硒对亚硝酸钠导致的草鱼肝细胞氧化损伤的保护作用

姚朝瑞, 马聘, 李大鹏, 李莉, 汤蓉

姚朝瑞, 马聘, 李大鹏, 李莉, 汤蓉. 硒对亚硝酸钠导致的草鱼肝细胞氧化损伤的保护作用[J]. 水生生物学报, 2021, 45(5): 986-994. DOI: 10.7541/2021.2019.199
引用本文: 姚朝瑞, 马聘, 李大鹏, 李莉, 汤蓉. 硒对亚硝酸钠导致的草鱼肝细胞氧化损伤的保护作用[J]. 水生生物学报, 2021, 45(5): 986-994. DOI: 10.7541/2021.2019.199
YAO Chao-Rui, MA Pin, LI Da-Peng, LI Li, TANG Rong. PROTECTIVE EFFECT OF SELENIUM ON THE OXIDATIVE DAMAGE OF LIVER CELLS INDUCED BY SODIUM NITRITE IN GRASS CARP (CTENOPHARYNGODON IDELLA)[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 986-994. DOI: 10.7541/2021.2019.199
Citation: YAO Chao-Rui, MA Pin, LI Da-Peng, LI Li, TANG Rong. PROTECTIVE EFFECT OF SELENIUM ON THE OXIDATIVE DAMAGE OF LIVER CELLS INDUCED BY SODIUM NITRITE IN GRASS CARP (CTENOPHARYNGODON IDELLA)[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 986-994. DOI: 10.7541/2021.2019.199

硒对亚硝酸钠导致的草鱼肝细胞氧化损伤的保护作用

基金项目: 国家自然科学基金 (31502140); 农业农村部现代农业产业技术体系资助(CARS-45-24)资助
详细信息
    作者简介:

    姚朝瑞(1993—), 男, 硕士研究生; 主要从事细胞环境生理学研究。E-mail: 294969876@qq.com

    通信作者:

    汤蓉(1978—), 女, 副教授; 主要从事环境生理与健康养殖研究。E-mail: tangrong@mail.hzau.edu.cn

  • 中图分类号: Q256

PROTECTIVE EFFECT OF SELENIUM ON THE OXIDATIVE DAMAGE OF LIVER CELLS INDUCED BY SODIUM NITRITE IN GRASS CARP (CTENOPHARYNGODON IDELLA)

Funds: Supported by the National Natural Science Foundation of China (31502140); the Earmarked Fund for China Agriculture Research System (CARS-45-24)
    Corresponding author:
  • 摘要: 以草鱼(Ctenopharyngodon idella)肝细胞(L8824)为研究对象, 设置对照组、亚硝酸钠暴露实验组、亚硒酸钠孵育实验组和亚硒酸钠孵育后亚硝酸钠暴露实验组, 探讨亚硒酸钠对不同浓度亚硝酸钠诱导L8824细胞氧化损伤及凋亡的保护作用。结果显示, 亚硝酸钠暴露能抑制L8824细胞贴壁, 导致细胞凋亡率增加。亚硝酸钠暴露引致L8824细胞的谷胱甘肽过氧化物酶(GPX)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性降低; gpxsodcat基因表达下调(P<0.05), DNA损伤诱导转录物3(ddit3)和bcl-2相关X蛋白(bax)基因表达上调(P<0.05)。亚硒酸钠(10 μmol/L)孵育L8824对细胞形态和凋亡率无显著影响, 但GPX、SOD和CAT活性上升, gpxsodcat、核因子E2相关因子2(Nrf2)和Kelch样环氧氯丙烷相关蛋白-1(keap1)基因表达上调(P<0.05)。亚硒酸钠孵育后亚硝酸钠暴露实验组, 细胞凋亡率、GPX、SOD和CAT活性较对照组无显著变化, 但B淋巴细胞瘤-2(bcl-2)基因表达显著上调(P<0.05)。研究结果表明, 给草鱼肝细胞补充硒在一定程度上能缓解亚硝酸钠暴露导致的抗氧化系统失衡, 抵抗亚硝酸钠暴露带来的氧化应激, 降低细胞凋亡率, 硒的预孵育作用能上调Nrf2/Keap1通路中的关键基因和酶, 表明硒的保护作用可能是通过介导 Nrf2/Keap1信号通路发挥作用。
    Abstract: The protective effects of sodium selenite (Na2SeO3) on oxidative damage and apoptosis of liver cells (L8824) induced by sodium nitrite (NaNO2) were investigated. Cells were pre-incubated by Na2SeO3 for 12h and then exposed to NaNO2 (5, 10 and 25 mg/L) for 24h. The results showed that the apoptotic rate was highly induced by NaNO2, and the activities of glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT) as well as the expressions of glutathione peroxidase (gpx), superoxide dismutase (sod) and catalase (cat) genes were reduced (P<0.05). After the cells treated by Na2SeO3 for 24h, the expressions of gpx, sod, cat and the activities of GPX, SOD, CAT increased (P<0.05), the expression of anti-apoptosis gene bcl-2 and the marker gene of Nrf2 pathway Keap1 up-regulated significantly. When the cells were pre-incubated by Na2SeO3 for 12h and then exposed to NaNO2 for 24h, the antioxidant and apoptosis indicators could be maintained at normal levels, as well as the Nrf2 and Keap1. Na2SeO3 might prevent the decrease of GPX, SOD, CAT levels and the increase of apoptotic rate. The results showed that the supplement of selenium in the liver cells of grass carp could prevent the damage of antioxidant system and apoptosis-promoting caused by NaNO2 exposure, and the Nrf2 pathway might play an important role in this process.
  • 图  1   不同浓度亚硒酸钠孵育不同时间对L8824细胞活力的影响

    实验数据以平均值±标准差(Mean±SD)表示, “*”表示与对照组相比差异显著(P<0.05), “**”表示与对照组相比差异极显著(P<0.01); 下同

    Figure  1.   Effects of different concentrations of sodium selenite incubation at different times on the viability of L8824 cells

    The experimental data are expressed as mean±standard deviation (Mean±SD), “*” means a significant difference compared with the control group (P<0.05), and “**” means a very significant difference compared with the control group (P<0.01)

    图  2   不同浓度亚硝酸钠暴露24h对L8824细胞活力的影响

    Figure  2.   Effect of sodium nitrite exposure for 24h on the viability of L8824 cells

    图  3   亚硒酸钠和亚硝酸钠暴露后L8824细胞形态观察(10×)

    a.对照组; b. 亚硒酸钠(10 μmol/L)孵育实验组; c. 亚硝酸钠(5 mg/L)暴露实验组; d. 亚硝酸钠(10 mg/L)暴露实验组; e. 亚硝酸钠(25 mg/L)暴露实验组; f. 亚硒酸钠孵育后亚硝酸钠(5 mg/L)暴露实验组; g. 亚硒酸钠孵育后亚硝酸钠(10 mg/L)暴露实验组; h. 亚硒酸钠孵育后亚硝酸钠(25 mg/L)暴露实验组

    Figure  3.   Morphological observation of L8824 cells after exposure to sodium selenite and sodium nitrite

    a. Control group; b. Sodium selenite (10 μmol/L) incubation experimental group; c. Sodium nitrite (5 mg/L) exposure experimental group; d. Sodium nitrite (10 mg/L) exposure experimental group; e. Sodium nitrite (25 mg/L) exposure experimental group; f. Sodium selenite (5 mg/L) exposure experimental group after sodium selenite incubation; g. Sodium nitrite (10 mg/L) exposure experimental group; h. sodium selenite (25 mg/L) exposure experimental group after incubation

    图  4   亚硒酸钠预孵育对亚硝酸钠诱导L8824细胞凋亡的影响

    a. Se+NaNO2(5 mg/L)组对L8824细胞凋亡的影响; b. Se+NaNO2(10 mg/L)组对L8824细胞凋亡的影响; c. Se+NaNO2(25 mg/L)组对L8824细胞凋亡的影响

    Figure  4.   Effects of sodium selenite and sodium nitrite on apoptosis of L8824 cells

    a. The effect of Se+NaNO2 (5 mg/L) group on L8824 cell apoptosis; b. The effect of Se+NaNO2 (10 mg/L) group on L8824 cell apoptosis; The effect of c Se+NaNO2 (25 mg/L) group on the apoptosis of L8824 cells

    图  5   亚硒酸钠预孵育对亚硝酸钠诱导L8824细胞氧化损伤的影响

    a. 亚硒酸钠对不同浓度亚硝酸钠诱导氧化损伤的L8824细胞内CAT的影响; b. 亚硒酸钠对不同浓度亚硝酸钠诱导氧化损伤的L8824细胞内GPX的影响; c. 亚硒酸钠对不同浓度亚硝酸钠诱导氧化损伤的L8824细胞内SOD的影响

    Figure  5.   Effect of sodium selenite on oxidative damage of L8824 cells induced by sodium nitrite

    a. The effect of sodium selenite on CAT in L8824 cells with oxidative damage induced by different concentrations of sodium nitrite; b. The effect of sodium selenite on GPX in L8824 cells with oxidative damage induced by different concentrations of sodium nitrite; c. The effect of sodium selenite on SOD in L8824 cells with different concentrations of sodium nitrite induced oxidative damage

    图  6   亚硒酸钠预孵育对L8824细胞酶活及凋亡相关基因的影响

    Figure  6.   Effect of sodium selenite preconditioning on enzyme activity and expression of apoptosis-related genes in L8824 cells

    表  1   qPCR引物

    Table  1   Primers used for qPCR

    引物Primer序列Sequence (5′—3′)序列号Accession number
    β-actinAACTGGGACGATATGGAGAAGA
    TCACCAGAGTCCATCACGATAC
    DQ983598.1
    bcl-2AGATGGCGTCCCAGGTAGAT
    GCTGACCGTACAACTCCACA
    JQ713862
    baxATCTATGAGCGGGTTCGTCG
    CGCAAGACGTTTATGGCTGG
    KT697992
    chopGAATCCGAAACAGCCGAGGA
    CCACACCTAGCACACCAGAC
    KX013389
    sodAGTTGCCATGTGCACTTTTCT
    AGGTGCTAGTCGAGTGTTAGG
    GU218534.1
    catGTTTCCGTCCTTCATCCACTCT
    GACCAGTTTGAAAGTGTGCGAT
    FJ560431.2
    gpxCTTTTGTCCTTGAAGTATGTCC
    CTTGAGGAAGACGAAGAGAGGG
    DQ983598.1
    Keap-1TGAGGAGATCGGCTGCACTG
    TGGCAATGGGACAAGCTGAA
    XM_026245355.1
    Nrf2CGCTAACGCAAACCAACACA
    GGAGCTGCATGCATTCATCG
    KX243419.1
    下载: 导出CSV
  • [1]

    Combs G F, Gombs S B. The role of selenium in nutrition [J]. The Quarterly Review of Biology, 1988, 63(1): 15-40.

    [2]

    Das B, Ghosh T, Gangopadhyay S. Assessment of ergonomic and occupational health-related problems among female prawn seed collectors of Sunderbans, West Bengal, India [J]. International Journal of Occupational Safety and Ergonomics, 2012, 18(4): 531-540. doi: 10.1080/10803548.2012.11076949

    [3]

    Zeng H, Cao J J, Combs G F Jr. Selenium in bone health: roles in antioxidant protection and cell proliferation [J]. Nutrients, 2013, 5(1): 97. doi: 10.3390/nu5010097

    [4]

    Özkan-Yılmaz F, Özlüer-Hunt A, Gül Gündüz S, et al. Effects of dietary selenium of organic form against lead toxicity on the antioxidant system in Cyprinus carpio [J]. Fish Physiology and Biochemistry, 2014, 40(2): 355-363. doi: 10.1007/s10695-013-9848-9

    [5]

    Müller T E, Nunes M E, Menezes C C, et al. Sodium selenite prevents paraquat-induced neurotoxicity in zebrafish [J]. Molecular Neurobiology, 2018, 55(5): 1928-1941.

    [6]

    Saffari S, Keyvanshokooh S, Zakeri M, et al. Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio) [J]. Fish Physiology and Biochemistry, 2018, 44(4): 1087-1097. doi: 10.1007/s10695-018-0496-y

    [7]

    Zheng L, Feng L, Jiang W D, et al. Selenium deficiency impaired immune function of the immune organs in young grass carp (Ctenopharyngodon idella) [J]. Fish & Shellfish Immunology, 2018(77): 53-70.

    [8]

    Ling Q, Hong F. Antioxidative role of cerium against the toxicity of lead in the liver of silver crucian carp [J]. Fish Physiology and Biochemistry, 2010, 36(3): 367-376. doi: 10.1007/s10695-008-9301-7

    [9]

    Larsen E H, Willumsen N J, Christoffffersen B C. Role of proton pump of mitochondria-rich cells for active transport of chloride ions in toad skin epithelium [J]. The Journal of Physiology, 1992, 450(1): 203-216. doi: 10.1113/jphysiol.1992.sp019124

    [10]

    Onken H, Putzenlechner M. AV-ATPase drives active, electrogenic and Na+ independent Cl absorption across the gills of Eriocheir sinensis [J]. Journal of Experimental Biology, 1995, 198(3): 767-774. doi: 10.1242/jeb.198.3.767

    [11]

    Jensen L, Willumsen N, Larsen E. Proton pump activity is required for active uptake of chloride in isolated amphibian skin exposed to freshwater [J]. Journal of Comparative Physiology, 2002, 172(6): 503-511. doi: 10.1007/s00360-002-0276-x

    [12] 高明辉, 马立保, 葛立安, 等. 亚硝酸盐在水生动物体内的吸收机制及蓄积的影响因素 [J]. 南方水产, 2008, 4(4): 73-80.

    Gao M H, Ma L B, Ge L A, et al. Nitrite uptake mechanism and the influencing factors of accumulation in aquatic animals [J]. South China Fisheries Science, 2008, 4(4): 73-80.

    [13]

    Lin Y, Miao L H, Pan W J, et al. Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead carp, Aristichthys nobilis [J]. Fish & Shellfish Immunology, 2018(76): 126-132.

    [14]

    Park I S, Lee J, Hur J W, et al. Acute toxicity and sublethal effects of nitrite on selected hematological parameters and tissues in dark-banded rockfish, Sebastes inermis [J]. World Aquaculture, 2007, 38(2): 188-199. doi: 10.1111/j.1749-7345.2007.00088.x

    [15]

    Sun S M, Ge X P, Zhu J, et al. Identification and mRNA expression of antioxidant enzyme genes associated with the oxidative stress response in the Wuchang bream (Megalobrama amblycephala Yih) in response to acute nitrite exposure [J]. Comparative Biochemistry and Physiology, Part C, 2014(159): 69-77.

    [16]

    Liu M, Sun T. Effects of D-galactose, sodium nitrite and alchlor on cognitive competence in mice [J]. Chinese Journal of Integrative Medicine on Cardio-/Cerebrovascular Disease, 2017, 5(3): 34-35.

    [17]

    Zhao C Y, Wang X L, Peng Y K. Role of Nrf2 in neurodegenerative diseases and recent progress of its activators [J]. Acta Pharmaceutica Sinica, 2015, 50(4): 375-384.

    [18]

    Bell J G, Pirie B J, Adron J W, et al. Some effects of selenium deficiency on glutathione peroxidase (EC 1.11. 1.9) activity and tissue pathology in rainbow trout (Salmo gairdneri) [J]. British Journal of Nutrition, 1986, 55(2): 305-311. doi: 10.1079/BJN19860038

    [19]

    Fontagne′-Dicharry S, Godin S, Liu H, et al. Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stress-related parameters in rainbow trout (Oncorhynchus mykiss) fry [J]. British Journal of Nutrition, 2015, 113(12): 1876-1887. doi: 10.1017/S0007114515001300

    [20]

    Shafik N M, El Batsh M M. Protective effects of combined selenium and Punica granatum treatment on some inflammatory and oxidative stress markers in arsenic-induced hepatotoxicity in rats [J]. Biological Trace Element Research, 2016, 169(1): 121-128. doi: 10.1007/s12011-015-0397-1

    [21] 苏传福, 罗莉, 李芹, 等. 硒对草鱼抗氧化功能及组织结构的影响 [J]. 西南师范大学学报: 自然科学版, 2008, 33(5): 69-75.

    Su C F, Luo L, Li Q, et al. Effects of dietary selenium on the anti-oxidation capability and histological structure of grass carp, Cenopharyngodon idellus [J]. Journal of Southwest China Normal University (Natural Science Edition), 2008, 33(5): 69-75.

    [22] 李杨, 陈永生, 吉红, 等. 硒在水产养殖中的应用研究进展 [J]. 安康学院学报, 2014, 26(3): 82-85. doi: 10.3969/j.issn.1674-0092.2014.03.022

    Li Y, Chen Y S, Ji H, et al. Status and perspective of selenium in the application study of aquaculture [J]. Journal of Ankang Teachers College, 2014, 26(3): 82-85. doi: 10.3969/j.issn.1674-0092.2014.03.022

    [23] 金明昌, 汪开毓. 不同硒水平对幼鲤生产性能和免疫功能的影响 [J]. 营养饲料, 2008, 44(5): 32-36.

    Jin M C, Wang K Y. Effect of Selenium on performance and immune function of juvenile carp [J]. Nutrition and Feed Stuffs, 2008, 44(5): 32-36.

    [24] 崔恒阳, 张电光, 凌仕诚, 等. 饲料硒含量对黄颡鱼肠系膜脂肪组织中脂类代谢和miRNAs表达水平的影响 [J]. 水生生物学报, 2020, 44(4): 685-692.

    Cui H Y, Zhang D G, Ling S C, et al. Effects of dietary selenium on lipid metabolism and miRNAs expression in mesenteric adipose tissue of yellow catfish Pelteobagrus fulvidraco [J]. Acta Hydrobiologica Sinica, 2020, 44(4): 685-692.

    [25]

    Behne D, Alber D, Kyriakopoulos A. Long-term selenium supplementation of humans: selenium status and relationships between selenium concentrations in skeletal muscle and indicator materials [J]. Journal of Trace Elements in Medicine and Biology, 2010, 24(2): 99-105. doi: 10.1016/j.jtemb.2009.12.001

    [26]

    Steinbrenner H, Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system [J]. Archives of Biochemistry and Biophysics, 2013, 536(2): 152-157. doi: 10.1016/j.abb.2013.02.021

    [27]

    Huertas M, Gisbert E, Rodríguez A, et al. Acute exposure of Siberian sturgeon (Acipenser baeri, Brandt) yearlings to nitrite: median-lethal concentration (LC(50)) determination, haematological changes and nitrite accumulation in selected tissues [J]. Aquatic Toxicology, 2002, 57(4): 257-266. doi: 10.1016/S0166-445X(01)00207-7

    [28]

    Sun S, Ge X, Zhu J, et al. Identification and mRNA expression of antioxidant enzyme genes associated with the oxidative stress response in the Wuchang bream (Megalobrama amblycephala Yih) in response to acute nitrite exposure [J]. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 2014(159): 69-77.

    [29]

    Cao L A, Huang W, Liu J H, et al. Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure [J]. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 2010, 151(3): 386-392.

    [30]

    Krych-Madej J, Gebicka L. Interactions of nitrite with catalase: Enzyme activity and reaction kinetics studies [J]. Journal of Inorganic Biochemistry, 2017(171): 10-17.

    [31]

    Dinkova-Kostova A T, Kostov R V, Canning P Keap1. the cysteine-based mammalian intracellular sensor for electrophiles and oxidants [J]. Archives of Biochemistry and Biophysics, 2017(617): 84-93.

    [32]

    Stępkowski T M, Kruszewski M K. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis [J]. Free Radical Biology and Medicine, 2011, 50(9): 1186-1195. doi: 10.1016/j.freeradbiomed.2011.01.033

    [33]

    Li X H, Tang N F, Li Y Q, et al. Cytoprotective effect of p62/Nrf2 signaling pathway [J]. Acta Pharmaceutica Sinica, 2018(9): 57-59.

    [34]

    Zhang C, Lin J, Ge J, et al. Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis [J]. Toxicology in Vitro, 2017(44): 349-356.

    [35]

    Susan Elmore. Apoptosis: a review of programmed cell death [J]. Toxicology and Pathology, 2007, 35(4): 495-516. doi: 10.1080/01926230701320337

    [36]

    Jia R, Han C, Lei J L, et al. Effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus) [J]. Aquatic Toxicology, 2015(169): 1-9.

    [37] 王苏苏, 胡昕迪, 顾璇, 等. 基于Bax/Bcl-2比值探讨硒对镉致睾丸间质细胞凋亡的保护作用 [J]. 营养学报, 2018, 40(6): 616-618. doi: 10.3969/j.issn.0512-7955.2018.06.019

    Wang S S, Hu X D, Gu X, et al. Protection of selenium on TM3 cell apoptosis induced by cadmium based on the Bax/Bcl-2 ratio [J]. Acta Nutrimenta Sinica, 2018, 40(6): 616-618. doi: 10.3969/j.issn.0512-7955.2018.06.019

    [38]

    Elsherbiny N M, Maysarah N M, El-Sherbiny M, et al. Renal protective effects of thymoquinone against sodium nitrite-induced chronic toxicity in rats: Impact on inflammation and apoptosis [J]. Life Sciences, 2017(180): 1-8.

图(6)  /  表(1)
计量
  • 文章访问数:  2447
  • HTML全文浏览量:  743
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-17
  • 修回日期:  2020-10-14
  • 网络出版日期:  2021-07-22
  • 发布日期:  2021-09-08

目录

    /

    返回文章
    返回