EFFECTS OF DIETARY β-1,3-GLUCAN ON GROWTH PERFORMANCE, SERUM METABOLITE, IMMUNE-RELATED GENE EXPRESSION AND RESISTANCE TO NITRITE STRESS IN LITOPENAEUS VANNAMEI
-
摘要: 实验旨在研究β-1,3-葡聚糖的不同投喂方式对凡纳滨对虾(Litopenaeus vannamei)生长、血清代谢和抗亚硝酸氮应激能力的影响。选用480尾初体重(0.43±0.01) g的凡纳滨对虾, 随机分为4组, 即G0(全程投喂基础饲料)、G1组(全程投喂0.1%β-1,3-葡聚糖饲料)、G2组(0.1% β-1,3-葡聚糖饲料7d+基础饲料7d循环)和G3组(0.1% β-1,3-葡聚糖饲料14d+基础饲料14d循环)。在养殖84d后, 应用亚硝酸钠进行120h亚硝酸氮应激实验。结果显示, 各实验组凡纳滨对虾生长性能和全虾营养成分没有显著性差异。在养殖84d后, G2和G3组凡纳滨对虾肝胰腺脂肪酶活性显著高于G0和G1组(P<0.05), G1、G2和G3组凡纳滨对虾血清胆固醇和甘油三酯含量显著高于G0组(P<0.05), G3组凡纳滨对虾肌肉脂多糖/ß-1,3-葡聚糖结合蛋白(LGBP)、酚氧化物酶原(proPO)和超氧化物歧化酶(SOD)mRNA表达显著高于G0和G1组(P<0.05)。亚硝酸氮应激120h, G1、G2和G3组凡纳滨对虾累计死亡率显著低于G0组(P<0.05), G3组凡纳滨对虾累计死亡率显著低于G0、G1和G2组(P<0.05)。在亚硝酸氮应激120h后, 与G0组相比, G1、G2和G3组凡纳滨对虾血清总蛋白含量显著升高(P<0.05), 葡萄糖含量、谷丙转氨酶和谷草转氨酶活性显著降低(P<0.05); G3组凡纳滨对虾肌肉LGBP、proPO和SOD mRNA表达显著高于G0 (P<0.05), G1组凡纳滨对虾肌肉丝氨酸蛋白酶(SP)mRNA表达显著高于G0、G2和G3组(P<0.05)。结果表明, 14d间隔投喂0.1% β-1,3-葡聚糖可能通过促进能量代谢和LGBP、proPO和SOD mRNA表达提高凡纳滨对虾抗亚硝酸氮应激能力。Abstract: To investigate the effects of dietary β-1,3-glucan on growth performance, serum metabolite, immune-related gene and resistance to nitrite stress in Litopenaeus vannamei, 0.1% β-1,3-Glucan was supplemented to a basal diet (control, G0) with different feeding schedules: permanently β-1,3-glucan diet (G1), 7 days β-1,3 glucan diet-7 days of control diet (G2) and 14 days β-1,3 glucan diet-14 days of control diet (G3). After the feeding trial, these shrimps were exposed to nitrite-N (20 mg/L) for 120h. The results showed that dietary β-1,3-glucan had no significant effect on growth performance and whole-body composition after 84d feeding trial (P>0.05). The activity of lipase in hepatopancreas in G2 and G3 groups was significantly higher than that in G0 and G1 groups (P<0.05). The shrimp in G1, G2 and G3 groups had significantly higher hemolymph triacylglycerols and cholesterol levels than G0 group (P<0.05). Higher expression levels of LPS/b-glucan binding protein (LGBP), Prophenoloxidase (proPO) and superoxide dismutase (SOD) were observed in G3 group compared to G0 and G1 groups (P<0.05). After 120h nitrite-N stress, the mortality in G3 group was significantly lower than that of G0, G1 and G2 groups (P<0.05). Nitrite stress significantly reduced the levels of GLU, GOT and GPT and significantly enhanced hemolymph level. G3 group had significantly higher expression levels of LGBP, proPO and SOD compared to G0 group (P<0.05). The expression level of serine proteinase in G1 group was significantly higher than that in G0, G2 and G3 groups (P<0.05). L. vannamei fed diet G3 can improve nitrite resistance probably by accelerating energy metabolism and increasing expression levels of LGBP, proPO and SOD.
-
Keywords:
- β-1,3-glucan /
- Litopenaeus vannamei /
- Growth /
- Serum metabolite /
- Immune-related gene /
- Nitrite stress
-
-
表 1 饲料配方及化学成分(风干重)
Table 1 Formulation and chemical composition (dry matter, %)
原料Ingredient 含量Content 原料Ingredient 含量Content 秘鲁鳀鱼粉Peru anchovy fish meal 30.0 维生素预混料Vitamin premix1) 2.0 大豆浓缩蛋白Soy protein concentrate 30.0 矿物质预混料Mineral premix2) 0.5 玉米淀粉Corn starch 28.0 磷酸二氢钙Ca(H2PO4)2 1.5 鱼油Fish oil 5.0 α-纤维素α-cellulose 0.5 氯化胆碱Choline chloride (50%) 1.0 大豆卵磷脂Soybean lecithin (50%) 1.5 营养水平Nutrient level 营养水平Nutrient level 粗蛋白质Crude protein 39.1 灰分Ash 13.8 粗脂肪Crude lipid 11.2 水分Moisture 8.7 注: 1)维生素预混料为每千克饲料提供: 维生素A 60.0 mg; 维生素D 5000 IU; 维生素E 99.0 mg; 维生素K 5.0 mg; 维生素B1 50.0 mg; 维生素B2 40.0 mg; 维生素B6 100.0 mg; 维生素B12 0.1 mg; 泛酸钙 calcium pantothenate 120.0 mg; 烟酸 niacin 200.0 mg; 生物素 biotin 1.0 mg; 肌醇 inositol 300. 0 mg; 叶酸 folic acid 10.0 mg; 2)矿物质预混料为每千克饲料提供: 铁 12 mg; 铜 25 mg; 锌 32 mg; 锰 20 mg; 硒 0.05 mg; 碘 0.1 mg; 钴5 mg; 镁 0.06 mg; 钾 40 mgNote: 1)Vitamin premix composition (mg/kg feed): VA 60.0 mg; VD 5000 IU; VE 99.0 mg; VK 5.0 mg; VB1 50.0 mg; VB2 40.0 mg; VB6 100.0 mg; VB12 0.1 mg; calcium pantothenate 120.0 mg; niacin 200.0 mg; biotin 1.0 mg; inositol 300. 0 mg; folic acid 10.0 mg; wheat flour was used as the carrier. 2) Mineral premix composition (mg/kg feed): Fe 12 mg; Cu 25 mg; Zn 32 mg; Mn 20 mg; Se 0. 05 mg; I 0.1 mg; Co 5 mg; Mg 0.06 mg; K 40 mg 表 2 本实验的引物序列
Table 2 Primers used in this study
目的基因
Target gene引物Primer (5′—3′) 大小Size (bp) LPS/b-glucan binding protein ACCGCAGCATCAGTTATACCGTCATCGCCCTTCCAGTTG 77 Haemocyanin GTCTTAGTGGTTCTTGGGCTTGTCGGTCTCCGTCCTGAATGTCTCC 124 Penaedin-3a CACCCTTCGTGAGACCTTTGAATATCCCTTTCCCACGTGAC 141 Prophenoloxidase CGGTGACAAAGTTCCTCTTCGCAGGTCGCCGTAGTAAG 122 Serine proteinase ACGTTCTCACGACTGGTCACACTATGTAAGGCGCGTCGTTCTC 107 Superoxide dismutase TCATGCTTTGCCACCTCTCCCGCTTCAACCAACTTCTTC 143 β-actin CCACGAGACCACCTACAACAGCGAGGGCAGTGATTTC 142 表 3 β-1,3-葡聚糖对凡纳滨对虾生长性能的影响
Table 3 Effects of dietary β-1,3-glucan on growth performance of litopenaeus vannamei
项目Item G0 G1 G2 G3 初始均重Initial body weight (g) 0.43±
0.0010.42±
0.0020.43±
0.0020.43±
0.002终末均重Final body weight (g) 5.31±
0.195.62±
0.035.71±
0.215.13±
0.29增重率Weight gain rate (%) 1141±
471218±
181239±
471108±
63特定生长率Specific growth rate (%/d) 2.99±
0.0463.07±
0.0173.09±
0.412.96±
0.62存活率Survival rate (%) 64.82±
6.2379.98±
8.1280.12±
5.7576.56±
6.38注: 上标不同的同行数据间差异显著(P<0.05); 下同Note: Values in each row with different letters are significantly different (P<0.05). The same applies below 表 4 β-1,3-葡聚糖对凡纳滨对虾肝胰腺消化酶活性的影响
Table 4 Effects of dietary β-1,3-glucan on activities of digestive enzymes in hepatopancreas of Litopenaeus vannamei (U/mg prot)
项目Item G0 G1 G2 G3 蛋白酶Protease 3553.77±
467.73ab2356.34±
616.84a3275.07±
359.06ab4250.97±
757.18b脂肪酶Lipase 6.76±1.57a 6.53±2.84a 9.69±1.01b 11.96±1.05c 淀粉酶Amylase 46.86±2.97 48.97±8.22 49.04±2.07 49.54±2.32 表 5 β-1,3-葡聚糖对凡纳滨对虾体成分的影响(%DM)
Table 5 Effects of dietary β-1,3-glucan on body composition of Litopenaeus vannamei
项目Item G0 G1 G2 G3 水分Moisture 76.68±
0.2476.98±
0.0976.12±
0.0876.74±
0.13粗蛋白Crude protein 70.85±
0.4471.00±
0.3470.26±
0.6169.73±
0.25粗脂肪Crude lipid 5.39±
0.426.00±
0.155.80±
0.235.87±
0.02灰分Ash 13.89±
0.3213.57±
0.2014.06±
0.4714.17±
0.19 -
[1] Saoud I P, Davis D A, Rouse D B. Suitability studies of inland well waters for Litopenaeus vannamei culture [J]. Aquaculture, 2003, 217(1): 373-383.
[2] Grisdale-Helland B, Helland S J, Gatlin Ⅲ D M. The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar) [J]. Aquaculture, 2008, 283(1): 235-248.
[3] Li H, Xu C, Zhou L, et al. Beneficial effects of dietary β-glucan on growth and health status of Pacific white shrimp Litopenaeus vannamei at low salinity [J]. Fish & Shellfish Immunology, 2019(91): 315-324.
[4] Zhao H X, Cao J M, Wang A L, et al. Effect of long-term administration of dietary β-1,3-glucan on growth, physiological and immune responses in Litopenaeus vannamei (Boone, 1931) [J]. Aquaculture International, 2012, 20(1): 145-158. doi: 10.1007/s10499-011-9448-6
[5] Javad J M, Abdolmohammad A K, Hame P, et al. Effects of dietary β-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877) [J]. Fish & Shellfish Immunology, 2019(91): 202-208.
[6] Zhao H X, Cao J M, Wang A L, et al. Effect of dietary β-1,3-glucan on the immune response of Litopenaeus vannamei exposed to nitrite-N [J]. Aquaculture Nutrition, 2012, 18(3): 272-280. doi: 10.1111/j.1365-2095.2011.00893.x
[7] Huang X, Zhou H, Zhang H. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis [J]. Fish & Shellfish Immunology, 2006(20): 750-757.
[8] Soraat A, Sasimanas U, CheewaratP, et al. Feeding-regimen of β-glucan to enhance innate immunity and disease resistance of Nile tilapia, Oreochromis niloticus Linn., against Aeromonas hydrophila and Flavobacterium columnare [J]. Fish & Shellfish Immunology, 2019(87): 120-128.
[9] Sung H H, Koum G H, Song Y L. Vibrosis resistance induced by glucan treatment in tiger shrimp (Paneausm onodon) [J]. Fish Pathology, 1994(29): 11-17. doi: 10.3147/jsfp.29.11
[10] Thanardkit P, Khunrae P, Suphantharika M, et al. Glucan from spent brewer’s yeast: preparation, analysis and use as a potential immunostimulant in shrimp feed [J]. World Journal of Microbiology & Biotechnology, 2002(18): 527-539.
[11] Cheng W, Hsiao I S, Hsu C H, et al. Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus [J]. Fish & Shellfish Immunology, 2004(17): 235-243.
[12] López N, Cuzonb G, Gaxiolac G, et al. Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles [J]. Aquaculture, 2003(224): 223-243. doi: 10.1016/S0044-8486(03)00214-X
[13] Association of Official Analytical Chemists (AOAC). Official Methods of Analysis [S]. 14th ed. Arlington, VA: 67.1984, 503-515.
[14] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method [J]. Methods, 2001(25): 402-408. doi: 10.1006/meth.2001.1262
[15] Bai N, Zhang W B, Mai K S, et al. Effects of discontinuous administration of β-glucan and glycyrrhizin on the growth and immunity of white shrimp Litopenaeus vannamei [J]. Aquaculture, 2010(306): 218-224. doi: 10.1016/j.aquaculture.2010.06.017
[16] Sun S, Ge X, Xuan F, et al. Nitrite-induced hepatotoxicity in Bluntsnout bream (Megalobrama amblycephala): The mechanistic insight from transcriptome to physiology analysis [J]. Environmental Toxicology and Pharmacology, 2014, 37(1): 55-65. doi: 10.1016/j.etap.2013.11.010
[17] Tacon A G J, Cody J J, Conquest L D, et al. Effect of culture system on the nutrition and growth performance of pacific white shrimp Litopenaeus vannamei (Boone) fed different diets [J]. Aquaculture Nutrition, 2002(8): 121-737. doi: 10.1046/j.1365-2095.2002.00199.x
[18] Chand R K, Sahoo P K, Kumari J, et al. Administration of bovine lactoferrin influences the immune ability of the giant freshwater prawn Macrobrachium rosenbergii (de Man) and its resistance against Aeromonas hydrophila infection and nitrite stress [J]. Fish & Shellfish Immunology, 2006(21): 119-129.
[19] Chen J C, Lee Y. Effects of nitrite exposure on acid base balance, respiratory protein, and ion concentrations of giant freshwater prawn Macrobrachium rosenbergii at low pH [J]. Archives of Environmental Contamination and Toxicology, 1997(33): 290-297. doi: 10.1007/s002449900256
[20] Cheng S Y, Lee W C, Chen J C. An increase of uricogenesis in the Kuruma shrimp Marsupenaeus japonicus under nitrite stress [J]. Journal of Experimental Zoology, 2005, 303(4): 308-318.
[21] Perazzolo L M, Gargioni R, Ogliari P, et al. Evaluation of some hemato-immunological parameters in the shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress [J]. Aquaculture, 2002(214): 19-33. doi: 10.1016/S0044-8486(02)00137-0
[22] Racotta I S, Hernández-Herrera R. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia [J]. Comparative Biochemistry and Physiology A, 2000(125): 437-443. doi: 10.1016/S1095-6433(00)00171-9
[23] ZHANG L L. Effects of dissolved oxygen, starvation, temperature, and salinity on the locomotive ability of juvenile Chinese shrimp Fenneropenaeus chinensis [J]. Ethology Ecology & Evolution, 2019, 31(2): 155-172.
[24] López N, Cuzonb G, Gaxiolac G, et al. Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles [J]. Aquaculture, 2003, 224(1): 223-243.
[25] Hill, A D, Taylor A C, Strang R H C. Physiological and metabolic responses of the shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery [J]. Journal of Experimental Marine Biology and Ecology, 1991(150): 31-50. doi: 10.1016/0022-0981(91)90104-5
[26] 梁高杨, 李小勤, 高启平, 等. 氧化油脂对斑点叉尾鮰生长、体色和抗氧化能力的影响 [J]. 水生生物学报, 2019, 43(1): 60-68. doi: 10.7541/2019.008 Liang G Y, Li X Q, Gao Q P, et al. Effect of oxidized oils on growth, body color and antioxidant capacity of channel catfish, Ictalurus punctatus [J]. Acta Hydrobiologica Sinica, 2019, 43(1): 60-68. doi: 10.7541/2019.008
[27] Albores F V, Plascencia Y G. Beta gulcan binding protein and its role in shrimp immune response [J]. Aquaculture, 2000(191): 13-21. doi: 10.1016/S0044-8486(00)00416-6
[28] Yu X Q, Zhu Y F, Ma C, et al. Pattern recognition proteins in Manduca sexta plasma [J]. Insect Biochemistry and Molecular Biology, 2002(32): 1287-1293. doi: 10.1016/S0965-1748(02)00091-7
[29] 盛静, 宋晓玲, 赵小金, 等. 饲料中添加益生菌对凡纳滨对虾抗感染和5种免疫基因表达的影响 [J]. 水产学报, 2015, 39(6): 899-907. Zhang S J, Song X L, Zhao X J, et al. Effects of adding probiotics to the feed on anti-infection and five kinds of immune gene expression of Litopenaeus vannamei [J]. Journal of Fisheries of China, 2015, 39(6): 899-907.
[30] 雷爱莹, 江林源. 蜈蚣藻多糖对凡纳滨对虾免疫相关基因表达的影响 [J]. 南方农业学报, 2014, 45(4): 682-686. doi: 10.3969/j:issn.2095-1191.2014.4.682 Lei A Y, Jiang L Y. Effects of Grateloupia filicina polysaccharide on immunerelated gene expression in Litopenaeus vannamei [J]. Journal of Southern Agriculture, 2014, 45(4): 682-686. doi: 10.3969/j:issn.2095-1191.2014.4.682
[31] Liu C H, Yeh S P, Kuo C M, et al. The effect of sodium alginate on the immune response of tiger shrimp via dietary administration: Activity and gene transcription [J]. Fish & Shellfish Immunology, 2006(21): 442-453.