGTTTCTG 28GT62 HEX-CCACCTACCGTACATTCCCAAAC 62 203—291 孙成飞等[8] CGGGGCGACTTTTAGTATCGAC 29AG62 FAM-CAAGGCTCGTGTCTCTTGTTTC 62 274—322 孙成飞等[8] GCTTGTACTTGTTCAGCTTTTGC 47AAG54 HEX-AAGAGGATTTGGAGCGATTGG 54 169—229 本研究 CTGAGTAAGATACGACGCCTTC 50AG54 FAM-GTAATGAACAGCACGAAAAGGAAG 54 274—322 本研究 TCTGCGTTATTTTGAGTTTGGTATG 表 2 各微卫星位点在4个罗氏沼虾育种群体中的遗传多样性参数
Table 2 Genetic diversity parameters of each microsatellite locus in the four breeding populations of Macrobrachium rosenbergii
位点Locus 所有群体All stocks SF (n=60) ZD (n=30) Na Ho He PIC Na Ho He PIC Na Ho He PIC 12AG57 19 0.460 0.879 0.867 17 0.350 0.858 0.837 13 0.400 0.900 0.874 47AAG54 14 0.873 0.891 0.878 13 0.867 0.851 0.827 9 0.800 0.818 0.782 27AG62 18 0.386 0.878 0.864 14 0.549 0.857 0.836 10 0.200 0.817 0.779 29AG62 24 0.813 0.919 0.910 19 0.717 0.907 0.892 14 0.867 0.897 0.871 50AG54 20 0.604 0.908 0.898 16 0.508 0.872 0.851 11 0.867 0.847 0.814 28GT62 21 0.456 0.904 0.893 15 0.424 0.882 0.863 17 0.367 0.899 0.874 6CT55 20 0.711 0.907 0.897 16 0.683 0.890 0.873 10 0.567 0.772 0.737 平均值Mean 19.439 0.615 0.898 0.887 15.71 0.585 0.874 0.854 12.00 0.581 0.850 0.819 位点Locus ZDS (n=30) ZD2S (n=30) Na Ho He PIC Na Ho He PIC 12AG57 10 0.600 0.755 0.718 14 0.600 0.867 0.842 47AAG54 8 1.000 0.848 0.812 12 0.833 0.865 0.835 27AG62 5 0.182 0.555 0.499 10 0.448 0.816 0.781 29AG62 16 0.900 0.910 0.887 20 0.867 0.937 0.917 50AG54 11 0.567 0.880 0.852 12 0.567 0.875 0.846 28GT62 9 0.767 0.840 0.803 12 0.300 0.877 0.849 6CT55 8 0.900 0.801 0.756 9 0.724 0.806 0.770 平均值Mean 9.57 0.702 0.798 0.761 12.71 0.620 0.863 0.834 注: 表中各遗传多样性参数简写如下, Na. 等位基因数; Ho. 观察杂合度; He. 期望杂合度; PIC. 多态信息含量Note: the abbreviation of the genetic diversity parameters as the following. Na. number of alleles; Ho. observed heterozygosity; He. expected heterozygosity; PIC. polymorphism information content 表 3 基于微卫星位点的罗氏沼虾各育种群体间遗传分化指数
Table 3 Genetic differentiation index (FST) of the breeding populations of Macrobrachium rosenbergii based on SSR
ZDS ZD2S SF ZD ZDS 0.00000 ZD2S 0.06451** 0.00000 SF 0.05520** 0.04166** 0.00000 ZD 0.10438** 0.06539** 0.07281** 0.00000 注: **表示P≤0.01Note: ** represents P≤0.01 表 4 罗氏沼虾育种群体线粒体COⅠ、12S rRNA基因及两个基因组合序列的遗传多样性参数
Table 4 Genetic diversity parameters of mitochondrial COⅠ, 12S rRNA and their concatenated gene sequences in each breeding population of Macrobrachium rosenbergii
群体Population COⅠ 12S rRNA COⅠ+ 12S rRNA N H Hd π N H Hd π N H Hd π ZDS 19 3 0.205 0.00193 28 2 0.138 0.00086 29 5 0.594 0.001 ZD2S 26 5 0.603 0.00455 26 4 0.637 0.00197 30 11 0.876 0.0035 ZD 25 2 0.080 0.00006 28 3 0.500 0.00078 30 7 0.713 0.0004 SF 47 5 0.530 0.00512 55 10 0.598 0.00293 60 19 0.835 0.0042 总计Total 117 9 0.425 0.00371 137 12 0.660 0.00230 149 27 0.846 0.0031 注: 表中各参数简写如下, N. 样本数; H. 单倍型数; Hd. 单倍型多样性; π. 核苷酸多样性Note: the abbreviation of each parameter as the following. N. sample size; H. number of haplotype; Hd. haplotype diversity; π. nucleotidae diversity 表 5 罗氏沼虾各育种群体COⅠ和12S rRNA基因组合序列单倍型在各群体中的分布
Table 5 Distribution of combined COⅠ and 12S rRNA sequence haplotypes in each breeding population of Macrobrachium rosenbergii
单倍型
HaplotypeZDS ZD2S SF ZD 总个体数
Total相对频率Relative frequency (%) Hap1 10 2 3 15 10.07 Hap2 16 5 2 6 29 19.46 Hap3 1 1 0.67 Hap4 1 1 0.67 Hap5 1 1 0.67 Hap6 9 22 15 46 30.87 Hap7 1 1 0.67 Hap8 1 1 0.67 Hap9 2 9 2 13 8.72 Hap10 1 1 0.67 Hap11 3 1 4 2.68 Hap12 1 1 0.67 Hap13 1 1 0.67 Hap14 1 1 0.67 Hap15 2 2 1.34 Hap16 1 1 0.67 Hap17 1 1 0.67 Hap18 1 1 0.67 Hap19 2 2 1.34 Hap20 1 2 3 6 4.03 Hap21 1 1 0.67 Hap22 6 6 4.03 Hap23 1 2 4 2 9 6.04 Hap24 1 1 0.67 Hap25 1 1 0.67 Hap26 1 1 0.67 Hap27 1 1 0.67 总个体数Total 29 30 60 30 149 100 表 6 基于COⅠ和12S rRNA基因组合序列的罗氏沼虾育种群体间遗传分化指数
Table 6 Genetic differentiation index (FST) of the breeding populations of Macrobrachium rosenbergii based on the combined COⅠ and 12S rRNA sequences
ZDS ZD ZD2S SF ZDS 0 ZD 0.03899 0 ZD2S 0.07310* –0.02226 0 SF 0.01419 –0.01611 –0.00472 0 注: *表示P≤0.05Note: * represents P≤0.05 -
[1] 潘家模. 罗氏沼虾养殖新技术 [M]. 上海: 上海科学技术出版社, 1994: 1-6 Pan J M. New Cultured Technique of Macrobranchium rosenbergii [M]. Shanghai: Science and Technology Press, 1994: 1-6
[2] 陈雪峰, 杨国梁, 孔杰, 等. 人工养殖与选育对罗氏沼虾遗传多样性的影响 [J]. 水生生物学报, 2012, 36(5): 866-873. Chen X F, Yang G L, Kong J, et al. Effect of artificial culture and selective breeding on the genetic diversity of Macrobrachium rosenbergii [J]. Acta Hydrobiologica Sinica, 2012, 36(5): 866-873.
[3] 钟丹丹, 林勇, 宾石玉, 等. 两个罗氏沼虾种群的遗传多样性研究 [J]. 广东农业科学, 2015, 42(24): 140-145. doi: 10.3969/j.issn.1004-874X.2015.24.027 Zhong D D, Ln Y, Bin S Y, et al. Genetic diversity of two giant freshwater prawn Macrobrachium rosenbergii populations [J]. Guangdong Agricultural Sciences, 2015, 42(24): 140-145. doi: 10.3969/j.issn.1004-874X.2015.24.027
[4] 陈万光, 贾晓惠. 微卫星标记在水产动物遗传研究方面的应用 [J]. 安徽农业科学, 2009, 37(12): 5659-5660. doi: 10.3969/j.issn.0517-6611.2009.12.034 Chen W G, Jia X H. Application of microsatellite markers in genetic research of aquatic animals [J]. Journal of Anhui Agricultural Sciences, 2009, 37(12): 5659-5660. doi: 10.3969/j.issn.0517-6611.2009.12.034
[5] 张于光, 李迪强, 肖启明, 等. 微卫星技术及在动物遗传多样性研究中的应用 [J]. 湖南农业大学学报, 2001, 27(5): 410-414. Zhang Y G, Li D Q, Xiao Q M, et al. Microsatellites and their application to the genetic diversity in animal [J]. Journal of Hunan Agricultural University, 2001, 27(5): 410-414.
[6] 方李宏, 薛俊增, 董双林. 甲壳动物线粒体DNA的研究 [J]. 海洋湖沼通报, 2004(2): 59-65. doi: 10.3969/j.issn.1003-6482.2004.02.009 Fang L H, Xue J Z, Dong S L. A review on the studies of mitochondrial DNA (mtDNA) of crustacean [J]. Transactions of Oceanology and Limnology, 2004(2): 59-65. doi: 10.3969/j.issn.1003-6482.2004.02.009
[7] 申欣, 孙名安. 长臂虾科线粒体基因组特征分析及分子标记探讨 [J]. 水产科学, 2011, 30(6): 347-351. doi: 10.3969/j.issn.1003-1111.2011.06.008 Shen X, Sun M A. Analysis of mitochondrial genome characteristics and exploration of molecular markers in Palaemonidae [J]. Fisheries Science, 2011, 30(6): 347-351. doi: 10.3969/j.issn.1003-1111.2011.06.008
[8] 孙成飞, 叶星, 董浚健, 等. 罗氏沼虾6个养殖群体遗传多样性的微卫星分析 [J]. 南方水产科学, 2015, 11(2): 20-26. doi: 10.3969/j.issn.2095-0780.2015.02.003 Sun C F, Ye X, Dong J J, et al. Genetic diversity analysis of six cultured populations of Macrobrachium rosenbergii using microsatellite markers [J]. Southern Marine Science, 2015, 11(2): 20-26. doi: 10.3969/j.issn.2095-0780.2015.02.003
[9] 陈佳毅. 罗氏沼虾亲虾群体遗传结构分析及育苗参数比较 [D]. 扬州: 扬州大学, 2016: 12-13 Chen J Y. Genetic structrue analysis and larvae rearing parameters comparison of Macrobranchium rosenbergii [D]. Yangzhou: Yangzhou University, 2016: 12-13
[10] Chareontawee K, Poompuang S, Na-Nakorn U, et al. Genetic diversity of hatchery stocks of giant freshwater prawn (Macrobrachium rosenbergii) in Thailand [J]. Aquaculture, 2007, 271(1-4): 121-129. doi: 10.1016/j.aquaculture.2007.07.001
[11] Khan S R, Akter H, Sultana N, et al. Genetic diversity in three river populations of the giant freshwater prawn (Macrobrachium rosenbergii) in Bangladesh assessed by microsatellite DNA markers [J]. International Journal of Agriculture & Biology, 2014, 16(1): 195-200.
[12] Thanh H N, Liu Q, Zhao L, et al. Genetic diversity of the cultured giant freshwater prawn (Macrobrachium rosenbergii) in China based on microsatellite markers [J]. Biochemmical Systematics and Ecology, 2015(59): 144-154. doi: 10.1016/j.bse.2014.12.023
[13] 杨学明, 郭亚芬, 陈福艳, 等. 罗氏沼虾3个群体线粒体COI基因的序列差异和遗传标记研究 [J]. 遗传, 2006, 28(5): 540-544. doi: 10.3321/j.issn:0253-9772.2006.05.008 Yang X M, Guo Y F, Chen F Y, et al. Intraspecific DNA sequence polymorphism and genetic markers in the mitochondrial COI gene from three populations of Macrobranchium rosenbergii [J]. Hereditas, 2006, 28(5): 540-544. doi: 10.3321/j.issn:0253-9772.2006.05.008
[14] 姚茜, 杨频, 陈立侨, 等. 罗氏沼虾三群体线粒体D-Loop基因序列差异的初步研究 [J]. 水产学报, 2007, 31(S1): 18-22. Yao Q, Yang P, Chen L Q, et al. Interspecific DNA sequence polymorphism in the mitochondrial D-loop gene from three populations of Macrobranchium rosenbergii [J]. Journal of Fisheries of China, 2007, 31(S1): 18-22.
[15] Thanh H N, Liu Q, Zhao L, et al. Genetic diversity of cultured populations of giant freshwater prawn (Macrobrachium rosenbergii) in China using mtDNA COI and 16S rDNA markers [J]. Biochemical Systematics and Ecology, 2015, 62: 261-269. doi: 10.1016/j.bse.2015.09.011
[16] 吕广祺. 基于微卫星DNA和线粒体COI基因对辽宁地区东北林蛙遗传多样性的研究 [D]. 沈阳: 沈阳农业大学, 2017: 36 Lü G Q. Genetic diversity analysis of the Dybowski’s frog (Rana dybowskii) populations in Liaoning based on microsatellite and COI gene [D]. Shenyang: Shenyang Agricultural University, 2017: 36
[17] 李婉玫. 基于微卫星和线粒体DNA的陕西秦巴山区中华蜜蜂遗传多样性研究 [D]. 西安: 陕西师范大学, 2017: 63-64 Li W M. Genetic diversity analysis of the Apis cerana cerana Fabricius populations in Qinba, Shanxi based on microsatellite and mitochondrial DNA [D]. Xi’an: Shanxi Normal University, 2017: 63-64
[18] 郑燕. 基于微卫星和线粒体标记的梨小食心虫种群遗传多样性和遗传结构研究 [D]. 杨凌: 西北农林科技大学, 2014: 159 Zhen Y. Genetic diversity and genetic structure of oriental fruit moth, Grapholita molesta (L.) analyzed by microsatellite markers and DNA gene sequences [D]. Yangling: Northwest A & F University, 2014: 159
[19] 黄代新, 杨庆恩. 卡方检验和精确检验在HWE检验中应用 [J]. 法医学杂志, 2004(2): 116-119. doi: 10.3969/j.issn.1004-5619.2004.02.019 Huang D X, Yang Q E. Application of chi-square test and exact test in Hardy-Weinberg equilibrium testing [J]. Journal of Forensic Medicine, 2004(2): 116-119. doi: 10.3969/j.issn.1004-5619.2004.02.019
[20] 文亚峰, Kentaro U, 韩文军, 等. 微卫星标记中的无效等位基因 [J]. 生物多样性, 2013, 21(1): 117-126. doi: 10.3724/SP.J.1003.2013.10133 Wen Y F, Kentaro U, Han W J, et al. Null alleles in microsatellite markers [J]. Biodiversity Science, 2013, 21(1): 117-126. doi: 10.3724/SP.J.1003.2013.10133
[21] Shete S, Tiwari H, Elston R C. On estimating the heterozygosity and polymorphism information content value [J]. Theoretical Population Biology, 2000, 57(3): 265-271. doi: 10.1006/tpbi.2000.1452
[22] Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphism [J]. American Journal of Human Genetics, 1980, 32(3): 314-331.
[23] 杨锐, 喻子牛. 山东沿海褶牡蛎与太平洋牡蛎等位基因酶的遗传变异 [J]. 水产学报, 2000, 24(2): 130-133. Yang R, Yu Z N. Allozyme variation within Crassostrea plicatula and Crassostrea gigas from Shandong coastal waters [J]. Journal of Fisheries of China, 2000, 24(2): 130-133.
[24] Wright S. Evolution and the Genetics of Populations [C]. Invariability Within and Among Natural Populations. Chicago: University of Chicago Press, 1978: 4
[25] 李大命, 张彤晴, 唐晟凯, 等. 基于线粒体 Cytb 基因和 D-loop 区序列的洪泽湖湖鲚遗传多样性分析 [J]. 江苏农业科学, 2018, 46(20): 36-39. Li D M, Zhang T Q, Tang S K, et al. Study on genetic diversity of Coilia nasus population in Lake Hongze based on mtDNA Cytb gene and D-loop sequences [J]. Jiangsu Agricultural Sciences, 2018, 46(20): 36-39.