MOLECULAR PHYLOGENY OF ACIPENSERIFORMES BASED ON COMPLETE MITOCHONDRIAL GENOME SEQUENCE
-
摘要: 为厘清鲟形目鱼类的系统发育, 研究新测定了中华鲟(Acipenser sinensis)、长江鲟(A. dabryanus)、短吻鲟(A. brevirostrum)、纳氏鲟(A. naccarii)、鳇(Huso dauricus)和匙吻鲟(Polyodon spathula)共6种鲟类的线粒体全基因组序列。联合已测的17种鲟类的线粒体基因组数据, 利用最大似然法和贝叶斯法重建了鲟形目鱼类的分子系统发育关系, 并采用似然值检验对不同的树拓扑结构进行了评价。结果表明, 6种新测鲟类的线粒体基因组大小为16521—16766 bp, 编码13个蛋白质编码基因、22个转运RNA基因和2个核糖体基因, 与大多数已测的鲟类的线粒体基因组结构高度相似。基于23种鲟形目鱼类线粒体基因组数据, 系统发育分析的结果表明: (1)鲟形目的两个科, 匙吻鲟科(Polyodontidae)和鲟科(Acipenseridae)均为单系; (2)鲟科的内部亲缘关系复杂, 鲟属和鳇属的物种均不构成单系群。鲟科鱼类按分子系统发育重建结果可以分为3个类群: 尖吻鲟类(A. sturio - A. oxyrinchus clade)、大西洋鲟类(Atlantic clade)和太平洋鲟类(Pacific clade)。树拓扑结构的检验结果表明, 鲟科的系统发育关系为(尖吻鲟类(太平洋鲟类, 大西洋鲟类))。铲鲟属(Scaphirhynchus)是大西洋鲟类的基部类群。研究也说明线粒体基因组数据在鲟形目鱼类系统与进化研究方面具有重要应用价值。Abstract: In this study, six complete mitochondrial genomes of Acipenseriforemes (Acipenser sinensis, A. dabryanus, A. brevirostrum, A. naccarii, Huso dauricus and Polyodon spathula) were successfully assembled. Based on 6 novel mitogenomes and 17 previously published mitogenomes of sturgeons and paddlefishes, the molecular phylogeny of Acipenseriformes was constructed by maximum likelihood and Bayesian method, and the tree topologies were evaluated by likelihoods value test. The results showed that the length of entire mitochondrial genomes of the six species were 16521—16766 bp, encoding 13 protein-coding genes, 22 tRNA genes and two rRNA gene, which were similar to those of other sturgeons and paddlefishes. Molecular phylogenetic analyses showed that (i) the Acipenseriformes contained two monophyly families (Polyodontidae and Acipenseridae); (ii) genus Huso and Acipenser were demonstrated as non-monophyletic and the family Acipenseridae can be divided into 3 subgroups: A. sturio-A. oxyrinchus clade, Atlantic clade and Pacific clade. Tree topology tests indicated that the phylogenetic relationship of the subfamily Acipenseridae is [A. sturio-A. oxyrinchus clade (Pacific clade, Atlantic clade)]. The species of genus Scaphirhynchus has occupied the basal position of the Atlantic clade in Acipenseridae. This study showed that mitochondrial genome data has important application value in the systematic and evolutionary study of Acipenseriformes.
-
Keywords:
- Mitochondrial genome /
- Acipenseriformes /
- Phylogeny /
- Maximum likelihood /
- Bayesian method /
- Tree topology test
-
-
表 1 新测6种鲟形目鱼类的线粒体基因组长度及碱基组成
Table 1 Total length and base composition of mitochondrial genomes of six sequenced Acipenseriforme fishes
物种名
SpeciesGenBank登录号
GenBank accession number总长
Total length (bp)GC含量
GC content (%)AT-
偏斜
AT-skewGC-
偏斜
GC-skew中华鲟Acipenser sinensis MK078261 16,524 45.98 0.117 −0.284 长江鲟A. dabryanus MK078262 16,439 46.07 0.120 −0.287 短吻鲟A. brevirostrum MK078263 16,596 45.63 0.112 −0.285 纳氏鲟A. naccarii MK078265 16,759 45.23 0.109 −0.285 鳇Huso dauricus MK078264 16,766 45.26 0.113 −0.290 匙吻鲟Polyodon spathula MK078260 16,521 45.36 0.126 −0.316 表 2 不同数据集、不同方法获得的鲟形目鱼类的系统发育结果
Table 2 Phylogenetic relationships within order Acipenseriforme based on different dataset
系统发育关系Phylogenetic topology Pro AA Pro_2 rRNA 2 rRNA Com_Mito BI ML BI ML BI ML BI ML BI ML 匙吻鲟科是单系群Polyodontidae is a monophyletic subfamily 1.00 100 1.00 100 1.00 100 1.00 100 1.00 100 鲟科是单系群Acipenseridae is a monophyletic subfamily 1.00 100 1.00 100 1.00 100 1.00 100 1.00 100 鲟属是单系群Acipenser is a monophyletic genus — — — — — — — — — — 鳇属是单系群Huso is a monophyletic genus — — — — — — — — — — 铲鲟属是单系群Scaphirhynchus is a monophyletic genus 1.00 100 1.00 100 1.00 100 1.00 99 1.00 100 尖吻鲟类是单系群A. sturio-A. oxyrinchus cluster is a monophyletic group 1.00 100 1.00 100 1.00 100 1.00 100 1.00 100 尖吻鲟类是鲟科的基部类群A. sturio-A. oxyrinchus cluster is the basal lineage of Acipenseridae 1.00 100 1.00 100 1.00 100 — — 1.00 100 铲鲟属是鲟科的基部类群Scaphirhynchus is the basal lineage of Acipenseridae — — — — — — 1.00 100 — — 大西洋鲟类是单系群Atlantic clade is a monophyletic group 1.00 86 1.00 87 1.00 96 — — 1.00 99 太平洋鲟类是单系群Pacific clade is one monophyletic group 1.00 100 1.00 95 1.00 100 0.98 78 1.00 100 铲鲟属是大西洋鲟类的基部类群Scaphirhynchus is the basal group of Atlantic clade 1.00 86 — — 1.00 96 — — 1.00 99 (大西洋鲟类, 太平洋鲟类)(A. sturio-A. oxyrinchus cluster, Pacific clade) 0.99 70 0.98 54 0.97 71 0.31 36 0.96 79 闪光鲟是大西洋鲟类基部类群A. stellatus is the basal group of Atlantic clade — — 1.00 — — — — — — — (H. dauricus (A. medirostris, A. mikadoi))(A. dabryanus, A. sinensis) (A. transmontanus, A. schrenckii) 1.00 100 1.00 95 1.00 100 0.98 78 1.00 100 ((A. nudiventris, A. ruthenus) A. stellatus) (A. fulvescens (A. brevirostrum (A. baerii (A. naccarii, A. gueldenstaedtii)))) 1.00 — — — 1.00 100 — — 1.00 100 表 3 系统发育树拓扑结构检验结果
Table 3 Results of topological tests for five phylogenetic trees
数据集Dataset 拓扑结构Treetopology −ln
likelihoodSH WKH WSH AU Pro Com_Mitogenome_BI+ML −42355.2 0.83 0.31 0.72 0.28 Pro_ML −42352.8 1.00 0.69 0.96 0.72 AA_BI −42559.2 0 0 0 0 AA_ML −42514.7 0 0 0 0 2 rRNA_BI+ML −42503.5 0 0 0 0 AA Com_Mitogenome_BI+ML −14865.7 0.48 0.17 0.52 0.06 Pro_ML −14862.9 0.61 0.34 0.71 0.39 AA_BI −14857.9 1.00 0.53 0.79 0.65 AA_ML −14859.3 0.78 0.47 0.78 0.47 2 rRNA_BI+ML −14888.5 0.03 0.02 0.04 0 Pro_2 rRNA Com_Mitogenome_BI+ML −52330.1 1 0.94 1 0.96 Pro_ML −52336.9 0.67 0.06 0.20 0.04 AA_BI −52608.3 0 0 0 0.02 AA _ML −52546.3 0 0 0 0.01 2 rRNA_BI+ML −52465.9 0 0 0 0 2 rRNA Com_Mitogenome_BI+ML −5930.6 0.37 0.14 0.32 0.09 Pro_ML −5935.6 0.21 0.04 0.10 0 AA _BI −5981.2 0 0 0 0 AA _ML −5975.5 0 0 0 0 2 rRNA_BI+ML −5920.4 1.00 0.87 0.97 0.94 Com_Mito Com_Mitogenome_BI+ML −57626.0 1.00 0.95 1.00 0.94 Pro_ML −57633.6 0.68 0.05 0.15 0.06 AA _BI −57913.2 0 0 0 0 AA _ML −57853.5 0 0 0 0 2rRNA_BI+ML −57763.6 0 0 0 0 -
[1] Nelson J S, Grande T, Wilson V H, et al. Fishes of the World. Fifth edition [M]. Hoboken. New Jersey: John Wiley and Sons, 2016: 118-121.
[2] Froese R, Pauly D. Editors. FishBase. World Wide Web Electronic Publication. www.fishbase.org, version (02/2019).
[3] 金帆. 冀北、辽西中生代中晚期鲟形鱼类化石 [M]//陈丕基, 金帆主编. 热河生物群. 合肥: 中国科学技术大学出版社, 1999: 188-280. Jin F. Late Mesozoic Acipenseriformes (Osteichthyes: Actinopterygii) in northern Hebei and western Liaoning [M]//Chen P J, Jin F (Eds.), Jehol Biota (Palaeoworld). Hefei: University of Science and Technology of China Press, 1999: 188–280.
[4] Bemis W E, Findeis E K, Grande L. An overview of Acipenseriformes [J]. Environmental Biology of Fishes, 1997, 48(1): 25-71.
[5] Peng Z, Ludwig A, Wang D, et al. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes) [J]. Molecular Phylogenetics and Evolution, 2007, 42(3): 854-862. doi: 10.1016/j.ympev.2006.09.008
[6] Gardiner B G. Sturgeons as Living Fossils [M]//Eldredge N, S M Stanley (Eds.), Living Fossils. New York: Springer Verlag, 1984: 148–152.
[7] Birstein V J, Hanner R, Desalle R. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches [J]. Environmental Biology of Fishes, 1997, 48(1-4): 127-155. doi: 10.1023/A:1007366100353
[8] Birstein V J, Desalle R. Molecular phylogeny of Acipenserinae [J]. Molecular Phylogenetics & Evolution, 1998, 9(1): 141-155.
[9] 张四明, 张亚平, 郑向忠, 等. 12种鲟形目鱼类mtDNA ND4l-ND4基因的序列变异及其分子系统学 [J]. 中国科学C辑: 生命科学, 1999, 29(6): 607-614. Zhang S M, Zhang Y P, Zheng X Z, et al. Sequence variation of mt DNA ND4l-ND4 and its molecular phylogeny in 12 species of Acipenseriformes [J]. Scientia Sinica Vitae, 1999, 29(6): 607-614.
[10] 张四明, 晏勇, 邓怀, 等. 几种鲟鱼基因组大小、倍体的特性及鲟形目细胞进化的探讨 [J]. 动物学报, 199b, 45(2): 200-206. Zhang S M, Yan Y, Deng H, et al. Genome size, ploidy characters of several species of sturgeons and paddlefishes with comment on cellular evolution of Acipenseriformes [J]. Acta Zoologica Sinica, 199b, 45(2): 200-206.
[11] Ludwig A, May B, Debus L, et al. Heteroplasmy in the mtDNA control region of sturgeon (Acipenser, Huso and Scaphirhynchus) [J]. Genetics, 2000, 156(4): 1933-1947.
[12] Ludwig A, Belfiore N M, Pitra C, et al. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) [J]. Genetics, 2001, 158(3): 1203.
[13] 汪登强, 危起伟, 王朝明, 等. 13种鲟形目鱼类线粒体DNA的PCR-RFLP分析 [J]. 中国水产科学, 2005, 12(4): 383-389. Wang D Q, Wei Q W, Wang Z M, et al. PCR-RFLP analysis of mitochondrial DNA in thirteen species of Acipenseriformes [J]. Journal of Fishery Sciences of China, 2005, 12(4): 383-389.
[14] Fontana F, Tagliavini J, Congiu L. Sturgeon genetics and cytogenetics: Recent advancements and perspectives [J]. Genetica, 2001, 111(1-3): 359-373.
[15] Krieger J, Hett A K, Fuerst P A, et al. The molecular phylogeny of the order Acipenseriformes revisited [J]. Journal of Applied Ichthyology, 2008, 24(supplement 1): 36-45.
[16] Luo D H, Li Y P, Zhao L P, et al. Highly resolved phylogenetic relationships within order Acipenseriformes according to novel nuclear markers [J]. Genes, 2019, 10(1): 38. doi: 10.3390/genes10010038
[17] Hilton E J, Grande L. Review of the fossil record of sturgeons, family Acipenseridae (Actinopterygii: Acipenseriformes), From North America [J]. Journal of Paleontology, 2006, 80(4): 672-683. doi: 10.1666/0022-3360(2006)80[672:ROTFRO]2.0.CO;2
[18] Hilton E J, Grande L, Bemis W E. Skeletal anatomy of the shortnose sturgeon, Acipenser brevirostrum Lesueur 1818, and the systematics of sturgeons (Acipenseriformes, Acipenseridae) [J]. Fieldiana Life and Earth Sciences, 2011, 3(1): 1-168.
[19] 龚理, 时伟, 司李真, 等. 鱼类线粒体DNA重排研究进展 [J]. 动物学研究, 2013, 34(6): 666-673. Gong L, Shi W, Si L Z, et al. Rearrangement of mitochondrial genome in fishes [J]. Zoological Research, 2013, 34(6): 666-673.
[20] 唐培安, 李敏, 冯润秋, 等. 基于线粒体基因组数据的扁甲系总科间系统发育关系分析 [J]. 中国科学: 生命科学, 2019, 49(2): 163-171. doi: 10.1360/N052018-00119 Tang P A, Li M, Feng R Q, et al. Phylogenetic relationships among superfamilies of Cucujiformia (Coleoptera: Polyphaga) inferred from mitogenomic data [J]. Scientia Sinica Vitae, 2019, 49(2): 163-171. doi: 10.1360/N052018-00119
[21] 陈星, 沈永义, 张亚平. 线粒体DNA在分子进化研究中的应用 [J]. 动物学研究, 2012, 33(6): 566-573. Chen X, Shen Y Y, Zhang Y P. Review of mtDNA in molecular evolution studies [J]. Zoological Research, 2012, 33(6): 566-573.
[22] 张晨, 程琪, 耿红, 等. 基于线粒体基因组的白甲鱼属分子系统发育学研究 [J]. 水生生物学报, 2018, 42(3): 64-68. Zhang C, Cheng Q, Geng H, et al. Molecular phylogeny of Onychostoma (Cyprinidae) based on mitochondrial genomes [J]. Acta Hydrobiologica Sinica, 2018, 42(3): 64-68.
[23] 杨杨, 宋小晶, 唐文乔, 等. 克氏光唇鱼线粒体基因组测定及光唇鱼属的系统发育分析 [J]. 动物学杂志, 2018, 53(2): 207-219. Yang Y, Song X J, Tang W Q, et al. Complete mitochondrial genome of Acrossocheilus kreyenbergii, with phylogenetic analysis of genus Acrossocheilus [J]. Chinese Journal of Zoology, 2018, 53(2): 207-219.
[24] Coil D, Jospin G, Darling A E. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data [J]. Bioinformatics, 2015, 31(4): 587-589. doi: 10.1093/bioinformatics/btu661
[25] Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing [J]. Journal of Computational Biology, 2012, 19(5): 455-477. doi: 10.1089/cmb.2012.0021
[26] Kurtz S, Phillippy A, Delcher A L, et al. Versatile and open software for comparing large genomes [J]. Genome Biology, 2004, 5(2): R12. doi: 10.1186/gb-2004-5-2-r12
[27] Walker B J, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement [J]. PLoS One, 2014, 9(11): e112963. doi: 10.1371/journal.pone.011296
[28] Bernt M, Donath A, Juhling F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation [J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313-319. doi: 10.1016/j.ympev.2012.08.023
[29] Lowe T M, Eddy S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J]. Nucleic Acids Research, 1997, 25(5): 955-964. doi: 10.1093/nar/25.5.955
[30] Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. doi: 10.1093/molbev/mst197
[31] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 25(24): 4876-4882. doi: 10.1093/nar/25.24.4876
[32] Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis [J]. Molecular Biology and Evolution, 2000, 17(4): 540-552. doi: 10.1093/oxfordjournals.molbev.a026334
[33] Trifinopoulos J, Nguyen L T, von Haeseler A, et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis [J]. Nucletic Acids Research, 2016, 44(W1): W232-W235. doi: 10.1093/nar/gkw256
[34] Kalyaanamoorthy S, Minh B Q, Wong TKF, et al. ModelFinder: fast model selection for accurate phylogenetic estimates [J]. Nature Methods, 2017, 14(6): 587-589. doi: 10.1038/nmeth.4285
[35] Nguyen L T, Schmidt H A, Arndt von Haeseler, et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies [J]. Molecular Biology and Evolution, 2015, 32(1): 268-274. doi: 10.1093/molbev/msu300
[36] Hoang D T, Chernomor O, Arndt von Haeseler, et al. UFBoot2: improving the ultrafast bootstrap approximation [J]. Molecular Biology and Evolution, 2017, 35(2): 518-522.
[37] Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space [J]. Systematic Biology, 2012, 61(3): 539-542. doi: 10.1093/sysbio/sys029
[38] Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference [J]. Molecular Biology and Evolution, 1999, 16(8): 1114-1116. doi: 10.1093/oxfordjournals.molbev.a026201
[39] Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea [J]. Journal of Molecular Evolution, 1989, 29(2): 170-179. doi: 10.1007/BF02100115
[40] Shimodaira H. An approximately unbiased test of phylogenetic tree selection [J]. Systematic Biology, 2002, 51(3): 492-508. doi: 10.1080/10635150290069913
[41] Dillman C B, Wood R M, Kuhajda B R, et al. Molecular systematics of the shovelnose sturgeons (Scaphirhynchinae) of North America and Central Asia [J]. Journal of Applied Ichthyology, 2007, 23(4): 290-296. doi: 10.1111/j.1439-0426.2007.00919.x
-
其他相关附件