A LONG-TERM CULTURE OF GIBEL CARP (CARASSIUS AURATUS GIBELIO) IN NET CAGES FOR 340 DAYS: EFFECTS OF DIETARY STARCH ON GROWTH AND GLUCOSE METABOLISM
-
摘要: 研究探讨了饲料淀粉对全养殖周期异育银鲫(Carassius auratus gibelio)生长性能和糖代谢的影响。实验以玉米淀粉为主要糖源, 分别设计淀粉水平为3% (S3)、13% (S13)、23% (S23)、33% (S33)和43% (S43)的5种等氮等脂饲料, 在长江故道江面网箱中饲养初始体重为(12.0±0.1) g的异育银鲫幼鱼340d, 期间根据鱼体养成阶段共取样5次, 生长阶段分为63d(D63, 幼鱼期)、110d(D110, 养成前期)、223d(D223, 越冬期)、275d(D275, 越冬后)和340d(D340, 养成中后期)。研究结果表明, 幼鱼期D63异育银鲫后肠淀粉酶活力较低且对饲料淀粉水平变化不敏感, 自养成前期D110之后鱼体后肠淀粉酶活力增强且随饲料淀粉水平的变化产生波动。幼鱼期D63异育银鲫glut2 mRNA相对表达量无显著差异, 其他阶段异育银鲫glut2 mRNA相对表达量水平随饲料淀粉水平升高而升高。各个生长阶段异育银鲫糖酵解的敏感度高于糖异生代谢, 幼鱼期D63与养成前期D110异育银鲫糖脂转化能力较强。幼鱼期D63异育银鲫适宜饲料淀粉水平为23%; 养成前期D110异育银鲫适宜饲料淀粉水平减为13%; 越冬后D275组异育银鲫整体代谢旺盛, 43%淀粉组生长最好; 而在养成中后期D340异育银鲫饲料淀粉需求则再次降到33%。研究结果表明, 异育银鲫在养殖周期的不同阶段对饲料淀粉的需求和利用存在显著的差异, 可以为异育银鲫不同养殖阶段特有饲料配方的设计提供支撑。Abstract: To study the effects of dietary carbohydrate on growth and glucose metabolism of gibel carp, 5 different diets with 3% (S3), 13% (S13), 23% (S23), 33% (S33) and 43% (S43 starch were formulated for a 340-day trail with 5 sampling times of day 63 (D63, the juveniles fish stage), day 110 (D110, the prophase cultivation period), day 223 (D223, overwintering stage), day 275 (D275, after overwintering stage) and day 340 (D340, the middle and late cultivation period). The results showed that gibel carp at different developmental stages had various starch utilization ability and glucose metabolism. The hindgut amylase activity and sensitiveness were low in the juveniles gibel carp and then increased from the prophase cultivation period. The activities of amylase in hindgut changed with the increased dietary starch level after D63. The GLUT2 mRNA level in gibel carp at D63 among groups were similar, while it increased with the increased dietary starch levels at D110, D275 and D340. The glycolysis was higher than gluconeogenesis in gibel carp at all stages. High glucose-induced lipogenesis was found in gibel carp at D63 and D110. The optimum dietary starch level was 23% for juvenile gibel carp at D63. The dietary starch requirement decreased to 13% for gibel carp at D113. After overwintering of D275, gibel carp showed a compensatory ability to utilize starch with the best growth performance in diet with 43% of dietary starch. At D340, gibel carp exhibited the best growth performance in 33% dietary starch group. The present results indicated that gibel have various abilities of the requirement and utilization of dietary starch at different developmental stages.
-
-
图 1 饲喂不同淀粉水平饲料后异育银鲫后肠淀粉酶活性的变化
图中值为平均值±标准误, n=8, 不同字母表示不同饲料碳水化合物处理组差异显著(P<0.05),下图同
Figure 1. Amylase activities in hindgut of gibel carp fed with different starch diets
Values are Means±SE, n=8. Different letters show significant differences among different starch diets (P<0.05). The same applies bellow
图 4 饲喂不同淀粉水平饲料后异育银鲫肝脏糖代谢相关基因mRNA相对表达量的变化
A. glut2的相对表达量; B. hk的相对表达量; C. gk的相对表达量; D. pepck的相对表达量; E. g6pc的相对表达量
Figure 4. Relative expression of hepatic glucose metabolism related genes of gibel carp fed with different starch diets
A. Relative expression of glut2; B. Relative expression of hk; C. Relative expression of gk; D. Relative expression of pepck; E. Relative expression of g6pc
表 1 饲料配方及化学组成(%干物质)
Table 1 Formulation and chemical composition of the experimental diets (% dry matter)
原料Ingredient 饲料Diet S3 S13 S23 S33 S43 秘鲁鱼粉Peruvian fishmeal 8.45 8.45 8.45 8.45 8.45 酪蛋白Casein 35.00 35.00 35.00 35.00 35.00 玉米淀粉Corn starch 3.00 13.00 23.00 33.00 43.00 鱼油Fish oil 3.37 3.37 3.37 3.37 3.37 豆油Soybean oil 3.37 3.37 3.37 3.37 3.37 纤维素Cellulose 40.11 30.11 20.11 10.11 0.11 氯化胆碱Choline chloride 0.11 0.11 0.11 0.11 0.11 磷酸二氢钙Ca(H2PO4)2 1.20 1.20 1.20 1.20 1.20 维生素预混物Vitamin premix 1 0.39 0.39 0.39 0.39 0.39 矿物盐预混物Mineral premix 2 5.00 5.00 5.00 5.00 5.00 乙氧基喹啉Ethoxyquin 0.02 0.02 0.02 0.02 0.02 化学组成Chemical composition 能量Gross energy (kJ/g) 11.90 13.60 15.30 17.00 18.70 粗蛋白Crude protein 35.00 35.00 35.00 35.00 35.00 粗脂肪Crude lipid 8.00 8.00 8.00 8.00 8.00 注: 1. 维生素预混物 Vitamin premix (mg/kg diet): 维生素B1 Thiamin, 20; 维生素B2 Riboflavin, 20; 维生素B6 Pyridoxine, 20; 维生素B12 Cyanocobalamine, 0.02; 叶酸 Folic acid, 5; 泛酸钙Calciumpatothenate, 50; 肌醇 Inositol, 100; 烟酸 Niacin, 100; 生物素Biotin, 0.1; 维生素C Ascorbic acid, 100; 维生素 A Retinol, 110; 维生素D Vitamin D, 20; 维生素E Vitamin E, 50; 维生素K Vitamin K, 10; 玉米淀粉 Corn starch, 645.2; 2. 矿物盐预混物Mineral premix (mg/kg diet): NaCl, 500.0; MgSO4·7H2O, 8155.6; NaH2PO4·2H2O, 12500.0; KH2PO4, 16000.0; CaHPO4·2H2O, 7650.6; FeSO4·7H2O, 2286.2; C6H10CaO6·5H2O, 1750.0; ZnSO4·7H2O, 178.0; MnSO4·H2O, 61.4; CuSO4·5H2O, 15.5; CoSO4·7H2O, 0.9; KI, 1.5; Na2SeO3, 0.6; 玉米淀粉 Corn starch, 899 表 2 RT-qPCR所用引物
Table 2 Primers used in RT-qPCR
引物Primer 序列Sequence (5′—3′) GenBank登录号GenBank accession number actin肌动蛋白 TTGAGCAGGAGATGGGAACCG AB039726.2 GAGCCTCAGGGCAACGGAAA glut2葡萄糖转
运载体2CTCGTGGATGAGCTACCTCAGCAT KX898504 CCCTGACTGAAGATCTCCGCCA hk己糖激酶 TATGAGAAGATGATCAGCGGGATGTACC KX898499 ATCACACGTGCTGCTGATCAAGCCCA gk葡萄糖激酶 GAGGAGATGCGTAAGGTGGAGCT KX898498 TTCTCATACAGCTGATGTCCAGGGTT pepck磷酸烯醇
式丙酮酸羧激酶AGACAAACCCTCATGCCATGGCAAC KX898506 GGGTCTATGATGGGGCACTGG g6pc葡萄糖-6-
磷酸酶CCTTACTGGTGGGTCCATGAGACT KX898505 TGGGCCGGTCTCACAGGTCAT 表 3 饲料淀粉水平对异育银鲫“中科3号”生长性能的影响
Table 3 Effects of dietary starch on growth performance of gibel carp
生长阶段Growth stage 饲料Diet 生长指标Growth Index 初始体重1IBW (g) 终末体重2FBW (g) 增重率3WGR (%) 摄食率 4FR (%BW/d) 饲料效率5FE (%) 特定生长率6SGR (%/d) 肥满度7CF (g/cm3) D63 S3 12.00±0.08 77.25±2.55a 540.62±44.83a 2.38±0.03b 97.07±2.53a 2.96±0.03a 2.80±0.08a S13 12.00±0.06 75.45±4.16a 528.72±47.98a 2.25±0.07b 102.36±5.38a 2.92±0.04a 3.02±0.08a S23 12.00±0.09 94.14±3.53c 684.43±39.35c 1.96±0.08a 125.28±6.19b 3.27±0.03c 3.31±0.06b S33 12.00±0.06 86.36±1.56b 619.69±33.55b 2.18±0.12ab 106.13±3.64a 3.13±0.01b 2.96±0.11a S43 12.00±0.07 90.94±3.69bc 624.51±31.80bc 2.27±0.08b 111.09±6.76ab 3.21±0.03bc 3.08±008ab D110 S3 76.58±1.34ab 90.39±0.29a 18.83±2.29a 1.49±0.08 23.99±2.01a 0.37±0.04a 2.45±0.09a S13 68.76±0.67a 87.78±2.04a 25.59±2.34b 1.46±0.09 33.34±3.08b 0.48±0.04b 2.80±0.04b S23 93.80±4.96c 111.07±3.02c 13.89±1.23a 1.39±0.03 20.23±1.07a 0.28±0.02a 2.59±0.03ab S33 86.02±4.61bc 95.31±6.15ab 15.82±0.48a 1.43±0.02 21.38±0.61a 0.31±0.01a 2.66±0.14ab S43 90.62±1.73c 103.53±8.42bc 14.64±2.53a 1.41±0.02 20.59±1.59a 0.29±0.04a 2.73±0.08ab D223 S3 92.56±1.62ab 99.02±1.58a 9.47±1.09a — — — 2.54±0.04a S13 87.37±0.98a 105.45±1.26a 22.65±3.26b — — — 3.48±0.16d S23 102.11±4.49b 120.96±3.17c 9.12±1.14a — — — 3.17±0.08c S33 101.33±5.57b 104.88±1.39a 6.29±1.01a — — — 2.84±0.01b S43 99.17±4.58ab 114.36±2.57b 6.46±0.88a — — — 2.89±0.07b D275 S3 92.56±1.62ab 133.9±5.8a 38.02±12.16a 1.25±0.03 48.51±6.31 0.69±0.05a — S13 87.37±0.98a 141.42±4.84ab 46.87±6.70ab 1.26±0.05 48.42±9.70 0.71±0.02ab — S23 102.11±4.49b 163.44±2.28c 56.45±4.19b 1.33±0.09 50.73±5.64 0.81±0.06bc — S33 101.33±5.57b 156.55±5.31bc 49.26±3.54b 1.40±0.26 48.47±6.32 0.73±0.02ab — S43 99.17±4.58ab 170.39±5.32c 53.47±7.29b 1.27±0.05 53.33±4.34 0.86±0.02c — D340 S3 132.7±5.37a 186.41±8.25a 40.41±2.42a 1.70±0.02bc 31.16±0.67 0.65±0.02a 2.68±0.06 S13 141.16±5.02a 219.07±2.48b 53.19±5.42b 1.74±0.01c 32.63±1.51 0.82±0.06b 2.54±0.21 S23 169.3±7.15b 268.05±5.59c 58.74±3.37b 1.67±0.07ab 45.88±2.66 0.89±0.04b 2.74±0.11 S33 146.17±1.9a 253.86±7.59c 87.36±5.85c 1.57±0.03a 50.73±6.75 1.05±0.01c 2.93±0.19 S43 168.83±3.4a 261.57±7.92c 63.95±2.71b 1.65±0.03ab 48.34±6.43 0.85±0.05b 2.96±0.08 注: 表中数值为平均值±标准误, 相同时间点同列数值有不同上标英文字母表示差异显著(P<0.05)Values are presented as mean±SE; Values in the same index with different superscripts are significantly different (P<0.05);1初始体重 IBW (g). Initial body weight; 2终末体重 FBW (g). Final body weight; 3增重率 WGR (%)=100×(终末体重–初始体重)/初始体重, Weight gain rate (%)=100×(FBW–IBW)/IBW; 4摄食率FR (%BW/d)=100×干物质摄食量/[天数×(初始体重+终末体重)/2], Feeding rate (%BW/d)=100×dry feed intake / [days×(IBW+FBW)/2]; 5饲料效率 FE(%)=(100×鱼体平均增重)/平均摄食量Feed efficiency (%)=(100×fresh body weight gain)/dry feed intake; 6特定生长率 SGR (%/d)=100×[ln (终末体重)–ln (初始体重)]/天数, Specific growth rate(%/d)=100×[ln (IBW)–ln (FBW)]/days; 7肥满度 CF(g/cm3)=100×体重/体长3 Condition factor(CF; g/cm3)=100×body weight/(body length)3 表 4 饲料淀粉水平对异育银鲫鱼体基本组分的影响(% 湿重)
Table 4 Effects of dietary starch on body composition of gibel carp (% wet weight)
生长
阶段Growth stage饲料
Diet鱼体组分Fish body composition 水分Moisture 灰分Ash 粗蛋白Crude protein 粗脂肪Crude lipid D63 S3 71.62±1.25ab 4.35±0.16ab 16.71±0.76 5.33±0.30a S13 66.94±2.47a 5.02±0.22b 18.42±1.41 5.53±0.06a S23 70.27±3.77ab 4.18±0.49ab 15.19±2.71 7.20±0.81b S33 75.06±1.48b 3.63±0.28a 14.75±0.90 6.54±0.32ab S43 69.88±1.26ab 4.29±0.15ab 17.23±0.77 7.03±0.45b D110 S3 71.57±0.24ab 4.41±0.06 17.54±0.59 6.45±0.43a S13 71.94±0.45b 4.36±0.09 16.84±0.47 9.53±0.39c S23 70.34±0.94a 4.31±0.11 17.62±0.63 6.96±0.39ab S33 71.17±0.08ab 4.30±0.12 17.18±0.37 8.25±0.49b S43 70.74±0.25ab 4.32±0.06 17.85±0.10 7.35±0.29ab D223 S3 71.96±0.21a 5.28±0.55 15.91±1.71 4.93±0.72 S13 72.32±0.41ab 5.71±0.08 17.42±0.16 5.11±0.26 S23 73.10±0.34b 5.45±0.15 17.49±0.20 4.75±0.50 S33 73.2±0.27b 5.81±0.32 17.40±0.05 5.32±0.55 S43 72.87±0.18ab 5.64±0.06 17.88±0.15 4.56±0.34 D275 S3 72.14±0.25 3.79±0.51b 17.28±0.34 5.54±0.16 S13 72.76±0.11 3.19±0.51ab 17.36±1.02 5.51±0.31 S23 72.55±0.57 2.12±0.11a 16.01±0.65 3.85±0.11 S33 71.95±0.30 2.56±0.40ab 17.53±0.15 4.61±0.18 S43 71.33±1.06 2.23±0.14a 17.34±0.77 5.97±0.44 D340 S3 69.56±0.48ab 4.81±0.16 15.96±1.15a 6.14±0.85 S13 71.91±1.79b 4.43±0.31 17.86±0.21ab 5.84±0.48 S23 67.88±0.22a 4.72±0.11 18.91±0.33ab 7.30±0.28 S33 69.10±0.22ab 4.50±0.18 19.94±1.89b 6.55±0.27 S43 69.08±0.52ab 5.10±0.44 19.09±0.53ab 7.13±0.84 注: 表中数值为平均值±标准误, 相同时间点同列有不同上标英文字母表示差异显著(P<0.05)Note: Values are presented as mean±SE. Values in the same index with different superscripts are significantly different (P<0.05) -
[1] Anderson J, Jackson A J, Matty A J, et al. Effects of dietary carbohydrate and fibre on the tilapia Oreochromis niloticus (Linn.) [J]. Aquaculture, 1984, 37(4): 303-314. doi: 10.1016/0044-8486(84)90296-5
[2] Hemre G I, Mommsen T P, Krogdahl A. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes [J]. Aquaculture Nutrition, 2002, 8(3): 175-194. doi: 10.1046/j.1365-2095.2002.00200.x
[3] Moon T W. Glucose intolerance in teleost fish: Fact or fiction [J]? Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology, 2001, 129(2-3): 243-249. doi: 10.1016/S1096-4959(01)00316-5
[4] Wilson R P. Utilization of dietary carbohydrate by fish [J]. Aquaculture, 1994, 124(1-4): 67-80. doi: 10.1016/0044-8486(94)90363-8
[5] Hilton J W, Plisetskaya E M, Leatherland J F. Does oral 3,5,3′-triiodo-l-thyronine affect dietary glucose utilization and plasma insulin levels in rainbow trout (Salmo gairdneri) [J]? Fish Physiology & Biochemistry, 1987, 4(3): 113-120.
[6] Kirchner S J, Kaushik S, Panserats. Effect of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 2003, 134(2): 337-347.
[7] Mommsen T P, Plisetskaya E M. Insulin in fishes and agnathans: history, structure and metabolic regulation [J]. Reviews in Aquatic Science, 1991(4): 225-259.
[8] 王蕾. 鲤鱼早期发育阶段肠道菌群的分析及其免疫相关性研究 [D]. 济南: 山东师范大学, 2017: 64-72. Wang L. Analysis of gut microflora in early developmental stage and its relationship with immunity in common carp, Cyprinus carpio [D]. Jinan: Shandong Normal University, 2017: 64-72.
[9] 骆豫江, 陈昆慈, 朱新平, 等. 高体革鯻消化道发生的组织学观察 [J]. 水产学报, 2010, 34(2): 264-270. doi: 10.3724/SP.J.1231.2010.06499 Luo Y G, Chen K C, Zhu X P, et al. Histological studies on development of the digestive system of Scortum barcoo [J]. Journal of Fisheries of China, 2010, 34(2): 264-270. doi: 10.3724/SP.J.1231.2010.06499
[10] Sundby A, Eliassen K A, Refstie T, et al. Plasma levels of insulin, glucagon and glucagon-like peptide in salmonids of different weights [J]. Fish Physiology & Biochemistry, 1991, 9(3): 223-230.
[11] 李向松. 草鱼、异育银鲫和青鱼对饲料中碳水化合物利用的研究 [D]. 武汉: 中国科学院水生生物研究所, 2014: 47-76. Li X S. Dietary carbohydrate utilization in grass carp (Ctenopharynodon idellus), gibel carp (Carassius auratus gibelio var. CAS III) and black carp (Mylopharyngodon piceus) [D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2014: 47-76.
[12] 何吉祥, 崔凯, 徐晓英, 等. 异育银鲫幼鱼对蛋白质、脂肪及碳水化合物需求量的研究 [J]. 安徽农业大学学报, 2014, 41(1): 30-37. He J X, Cui K, Xu X Y, et al. Optimal dietary requirements of protein, lipid and carbohydrate for juvenile gibel carp (Carassius auratus gibelio) [J]. Journal of Anhui Agricultural University, 2014, 41(1): 30-37.
[13] Tan Q S, Wang F, Xie S Q, et al. Effect of high dietary starch levels on the growth performance, blood chemistry and body composition of gibel carp (Carassius auratus var. gibelio) [J]. Aquaculture Research, 2009, 40(9): 1011-1018. doi: 10.1111/j.1365-2109.2009.02184.x
[14] Tian L X, Liu Y J, Yang H J, et al. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella) [J]. Aquaculture International, 2012, 20(2): 283-293. doi: 10.1007/s10499-011-9456-6
[15] 胡毅, 陈云飞, 张德洪, 等. 不同碳水化合物和蛋白质水平膨化饲料对大规格草鱼生长、肠道消化酶及血清指标的影响 [J]. 水产学报, 2018, 42(5): 156-165. Hu Y, Chen Y F, Zhang D H, et al. Effects of different dietary carbohydrate and protein levels on growth, intestinal digestive enzymes and serum indexes in large-size grass carp (Ctenopharyngodon idella) [J]. Journal of Fisheries of China, 2018, 42(5): 156-165.
[16] 王道尊, 宋天复, 杜汉斌, 等. 饲料中蛋白质和醣的含量对青鱼鱼种生长的影响 [J]. 水产学报, 1984, 8(1): 9-17. Wang D Z, Song T F, Du H B, et al. The effect of protein and carbohydrate contents in feeds on the growth of black crap fingerlings [J]. Journal of Fisheries of China, 1984, 8(1): 9-17.
[17] Lupatsch I, Kissil G W. Feed formulations based on energy and protein demands in white grouper (Epinephelus aeneus) [J]. Aquaculture, 2005, 248(1-4): 83-95, 173. doi: 10.1016/j.aquaculture.2005.03.004
[18] Lupatsch I, Kissil G W, Sklan D, et al. Energy and protein requirements for maintenance and growth in gilthead seabream (Sparus aurata L.) [J]. Aquaculture Nutrition, 1998(4): 165-173. doi: 10.1046/j.1365-2095.1998.00065.x
[19] Furuichi M, Yone Y. Changes in activities of hepatic enzymes related to carbohydrate metabolism of fishes in glucose and insulin-glucose tolerance tests. [J]. Nippon Suisan Gakkaishi, 1982, 48(3): 463-466. doi: 10.2331/suisan.48.463
[20] Spannhof L, Plantikow H. Studies on the carbohydrate digestion in rainbow trout [J]. Aquaculture, 1983, 30(1-4): 95-108. doi: 10.1016/0044-8486(83)90155-2
[21] Fish G R. The comparative activity of some digestive enzymes in the alimentary canal of Tilapia and perch [J]. Hydrobiologia, 1960, 15(1): 161-178.
[22] 吴婷婷, 朱晓鸣. 鳜鱼, 青鱼, 草鱼, 鲤, 鲫, 鲢消化酶活性的研究 [J]. 中国水产科学, 1994, 1(2): 10-17. doi: 10.3321/j.issn:1005-8737.1994.02.005 Wu T T, Zhu X M. Studies on the activity of digestive enzymes in mandarin fish, black carp, grass carp, common carp, crucian carp and silver carp [J]. Journal of Fishery Sciences of China, 1994, 1(2): 10-17. doi: 10.3321/j.issn:1005-8737.1994.02.005
[23] Beamish F W H, Hilton J W, Niimi E, et al. Dietary carbohydrate and growth, body composition and heat increment in rainbow trout (Salmo gairdneri) [J]. Fish Physiology and Biochemistry, 1986, 1(2): 85-91. doi: 10.1007/BF02290208
[24] Cahu C L, Infante J L Z. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: Effect on digestive enzymes [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1994, 109(2): 213-222. doi: 10.1016/0300-9629(94)90123-6
[25] Kuz’mina V V, Golovanova I L, Izvekova G. Influence of temperature and season on some characteristics of intestinal mucosa carbohydrases in six freshwater fishes [J]. Comparative Biochemistry & Physiology Part B: Biochemistry & Molecular Biology, 1996, 113(2): 255-260.
[26] 蔡克瑕, 王重刚, 陈品健, 等. 花尾胡椒鲷仔稚鱼期消化酶活性的变化 [J]. 台湾海峡, 2000, 19(2): 201-204. Cai K X, Wang C G, Chen P J, et al. Ontogenetic development of digestive enzyme activities in larval and juvenile Plectorhynchus cinctus [J]. Journal of Oceanography in Taiwan Strait, 2000, 19(2): 201-204.
[27] 倪寿文, 桂远明. 草鱼、鲤、鲢、鱅和尼罗非鲫淀粉酶的比较研究 [J]. 大连海洋大学学报, 1992(1): 24-31. Ni S W, Gui Y M. A comparative research on activities among grass carp, common carp, silver carp, bighead carp, Tilapia nilotica [J]. Journal of Dalian Fisheries University, 1992(1): 24-31.
[28] Kenneth Z. Whole body glucose metabolism [J]. American Journal of Physiology, 1999, 276(3): 409-426.
[29] Borrebaek B, Christophersen B. Hepatic glucose phosphorylating activities in perch (Perca f luviatilis) after different dietary treatments [J]. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2000, 125(3): 387-393.
[30] 戈贤平, 刘波, 谢骏, 等. 饲料中不同碳水化合物水平对翘嘴红鲌生长及血液指标和糖代谢酶的影响 [J]. 南京农业大学学报, 2007, 30(3): 88-93. Ge X P, Liu B, Xie J, et al. Effect of different carbohydrate levels of dietary on growth, plasma biochemical indices and hepaticpancreas carbohydrate metabolic enzymes in topmouth culter (Erythroculter ilishaeformis Bleeker) [J]. Journal of Nanjing Agricultural University, 2007, 30(3): 88-93.
[31] Mithieux G. Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production [J]. Reproduction Nutrition Development, 1998, 36(4): 357-362.
[32] Metón I, Fernández F, Baanante I V. Short- and long-term effects of refeeding on key enzyme activities in glycolysis–gluconeogenesis in the liver of gilthead seabream (Sparus aurata) [J]. Aquaculture, 2003, 225(1): 99-107.
[33] Yang B Y, Wang C C, Tu Y Q, et al. Effects of repeated handling and air exposure on the immune response and the disease resistance of gibel carp (Carassius auratus gibelio) over winter [J]. Fish & Shellfish Immunology, 2015, 47(2): 933-941.
-
期刊类型引用(1)
1. 王凡,刘飞,池梦. 三氯生对斑马鱼幼鱼性别分化的影响及其机制. 广东海洋大学学报. 2023(01): 1-7 . 百度学术
其他类型引用(1)