基于PCA和SOM模型的龙感湖水质时空动态研究

肖灵君, 王普泽, 熊满堂, 叶少文, 张堂林, 刘家寿, 李钟杰

肖灵君, 王普泽, 熊满堂, 叶少文, 张堂林, 刘家寿, 李钟杰. 基于PCA和SOM模型的龙感湖水质时空动态研究[J]. 水生生物学报, 2021, 45(5): 1104-1111. DOI: 10.7541/2021.2020.109
引用本文: 肖灵君, 王普泽, 熊满堂, 叶少文, 张堂林, 刘家寿, 李钟杰. 基于PCA和SOM模型的龙感湖水质时空动态研究[J]. 水生生物学报, 2021, 45(5): 1104-1111. DOI: 10.7541/2021.2020.109
XIAO Ling-Jun, WANG Pu-Ze, XIONG Man-Tang, YE Shao-Wen, ZHANG Tang-Lin, LIU Jia-Shou, LI Zhong-Jie. SPATIO-TEMPORAL DYNAMICS OF WATER QUALITY IN LONGGAN LAKE BASED ON PRINCIPLE COMPONENT ANALYSIS (PCA) AND SELF-ORGANIZING MAPPING NEURAL NETWORK (SOM) MODELLING[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1104-1111. DOI: 10.7541/2021.2020.109
Citation: XIAO Ling-Jun, WANG Pu-Ze, XIONG Man-Tang, YE Shao-Wen, ZHANG Tang-Lin, LIU Jia-Shou, LI Zhong-Jie. SPATIO-TEMPORAL DYNAMICS OF WATER QUALITY IN LONGGAN LAKE BASED ON PRINCIPLE COMPONENT ANALYSIS (PCA) AND SELF-ORGANIZING MAPPING NEURAL NETWORK (SOM) MODELLING[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1104-1111. DOI: 10.7541/2021.2020.109

基于PCA和SOM模型的龙感湖水质时空动态研究

基金项目: 中国科学院重点部署项目(ZDRW-ZS-2017-3-2); 国家重点研发计划(2019YFD0900603); 国家自然科学基金(51679230); 淡水生态与生物技术国家重点实验室自主研究项目(2019FBZ02)资助
详细信息
    作者简介:

    肖灵君(1993—), 女, 硕士研究生; 主要研究方向为渔业生态学。E-mail: lingjun@ihb.ac.cn

    通信作者:

    叶少文(1979—), 男, 副研究员; 博士; 主要研究方向为渔业生态学。E-mail: yeshw@ihb.ac.cn

  • 中图分类号: Q178.1

SPATIO-TEMPORAL DYNAMICS OF WATER QUALITY IN LONGGAN LAKE BASED ON PRINCIPLE COMPONENT ANALYSIS (PCA) AND SELF-ORGANIZING MAPPING NEURAL NETWORK (SOM) MODELLING

Funds: Supported by the Key Strategic Program, CAS (ZDRW-ZS-2017-3-2); the National Key Research and Development Program of China (2019YFD0900603); the National Natural Science Foundation of China (51679230); the State Key Laboratory of Freshwater Ecology and Biotechnology (2019FBZ02)
    Corresponding author:
  • 摘要: 为评估湖泊渔业模式转型阶段水环境的时空动态, 选择长江中下游典型湖泊龙感湖为研究地点, 于2017—2018年对该湖的黄梅水域和宿松水域进行周年季度水质监测, 通过主成分分析(PCA)和自组织特征映射人工神经网络(SOM)模型定量分析了水体理化参数的时空变化特征, 采用综合营养状态指数法(TLI)对水体富营养化状况进行了评价。PCA分析结果表明, 龙感湖宿松水域和黄梅水域的水质差异较小, 季节动态明显。全湖氨氮夏季平均浓度高达0.64 mg/L; 总氮夏季平均浓度为2.30 mg/L, 冬季平均浓度为1.04 mg/L; 叶绿素a夏季平均含量达95.28 μg/L, 秋季平均浓度为28.30 μg/L; pH夏季最高, 达9.27; 总磷冬季最高, 平均为0.22 mg/L; TLI指数表明龙感湖除秋季属于轻度富营养水体外, 其他3个季节均属于中度富营养状态。SOM模型结果具有可视化强的优点, 能够更清晰和直观地反映龙感湖水质的时空分布动态。围栏拆除和禁渔等管理措施有助于湖泊渔业环境修复和资源恢复, 建议对渔业模式转型后的湖泊生态系统变化进行长期跟踪监测评估。
    Abstract: In order to evaluate the spatiotemporal dynamics of water quality during the transformation stage of lake fishery model, we selected Longgan Lake, a typical lake in the middle and lower reaches of the Yangtze River, as our research site. From 2017 to 2018, seasonal water quality monitoring were conducted on the Huangmei waters and Susong waters of the lake. Principle component analysis (PCA) and self-organizing mapping neural network (SOM) modelling were used to analyze the spatiotemporal changes of physical and chemical parameters of water body. The eutrophication status of water body was evaluated by the method of comprehensive trophic level index (TLI). PCA results indicated that the water quality of Susong and Huangmei waters in Longgan Lake had little difference, while the seasonal dynamic was obvious. The average concentration of ammonia nitrogen in the whole lake was the highest (0.64 mg/L) in summer. The average concentrations of total nitrogen in summer and in winter were 2.30 mg/L and 1.04 mg/L respectively. The average concentrations of chlorophyll a in summer and autumn were 95.28 μg/L and 28.30 μg/L respectively. The pH value was the highest (9.27) in summer, while the average concentration of total phosphorus was highest in winter with the value of 0.22 mg/L. The TLI index showed that Longgan Lake had a mild eutrophic level in autumn and a moderate eutrophic state in the other three seasons. The results of SOM model clearly and intuitively reflected the temporal and spatial distribution of water quality in Longgan Lake. Management measures such as eliminating purse seine and prohibiting fishing can help restore lake fishery environment and fishery resources. It is suggested that a long-term follow-up investigation and assessment should be carried out on the lake ecosystem after the transformation of fishery model.
  • 图  1   龙感湖轮廓图及采样点分布

    图中虚线为区分黄梅和宿松水域的示意线

    Figure  1.   Sketch map of Longgan Lake and the distribution of sampling sites

    The dotted line in the map is a schematic line to distinguish Huangmei and Susong waters

    图  2   龙感湖黄梅水域和宿松水域综合营养状态指数(TLI)的季节动态特征

    图中每个点代表一次采样, 矩形框包含了50%的TLI数据, 框内水平线表示数据的中位数

    Figure  2.   Seasonal dynamics of comprehensive trophic level index (TLI) for Huangmei and Susong areas of Longgan Lake

    Each point in the figure represents a sample. The rectangular box contains 50% of the TLI data. Horizontal lines in the box represent the median of the data

    图  3   龙感湖水质参数的主成分分析

    a. 季节动态; b. 水域差异; 图中点和椭圆的不同颜色代表相应季节或水域; HM. 黄梅水域; SS. 宿松水域; 水质参数符号含义见表 3

    Figure  3.   Principal component analysis (PCA) on water quality parameters in Longgan Lake

    a. indicating seasonal dynamics; b. indicating spatial differences. Different colors of dots and ellipses in the graph represent corresponding seasons or waters. HM. Huangmei water area; SS. Susong water area. See Tab 3 for the meaning of codes of water quality parameters

    图  4   龙感湖水质时空动态SOM模型

    a. 输出层神经元的等级分类; b. 各样点在输出层模式图上的分布; Sp. 春季; Su. 夏季; A. 秋季; W. 冬季; HM. 黄梅水域; SS. 宿松水域

    Figure  4.   The SOM modelling of spatio-temporal dynamics of water quality in Longgan Lake

    a. Hierarchical classification of the neurons on the output layer. b. Distribution of all the sampling sites on the patterned map; Sp. Spring; Su. Summer; A. Autumn; W. Winter; HM. Huangmei water area; SS. Susong water area

    图  5   主要水质参数在SOM神经元上的贡献值分布

    各神经元颜色的深浅表示水质参数值的高低, 水质参数符号含义见表 3

    Figure  5.   Distribution of contribution values of major water quality parameters on the SOM neurons

    The darkness of each neuron represents the value of water quality parameter. See Tab. 3 for the meaning of codes of water quality parameters

    表  1  

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    Table  1  

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    参数ParameterChl.aSDCOD MnTPTN
    rij1–0.830.830.840.82
    $r^2_{ij} $10.68890.68890.70560.6724
    下载: 导出CSV

    表  2   湖泊(水库)综合营养状态指数TLI (∑)与营养状态的对应关系[9]

    Table  2   The corresponding relationship between the comprehensive trophic level index TLI (∑) and trophic level of lakes (reservoirs)

    综合营养状态指数TLI (∑)
    Comprehensive trophic level index TLI (∑)
    营养状态
    Trophic level
    TLI (∑)<30贫营养Oligotrophic
    30≤ TLI (∑)≤50中营养Mesotrophic
    TLI (∑)>50富营养Eutrophic
    50<TLI (∑)≤60轻度富营养Lightly eutrophic
    60<TLI (∑)≤70中度富营养Moderately eutrophic
    TLI (∑)>70重度富营养Severely eutrophic
    下载: 导出CSV

    表  3   2017—2018年龙感湖水质参数的季节变化(平均值±标准误)

    Table  3   Seasonal variations of water quality parameter in Longgan Lake during 2017—2018 (Mean±SE)

    参数Parameter冬季Winter春季Spring夏季Summer秋季Autumn
    水深WD (m)0.83±0.250.99±0.202.52±0.251.55±0.27
    透明度SD (m)0.14±0.050.34±0.060.40±0.120.39±0.08
    水温WT (℃)8.54±1.0824.87±1.5232.63±0.8214.98±0.60
    气温AT (℃)10.13±1.3025.19±1.9735.03±2.4717.67±0.71
    溶解氧DO (mg/L)10.55±1.417.67±1.208.83±2.5412.11±1.93
    电导率Cond (μS/cm)161.59±36.50221.02±48.46256.93±15.85211.99±21.60
    pH8.60±0.408.98±0.259.27±0.368.72±0.12
    总氮TN (mg/L)1.04±0.901.14±0.322.30±0.640.98±0.24
    亚硝态氮${\rm{NO}}^-_2 $-N (mg/L)0.08±0.100.09±0.080.03±0.030.06±0.07
    氨氮${\rm{NH}}^+_4 $-N (mg/L)0.19±0.190.21±0.140.64±0.310.12±0.06
    总磷TP (mg/L)0.22±0.140.12±0.040.11±0.040.11±0.06
    化学需氧量CODMn (mg/L)7.80±0.825.94±0.928.20±0.695.32±0.84
    叶绿素a Chl.a (μg/L)62.00±48.4060.83±35.3295.28±49.3028.30±12.68
    下载: 导出CSV

    表  4   龙感湖不同采样点富营养化状态分级统计

    Table  4   Classification statistics of eutrophication status at different sampling points of Longgan Lake

    综合营养指数TLI (∑)富营养化程度
    Eutrophication degree
    处于该营养状态下的样点数(个)
    Number of sample points in this state
    占总样点数的百分比
    Percentage of total sample points (%)
    黄梅水域Huangmei宿松水域Susong黄梅水域Huangmei宿松水域Susong
    (0, 30)贫营养Oligotrophic0000
    [30, 50]中营养Mesotrophic0000
    (50, 60]轻度富营养Lightly eutrophic5149.4326.42
    (60, 70]中度富营养Moderately eutrophic171432.0826.42
    (70, 100]重度富营养Severely eutrophic121.893.77
    下载: 导出CSV
  • [1] 巴亚东. 华阳河湖群生态环境现状及保护措施研究 [C]. 河海大学、贵州省水利学会. 2017(第五届)中国水生态大会论文集. 2017: 93-98.

    Ba Y D. Study on the Ecological Environment Status and Protection Measures of Huayang Lakeside Zone [C]. Hohai University, Guizhou Water Conservancy Society. 2017 (the fifth) China Water Ecology Conference Proceedings. 2017: 93-98.

    [2] 谢涵, 蒋忠冠, 夏治俊, 等. 围网养殖对华阳河湖鱼类群落结构的影响 [J]. 水产学报, 2018, 42(9): 1399-1407.

    Xie H, Jiang Z G, Xia Z J, et al. The impacts of enclosure aquaculture on fish community in the Huayanghe Lake [J]. Journal of Fisheries of China, 2018, 42(9): 1399-1407.

    [3] 吴庆龙, 陈开宁, 胡耀辉, 等. 东太湖河蟹网围养殖的环境效应 [J]. 农业环境保护, 2001, 20(6): 432-434, 442.

    Wu Q L, Chen K N, Hu Y H, et al. Impacts of pen crab farming on environment in East Taihu Lake [J]. Agricultural Environmental Protection, 2001, 20(6): 432-434, 442.

    [4] 班璇, 余成, 魏珂, 等. 围网养殖对洪湖水质的影响分析 [J]. 环境科学与技术, 2010, 33(9): 125-129.

    Ban X, Yu C, Wei K, et al. Analysis of influence of enclosure aquaculture on water quality of Honghu Lake [J]. Environmental Science and Technology, 2010, 33(9): 125-129.

    [5] 夏治俊, 蒋忠冠, 谢涵, 等. 华阳湖群鱼类功能群及其对围网养殖的响应 [J]. 生态学杂志, 2018, 37(2): 438-445.

    Xia Z J, Jiang Z G, Xie H, et al. Functional groups of fish community in the Huayang Lake group and their response to enclosure culture [J]. Chinese Journal of Ecology, 2018, 37(2): 438-445.

    [6] 吴岳玲. 水质综合评价及预测研究进展 [J]. 安徽农业科学, 2020, 48(2): 23-26. doi: 10.3969/j.issn.0517-6611.2020.02.007

    Wu Y L. A Review of comprehensive evaluation and prediction of water quality [J]. Journal of Anhui Agricultural Sciences, 2020, 48(2): 23-26. doi: 10.3969/j.issn.0517-6611.2020.02.007

    [7] 刘思莹, 刘俊文, 赵婷婷, 等. 水环境质量评价的研究进展 [J]. 江西化工, 2017(6): 41-43. doi: 10.3969/j.issn.1008-3103.2017.06.016

    Liu S Y, Liu J W, Zhao T T, et al. A review of water environment quality assessment [J]. Jiangxi Chemical Industry, 2017(6): 41-43. doi: 10.3969/j.issn.1008-3103.2017.06.016

    [8] 张堂林, 李钟杰, 郭青松. 长江中下游四个湖泊鱼类与渔业研究 [J]. 水生生物学报, 2008, 32(2): 167-177. doi: 10.3321/j.issn:1000-3207.2008.02.005

    Zhang T L, Li Z J, Guo Q S. Investigations on fishes and fishery of four lakes along the middle and lower basins of the Changjiang River [J]. Acta Hydrobiologica Sinica, 2008, 32(2): 167-177. doi: 10.3321/j.issn:1000-3207.2008.02.005

    [9] 环境保护部. 地表水环境质量评价办法 [S]. 2011: 10-11.

    Ministry of Environmental Protection. Surface Water Environmental Quality Assessment Method [S]. 2011: 10-11.

    [10]

    Lek S, Guégan J F. Artificial neural networks as a tool in ecological modelling, an introduction [J]. Ecological Modelling, 1999, 120(2-3): 65-73. doi: 10.1016/S0304-3800(99)00092-7

    [11] 吴奇丽. 水位波动对华阳河湖群浮游植物群落结构的影响[D]. 合肥: 安徽大学, 2018: 26-34.

    Wu Q L. Effect of water level fluctuation on phytoplankton community structure of Huayang Lake Group[D]. Hefei: Anhui University, 2018: 26-34.

    [12] 张运林, 秦伯强, 陈伟民, 等. 太湖水体透明度的分析、变化及相关分析 [J]. 海洋湖沼通报, 2003(2): 30-36. doi: 10.3969/j.issn.1003-6482.2003.02.005

    Zhang Y L, Qin B Q, Chen W M, et al. Distribution, seasonal variation and correlation analysis of the transparency in Taihu Lake [J]. Transaction of Oceanology & Limnology, 2003(2): 30-36. doi: 10.3969/j.issn.1003-6482.2003.02.005

    [13] 杨姣, 刘正文, 钟萍, 等. 广东惠州湖泊浮游植物群落对鱼类去除的响应 [J]. 安徽农业科学, 2009, 37(7): 3193-3195. doi: 10.3969/j.issn.0517-6611.2009.07.136

    Yang J, Liu Z W, Zhong P, et al. Short-term response of phytoplankton community structure to fish removal in Huizhou West Lake [J]. Journal of Anhui Agricultural Sciences, 2009, 37(7): 3193-3195. doi: 10.3969/j.issn.0517-6611.2009.07.136

    [14] 曾凯, 王家生, 章运超, 等. 华阳河湖群水位变化对水质的影响分析 [J/OL]. 长江科学院院报: 1-7 [2020-04-30 网络首发].

    Zeng K, Wang J S, Zhang Y C, et al. Analysis on the influence of water level change of Huayang Lake group on water quality [J/OL]. Journal of the Yangtze River Academy of Sciences: 1-7 [2020-04-30 Online first].

    [15] 朱广伟. 太湖富营养化现状及原因分析 [J]. 湖泊科学, 2008, 20(1): 21-26. doi: 10.3321/j.issn:1003-5427.2008.01.003

    Zhu G W. Analysis of eutrophication status and causes in Lake Taihu [J]. Journal of Lake Sciences, 2008, 20(1): 21-26. doi: 10.3321/j.issn:1003-5427.2008.01.003

    [16] 胡春华, 周文斌, 王毛兰, 等. 鄱阳湖氮磷营养盐变化特征及潜在性富营养化评价 [J]. 湖泊科学, 2010, 22(5): 723-728.

    Hu C H, Zhou W B, Wang M L, et al. Characteristics of nitrogen and phosphorus nutrient changes and assessment of potential eutrophication in Poyang Lake [J]. Journal of Lake Sciences, 2010, 22(5): 723-728.

    [17] 吴奇丽, 张坤, 陈欢, 等. 华阳河湖群叶绿素a浓度的季节动态和空间分布 [J]. 水生态学杂志, 2019, 40(2): 66-72.

    Wu Q L, Zhang K, Chen H, et al. Seasonal and spatial variation of chlorophyll-a concentration in the Huayanghe Lake Group [J]. Chinese Journal of Ecology, 2019, 40(2): 66-72.

    [18] 洪源, 罗勇, 王钟. 安徽省宿松县龙感湖和黄大湖枯水期水质现状分析 [J]. 安徽农业科学, 2018, 46(35): 75-79, 136. doi: 10.3969/j.issn.0517-6611.2018.35.024

    Hong Y, Luo Y, Wang Z. Analysis on the Current Situation of Water Quality of Longgan Lake and Huangda Lake during Low-water Period in Susong County of Anhui Province [J]. Journal of Anhui Agricultural Sciences, 2018, 46(35): 75-79, 136. doi: 10.3969/j.issn.0517-6611.2018.35.024

    [19]

    Lee B H, Scholz M, Application of the self-organizing map (SOM) to assess the heavy metal removal performance in experimental constructed wetlands[J]. Water Research, 2006, 40(18): 3367-3374.

    [20]

    Simsek H. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen [J]. Environmental Technology, 2016, 37(22): 1-45.

    [21] 张国华, 曹文宣, 陈宜瑜. 湖泊放养渔业对我国湖泊生态系统的影响 [J]. 水生生物学报, 1997, 21(3): 271-280. doi: 10.3321/j.issn:1000-3207.1997.03.012

    Zhang G H, Cao W X, Chen Y Y. Effects of fish stocking on lake ecosystems in China [J]. Acta Hydrobiologica Sinica, 1997, 21(3): 271-280. doi: 10.3321/j.issn:1000-3207.1997.03.012

    [22] 刘恩生. 鱼类与水环境间相互关系的研究回顾和设想 [J]. 水产学报, 2007, 31(3): 391-399.

    Liu E S. Review on the interrelationship between fishes and water environment [J]. Journal of Fisheries of China, 2007, 31(3): 391-399.

  • 期刊类型引用(4)

    1. 潘瑛子,扎西拉姆. 西藏羊卓雍错高原裸鲤肠道寄生蠕虫的群落生态. 水生生物学报. 2023(06): 903-909 . 本站查看
    2. 潘瑛子,杨欣兰,曾本和,牟振波. 西藏羊卓雍错高原裸鲤肠道寄生蠕虫的种群生态. 中国水产科学. 2022(01): 149-156 . 百度学术
    3. 冯龙基,郝翠兰,田胜利,张斐,穆妮热·喀迪尔,刘豆豆,魏念文,刘彦君,范文豪,岳城. 叶尔羌河塔里木裂腹鱼肠道寄生线虫的种类鉴定与系统发育分析. 中国兽医科学. 2022(04): 475-484 . 百度学术
    4. 潘瑛子,付佩佩,王且鲁,周建设,牟振波,胡光冉. 西藏黑斑原鮡消化道寄生蠕虫的分布类型及种间关系. 中国水产科学. 2021(02): 231-238 . 百度学术

    其他类型引用(3)

图(5)  /  表(4)
计量
  • 文章访问数:  1780
  • HTML全文浏览量:  676
  • PDF下载量:  110
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-05-13
  • 修回日期:  2020-10-09
  • 网络出版日期:  2021-08-23
  • 发布日期:  2021-09-08

目录

    /

    返回文章
    返回