基于线粒体基因组全序列的鲟形目鱼类(Pisces: Acipenseriformes)的分子系统发育重建

程佩琳, 俞丹, 刘焕章, 杜浩, 危起伟

程佩琳, 俞丹, 刘焕章, 杜浩, 危起伟. 基于线粒体基因组全序列的鲟形目鱼类(Pisces: Acipenseriformes)的分子系统发育重建[J]. 水生生物学报, 2021, 45(3): 487-494. DOI: 10.7541/2021.2020.050
引用本文: 程佩琳, 俞丹, 刘焕章, 杜浩, 危起伟. 基于线粒体基因组全序列的鲟形目鱼类(Pisces: Acipenseriformes)的分子系统发育重建[J]. 水生生物学报, 2021, 45(3): 487-494. DOI: 10.7541/2021.2020.050
CHENG Pei-Lin, YU Dan, LIU Huan-Zhang, DU Hao, WEI Qi-Wei. MOLECULAR PHYLOGENY OF ACIPENSERIFORMES BASED ON COMPLETE MITOCHONDRIAL GENOME SEQUENCE[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 487-494. DOI: 10.7541/2021.2020.050
Citation: CHENG Pei-Lin, YU Dan, LIU Huan-Zhang, DU Hao, WEI Qi-Wei. MOLECULAR PHYLOGENY OF ACIPENSERIFORMES BASED ON COMPLETE MITOCHONDRIAL GENOME SEQUENCE[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 487-494. DOI: 10.7541/2021.2020.050

基于线粒体基因组全序列的鲟形目鱼类(Pisces: Acipenseriformes)的分子系统发育重建

基金项目: 中国博士后科学基金(2017M622560); 湖北省博士后创新岗位资助(2017C08); 国家自然科学基金(31772854)资助
详细信息
    作者简介:

    程佩琳(1986—), 女, 助理研究员; 研究方向为鱼类进化生物学。E-mail: chengpeilin@yfi.ac.cn

    通信作者:

    危起伟, 研究员; E-mail: weiqw@yfi.ac.cn

  • 中图分类号: Q959.46

MOLECULAR PHYLOGENY OF ACIPENSERIFORMES BASED ON COMPLETE MITOCHONDRIAL GENOME SEQUENCE

Funds: Supported by China Postdoctoral Science Foundation (2017M622560); Hubei Postdoctoral Innovation Post Project (2017C08); the National Natural Science Foundation of China (31772854)
    Corresponding author:
  • 摘要: 为厘清鲟形目鱼类的系统发育, 研究新测定了中华鲟(Acipenser sinensis)、长江鲟(A. dabryanus)、短吻鲟(A. brevirostrum)、纳氏鲟(A. naccarii)、鳇(Huso dauricus)和匙吻鲟(Polyodon spathula)共6种鲟类的线粒体全基因组序列。联合已测的17种鲟类的线粒体基因组数据, 利用最大似然法和贝叶斯法重建了鲟形目鱼类的分子系统发育关系, 并采用似然值检验对不同的树拓扑结构进行了评价。结果表明, 6种新测鲟类的线粒体基因组大小为16521—16766 bp, 编码13个蛋白质编码基因、22个转运RNA基因和2个核糖体基因, 与大多数已测的鲟类的线粒体基因组结构高度相似。基于23种鲟形目鱼类线粒体基因组数据, 系统发育分析的结果表明: (1)鲟形目的两个科, 匙吻鲟科(Polyodontidae)和鲟科(Acipenseridae)均为单系; (2)鲟科的内部亲缘关系复杂, 鲟属和鳇属的物种均不构成单系群。鲟科鱼类按分子系统发育重建结果可以分为3个类群: 尖吻鲟类(A. sturio - A. oxyrinchus clade)、大西洋鲟类(Atlantic clade)和太平洋鲟类(Pacific clade)。树拓扑结构的检验结果表明, 鲟科的系统发育关系为(尖吻鲟类(太平洋鲟类, 大西洋鲟类))。铲鲟属(Scaphirhynchus)是大西洋鲟类的基部类群。研究也说明线粒体基因组数据在鲟形目鱼类系统与进化研究方面具有重要应用价值。
    Abstract: In this study, six complete mitochondrial genomes of Acipenseriforemes (Acipenser sinensis, A. dabryanus, A. brevirostrum, A. naccarii, Huso dauricus and Polyodon spathula) were successfully assembled. Based on 6 novel mitogenomes and 17 previously published mitogenomes of sturgeons and paddlefishes, the molecular phylogeny of Acipenseriformes was constructed by maximum likelihood and Bayesian method, and the tree topologies were evaluated by likelihoods value test. The results showed that the length of entire mitochondrial genomes of the six species were 16521—16766 bp, encoding 13 protein-coding genes, 22 tRNA genes and two rRNA gene, which were similar to those of other sturgeons and paddlefishes. Molecular phylogenetic analyses showed that (i) the Acipenseriformes contained two monophyly families (Polyodontidae and Acipenseridae); (ii) genus Huso and Acipenser were demonstrated as non-monophyletic and the family Acipenseridae can be divided into 3 subgroups: A. sturio-A. oxyrinchus clade, Atlantic clade and Pacific clade. Tree topology tests indicated that the phylogenetic relationship of the subfamily Acipenseridae is [A. sturio-A. oxyrinchus clade (Pacific clade, Atlantic clade)]. The species of genus Scaphirhynchus has occupied the basal position of the Atlantic clade in Acipenseridae. This study showed that mitochondrial genome data has important application value in the systematic and evolutionary study of Acipenseriformes.
  • 图  1   基于23种鲟形目鱼类的线粒体全基因组(Com_Mito)构建的贝叶斯法和最大似然法的系统发育树(节点前数字表示BI后验支持率及ML自展数)

    Figure  1.   Baysian and ML phylogenetic tree based on 23 complete mitochondrial genomes nucleotide sequences

    表  1   新测6种鲟形目鱼类的线粒体基因组长度及碱基组成

    Table  1   Total length and base composition of mitochondrial genomes of six sequenced Acipenseriforme fishes

    物种名
    Species
    GenBank登录号
    GenBank accession number
    总长
    Total length (bp)
    GC含量
    GC content (%)
    AT-
    偏斜
    AT-skew
    GC-
    偏斜
    GC-skew
    中华鲟Acipenser sinensisMK07826116,52445.980.117−0.284
    长江鲟A. dabryanusMK07826216,43946.070.120−0.287
    短吻鲟A. brevirostrumMK07826316,59645.630.112−0.285
    纳氏鲟A. naccariiMK07826516,75945.230.109−0.285
    Huso dauricusMK07826416,76645.260.113−0.290
    匙吻鲟Polyodon spathulaMK07826016,52145.360.126−0.316
    下载: 导出CSV

    表  2   不同数据集、不同方法获得的鲟形目鱼类的系统发育结果

    Table  2   Phylogenetic relationships within order Acipenseriforme based on different dataset

    系统发育关系Phylogenetic topologyProAAPro_2 rRNA2 rRNACom_Mito
    BIMLBIMLBIMLBIMLBIML
    匙吻鲟科是单系群Polyodontidae is a monophyletic subfamily1.001001.001001.001001.001001.00100
    鲟科是单系群Acipenseridae is a monophyletic subfamily1.001001.001001.001001.001001.00100
    鲟属是单系群Acipenser is a monophyletic genus
    鳇属是单系群Huso is a monophyletic genus
    铲鲟属是单系群Scaphirhynchus is a monophyletic genus1.001001.001001.001001.00991.00100
    尖吻鲟类是单系群A. sturio-A. oxyrinchus cluster is a monophyletic group1.001001.001001.001001.001001.00100
    尖吻鲟类是鲟科的基部类群A. sturio-A. oxyrinchus cluster is the basal lineage of Acipenseridae1.001001.001001.001001.00100
    铲鲟属是鲟科的基部类群Scaphirhynchus is the basal lineage of Acipenseridae1.00100
    大西洋鲟类是单系群Atlantic clade is a monophyletic group1.00861.00871.00961.0099
    太平洋鲟类是单系群Pacific clade is one monophyletic group1.001001.00951.001000.98781.00100
    铲鲟属是大西洋鲟类的基部类群Scaphirhynchus is the basal group of Atlantic clade1.00861.00961.0099
    (大西洋鲟类, 太平洋鲟类)(A. sturio-A. oxyrinchus cluster, Pacific clade)0.99700.98540.97710.31360.9679
    闪光鲟是大西洋鲟类基部类群A. stellatus is the basal group of Atlantic clade1.00
    (H. dauricus (A. medirostris, A. mikadoi))(A. dabryanus, A. sinensis) (A. transmontanus, A. schrenckii)1.001001.00951.001000.98781.00100
    ((A. nudiventris, A. ruthenus) A. stellatus) (A. fulvescens (A. brevirostrum (A. baerii (A. naccarii, A. gueldenstaedtii))))1.001.001001.00100
    下载: 导出CSV

    表  3   系统发育树拓扑结构检验结果

    Table  3   Results of topological tests for five phylogenetic trees

    数据集Dataset拓扑结构Treetopology−ln
    likelihood
    SHWKHWSHAU
    ProCom_Mitogenome_BI+ML−42355.20.830.310.720.28
    Pro_ML−42352.81.000.690.960.72
    AA_BI−42559.20000
    AA_ML−42514.70000
    2 rRNA_BI+ML−42503.50000
    AACom_Mitogenome_BI+ML−14865.70.480.170.520.06
    Pro_ML−14862.90.610.340.710.39
    AA_BI−14857.91.000.530.790.65
    AA_ML−14859.30.780.470.780.47
    2 rRNA_BI+ML−14888.50.030.020.040
    Pro_2 rRNACom_Mitogenome_BI+ML−52330.110.9410.96
    Pro_ML−52336.90.670.060.200.04
    AA_BI−52608.30000.02
    AA _ML−52546.30000.01
    2 rRNA_BI+ML−52465.90000
    2 rRNACom_Mitogenome_BI+ML−5930.60.370.140.320.09
    Pro_ML−5935.60.210.040.100
    AA _BI−5981.20000
    AA _ML−5975.50000
    2 rRNA_BI+ML−5920.41.000.870.970.94
    Com_MitoCom_Mitogenome_BI+ML−57626.01.000.951.000.94
    Pro_ML−57633.60.680.050.150.06
    AA _BI−57913.20000
    AA _ML−57853.50000
    2rRNA_BI+ML−57763.60000
    下载: 导出CSV
  • [1]

    Nelson J S, Grande T, Wilson V H, et al. Fishes of the World. Fifth edition [M]. Hoboken. New Jersey: John Wiley and Sons, 2016: 118-121.

    [2]

    Froese R, Pauly D. Editors. FishBase. World Wide Web Electronic Publication. www.fishbase.org, version (02/2019).

    [3] 金帆. 冀北、辽西中生代中晚期鲟形鱼类化石 [M]//陈丕基, 金帆主编. 热河生物群. 合肥: 中国科学技术大学出版社, 1999: 188-280.

    Jin F. Late Mesozoic Acipenseriformes (Osteichthyes: Actinopterygii) in northern Hebei and western Liaoning [M]//Chen P J, Jin F (Eds.), Jehol Biota (Palaeoworld). Hefei: University of Science and Technology of China Press, 1999: 188–280.

    [4]

    Bemis W E, Findeis E K, Grande L. An overview of Acipenseriformes [J]. Environmental Biology of Fishes, 1997, 48(1): 25-71.

    [5]

    Peng Z, Ludwig A, Wang D, et al. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes) [J]. Molecular Phylogenetics and Evolution, 2007, 42(3): 854-862. doi: 10.1016/j.ympev.2006.09.008

    [6]

    Gardiner B G. Sturgeons as Living Fossils [M]//Eldredge N, S M Stanley (Eds.), Living Fossils. New York: Springer Verlag, 1984: 148–152.

    [7]

    Birstein V J, Hanner R, Desalle R. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches [J]. Environmental Biology of Fishes, 1997, 48(1-4): 127-155. doi: 10.1023/A:1007366100353

    [8]

    Birstein V J, Desalle R. Molecular phylogeny of Acipenserinae [J]. Molecular Phylogenetics & Evolution, 1998, 9(1): 141-155.

    [9] 张四明, 张亚平, 郑向忠, 等. 12种鲟形目鱼类mtDNA ND4l-ND4基因的序列变异及其分子系统学 [J]. 中国科学C辑: 生命科学, 1999, 29(6): 607-614.

    Zhang S M, Zhang Y P, Zheng X Z, et al. Sequence variation of mt DNA ND4l-ND4 and its molecular phylogeny in 12 species of Acipenseriformes [J]. Scientia Sinica Vitae, 1999, 29(6): 607-614.

    [10] 张四明, 晏勇, 邓怀, 等. 几种鲟鱼基因组大小、倍体的特性及鲟形目细胞进化的探讨 [J]. 动物学报, 199b, 45(2): 200-206.

    Zhang S M, Yan Y, Deng H, et al. Genome size, ploidy characters of several species of sturgeons and paddlefishes with comment on cellular evolution of Acipenseriformes [J]. Acta Zoologica Sinica, 199b, 45(2): 200-206.

    [11]

    Ludwig A, May B, Debus L, et al. Heteroplasmy in the mtDNA control region of sturgeon (Acipenser, Huso and Scaphirhynchus) [J]. Genetics, 2000, 156(4): 1933-1947.

    [12]

    Ludwig A, Belfiore N M, Pitra C, et al. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) [J]. Genetics, 2001, 158(3): 1203.

    [13] 汪登强, 危起伟, 王朝明, 等. 13种鲟形目鱼类线粒体DNA的PCR-RFLP分析 [J]. 中国水产科学, 2005, 12(4): 383-389.

    Wang D Q, Wei Q W, Wang Z M, et al. PCR-RFLP analysis of mitochondrial DNA in thirteen species of Acipenseriformes [J]. Journal of Fishery Sciences of China, 2005, 12(4): 383-389.

    [14]

    Fontana F, Tagliavini J, Congiu L. Sturgeon genetics and cytogenetics: Recent advancements and perspectives [J]. Genetica, 2001, 111(1-3): 359-373.

    [15]

    Krieger J, Hett A K, Fuerst P A, et al. The molecular phylogeny of the order Acipenseriformes revisited [J]. Journal of Applied Ichthyology, 2008, 24(supplement 1): 36-45.

    [16]

    Luo D H, Li Y P, Zhao L P, et al. Highly resolved phylogenetic relationships within order Acipenseriformes according to novel nuclear markers [J]. Genes, 2019, 10(1): 38. doi: 10.3390/genes10010038

    [17]

    Hilton E J, Grande L. Review of the fossil record of sturgeons, family Acipenseridae (Actinopterygii: Acipenseriformes), From North America [J]. Journal of Paleontology, 2006, 80(4): 672-683. doi: 10.1666/0022-3360(2006)80[672:ROTFRO]2.0.CO;2

    [18]

    Hilton E J, Grande L, Bemis W E. Skeletal anatomy of the shortnose sturgeon, Acipenser brevirostrum Lesueur 1818, and the systematics of sturgeons (Acipenseriformes, Acipenseridae) [J]. Fieldiana Life and Earth Sciences, 2011, 3(1): 1-168.

    [19] 龚理, 时伟, 司李真, 等. 鱼类线粒体DNA重排研究进展 [J]. 动物学研究, 2013, 34(6): 666-673.

    Gong L, Shi W, Si L Z, et al. Rearrangement of mitochondrial genome in fishes [J]. Zoological Research, 2013, 34(6): 666-673.

    [20] 唐培安, 李敏, 冯润秋, 等. 基于线粒体基因组数据的扁甲系总科间系统发育关系分析 [J]. 中国科学: 生命科学, 2019, 49(2): 163-171. doi: 10.1360/N052018-00119

    Tang P A, Li M, Feng R Q, et al. Phylogenetic relationships among superfamilies of Cucujiformia (Coleoptera: Polyphaga) inferred from mitogenomic data [J]. Scientia Sinica Vitae, 2019, 49(2): 163-171. doi: 10.1360/N052018-00119

    [21] 陈星, 沈永义, 张亚平. 线粒体DNA在分子进化研究中的应用 [J]. 动物学研究, 2012, 33(6): 566-573.

    Chen X, Shen Y Y, Zhang Y P. Review of mtDNA in molecular evolution studies [J]. Zoological Research, 2012, 33(6): 566-573.

    [22] 张晨, 程琪, 耿红, 等. 基于线粒体基因组的白甲鱼属分子系统发育学研究 [J]. 水生生物学报, 2018, 42(3): 64-68.

    Zhang C, Cheng Q, Geng H, et al. Molecular phylogeny of Onychostoma (Cyprinidae) based on mitochondrial genomes [J]. Acta Hydrobiologica Sinica, 2018, 42(3): 64-68.

    [23] 杨杨, 宋小晶, 唐文乔, 等. 克氏光唇鱼线粒体基因组测定及光唇鱼属的系统发育分析 [J]. 动物学杂志, 2018, 53(2): 207-219.

    Yang Y, Song X J, Tang W Q, et al. Complete mitochondrial genome of Acrossocheilus kreyenbergii, with phylogenetic analysis of genus Acrossocheilus [J]. Chinese Journal of Zoology, 2018, 53(2): 207-219.

    [24]

    Coil D, Jospin G, Darling A E. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data [J]. Bioinformatics, 2015, 31(4): 587-589. doi: 10.1093/bioinformatics/btu661

    [25]

    Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing [J]. Journal of Computational Biology, 2012, 19(5): 455-477. doi: 10.1089/cmb.2012.0021

    [26]

    Kurtz S, Phillippy A, Delcher A L, et al. Versatile and open software for comparing large genomes [J]. Genome Biology, 2004, 5(2): R12. doi: 10.1186/gb-2004-5-2-r12

    [27]

    Walker B J, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement [J]. PLoS One, 2014, 9(11): e112963. doi: 10.1371/journal.pone.011296

    [28]

    Bernt M, Donath A, Juhling F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation [J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313-319. doi: 10.1016/j.ympev.2012.08.023

    [29]

    Lowe T M, Eddy S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J]. Nucleic Acids Research, 1997, 25(5): 955-964. doi: 10.1093/nar/25.5.955

    [30]

    Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. doi: 10.1093/molbev/mst197

    [31]

    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 25(24): 4876-4882. doi: 10.1093/nar/25.24.4876

    [32]

    Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis [J]. Molecular Biology and Evolution, 2000, 17(4): 540-552. doi: 10.1093/oxfordjournals.molbev.a026334

    [33]

    Trifinopoulos J, Nguyen L T, von Haeseler A, et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis [J]. Nucletic Acids Research, 2016, 44(W1): W232-W235. doi: 10.1093/nar/gkw256

    [34]

    Kalyaanamoorthy S, Minh B Q, Wong TKF, et al. ModelFinder: fast model selection for accurate phylogenetic estimates [J]. Nature Methods, 2017, 14(6): 587-589. doi: 10.1038/nmeth.4285

    [35]

    Nguyen L T, Schmidt H A, Arndt von Haeseler, et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies [J]. Molecular Biology and Evolution, 2015, 32(1): 268-274. doi: 10.1093/molbev/msu300

    [36]

    Hoang D T, Chernomor O, Arndt von Haeseler, et al. UFBoot2: improving the ultrafast bootstrap approximation [J]. Molecular Biology and Evolution, 2017, 35(2): 518-522.

    [37]

    Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space [J]. Systematic Biology, 2012, 61(3): 539-542. doi: 10.1093/sysbio/sys029

    [38]

    Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference [J]. Molecular Biology and Evolution, 1999, 16(8): 1114-1116. doi: 10.1093/oxfordjournals.molbev.a026201

    [39]

    Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea [J]. Journal of Molecular Evolution, 1989, 29(2): 170-179. doi: 10.1007/BF02100115

    [40]

    Shimodaira H. An approximately unbiased test of phylogenetic tree selection [J]. Systematic Biology, 2002, 51(3): 492-508. doi: 10.1080/10635150290069913

    [41]

    Dillman C B, Wood R M, Kuhajda B R, et al. Molecular systematics of the shovelnose sturgeons (Scaphirhynchinae) of North America and Central Asia [J]. Journal of Applied Ichthyology, 2007, 23(4): 290-296. doi: 10.1111/j.1439-0426.2007.00919.x

  • 其他相关附件

图(1)  /  表(3)
计量
  • 文章访问数:  2552
  • HTML全文浏览量:  840
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20
  • 修回日期:  2020-07-27
  • 网络出版日期:  2021-05-11
  • 发布日期:  2021-05-14

目录

    /

    返回文章
    返回