EFFECTS OF DIETARY MULBERRY LEAF EXTRACT AND 1-DEOXYNOJIRIMYCIN ON GROWTH, DIGESTION AND IMMUNITY CAPACITY, AND INTESTINAL MICROORGANISM OF CHINESE GIANT SALAMANDER (ANDRIAS DAVIDIANUS)
-
摘要: 为探究桑叶物提取物(MLE)和单体1-脱氧野尻霉素(DNJ)对大鲵(Andrias davidianus)生长、消化、免疫能力和肠道菌群影响的差异, 研究以基础饲料为对照组, 分别添加0.75%的MLE和0.04‰的DNJ制成3种等氮等脂的饲料, 饲喂初始均重为(47.81±0.23) g的大鲵90d。结果: MLE组和DNJ组增重率和饲料效率显著提高(P<0.05); 肠道脂肪酶和胰蛋白酶活力显著提高(P<0.05), 肠道丙二醛、血浆内毒素显著降低(P<0.05), 肠黏膜绒毛数量显著增加(P<0.05), 肠黏膜上皮细胞间紧密连接更加紧密; 与对照组相比, MLE组雷帕霉素靶蛋白(Target of rapamycin, TOR)、白细胞介素-10 (Interleukin, IL-10)、多聚免疫球蛋白受体(Polymeric immunoglobulin receptor, pIgR)、类Toll受体2(Toll-like receptor 2, TLR2)和髓样分化初级反应基因88 (Myeloid differentiation primary response gene88, MyD88) mRNA表达水平显著上调(P<0.05), DNJ组pIgR mRNA表达水平显著上调(P<0.05); 肠道菌群中瘤胃球菌科细菌丰度降低, Romboutsia丰度增加, 肠道微生物多样性较对照组提高(P<0.05)。与DNJ组相比, MLE组和DNJ组增重率和饲料效率无显著差异(P>0.05), MLE组胃蛋白酶、H+-K+-ATP酶和Na+-K+-ATP酶活力显著提高, 肠道总抗氧化能力显著提高(P<0.05), 肠黏膜上皮细胞紧密连接程度提高, 肠绒毛高度显著增加(P<0.05), 血浆内毒素含量显著降低。结果表明, 在大鲵配合饲料中添加MLE和DNJ均能不同程度改善大鲵胃和肠的消化吸收功能, 提高生长性能、肠道抗氧化能力和免疫能力, 提高肠道微生物多样性, 促进肠道发育; 综合胃和肠结构和功能, 复合MLE较单体DNJ效果更优。Abstract: This study explored the effects of feeding basal diet, mulberry leaf extract diet (containing 0.75% MLE) and 1-deoxynojirimycin diet (containing 0.04‰ DNJ) on growth, digestion and immunity capacity, and intestinal microorganism in giant salamanders for a 90-day trail. Giant salamanders with an initial body weight of (47.81±0.23) g were randomly divided into 3 groups for these 3 diets. Compared with the control diet, the weight gain rate and feed efficiency in MLE and DNJ groups were significantly improved (P<0.05); lipase and trypsin activities were also significantly increased (P<0.05). The contents of endotoxin in plasma acid and malondialdehyde in intestine in MLE and DNJ groups were significantly lower than those in control group (P<0.05). Compared with control group, the number of intestinal villi in MLE and DNJ groups were increased, and the tight junction between intestinal mucosa cells in MLE and DNJ groups were closer. Compared with the control group, the mRNA expression levels of target of rapamycin (TOR), interleukin-10 (IL-10), polymeric immunoglobulin receptor (pIgR), toll-like receptor-2 (TLR2) and myeloid differentiation primary response gene88 (MyD88) in MLE group were significantly increased (P<0.05), and the mRNA expression level of pIgR in the DNJ group was significantly increased (P<0.05). The diversity of intestinal bacteria in MLE and DNJ group was higher than that in control group. There was no significant difference in weight gain rate and feed efficiency among 3 groups (P>0.05); MLE group significantly increased the activities of pepsin, H+-K+-ATPase, Na+-K+-ATPase and the total intestinal antioxidant capacity compared with the control group (P<0.05). In addition, MLE group had closer tight junction between intestinal mucosa cells, higher intestinal villi height (P<0.05), and lower plasma endotoxin content (P<0.05), compared with DNJ group. In summary, MLE and DNJ can improve growth performance, digestion and absorption functions, intestinal antioxidant and immune capabilities, promote the growth of beneficial bacteria in the intestine, increase the diversity of intestinal microorganisms, and promote the intestinal development of the giant salamander. Combined the structure and function of the stomach and intestines, MLE is more effective than DNJ.
-
-
表 1 实验饲料配方及主要营养成分(风干基础)
Table 1 Formulation and nutrient composition of diets (air-dry basis)
项目Item 组别Group 对照组Control MLE组 DNJ组 鱼粉Fish meal (%) 15 15 15 肉粉Meat meal (%) 3 3 3 酪蛋白Casein (%) 6 6 6 明胶Gelatin (%) 6 6 6 复合蛋白粉1)Compound protein powder (%) 17 17 17 面粉Wheat flour (%) 28 28 28 α-预糊化淀粉α-pregelatinized starch (%) 11 11 11 大豆油Soybean oil (%) 4.8 4.8 4.8 预混料Premix2) (%) 7.7 7.7 7.7 桑叶提取物MLE (%) 0 0.75 0 1-脱氧野尻霉素DNJ(‰) 0 0 0.04 膨润土Bentonite (%) 1.5 0.75 1.5 合计Total (%) 100 100 100 营养组成(干基实测)Nutrient composition (measured dry basis, %) 粗蛋白Crude protein 55.36 55.60 55.41 粗脂肪Crude lipid 8.70 8.81 8.73 粗灰分Crude ash 10.30 10.15 10.12 粗纤维Crude fiber 0.91 0.95 0.92 注:1)复合蛋白粉成分保密;2)预混料含多维、多矿、功能性添加剂和载体,多维、多矿的组成参照肉食性鱼类Note: 1)The ingredients of compound protein powder are confidential; 2)Premix contains multi-vitamins, complex mineral, functional additives and carrier, multi-vitamin and complex mineral refer to carnivorous fishes 表 2 免疫相关基因及内参基因引物序列
Table 2 Primers used for quantitative real-time PCR
基因Gene 引物序列Sequences (5′—3′) 长度Length (bp) EF-1α GGACAGACCCGTGAACATGC
CTTCCTTAGTGATCTCCTCGTAGC130 IL-8 TGCAGACAGACGCACTTCAA
CACAGCCATCAGTCACCCTT112 IL-10 GCCGCGTGCATCTATTTTGG
CAGCAACCTGGAGAACCTCA104 TOR CGCTTCACCTCGAACTCCAC
ATCTCCTGCCCTCCAGTGAC109 pIgR CGCTTGGAGTCACTGAACCT
AGCCTCCTCCAAAGCATCAC102 TLR2 TGGACAATGTCACCCCTGTG
TCATCCGCTGAAGAAACCCC150 MyD88 TCCCTGCCATTTCTTGGGAC
CTCACCGACCTGAAACCGAA130 IRAK4 TTCTGGGTCACTGTCTTGCG
ATCAAAGGAGGCATCTGGGC112 注: EF-1α. 延伸因子-1α elongation factor-1α; IL-8. 白细胞介素-8 interleukin-8; IL-10. 白细胞介素-10 interleukin-10; TOR. 雷帕霉素靶蛋白target of rapamycin; TLR2.类Toll受体2 toll-like receptor 2; IRAK4.白细胞介素-1受体相关激酶4 interleukin-1 receptor-associated kinase 4; MyD88. 髓样分化初级反应基因88 myeloid differentiation primary response gene 88; pIgR. 多聚免疫球蛋白受体polymeric immunoglobulin receptor 表 3 MLE和DNJ对大鲵生长性能及饲料效率的影响
Table 3 Effects of MLE and DNJ on growth performance and feed utilization of Andrias davidianus
项目Item 组别Group 对照组Control MLE组 DNJ组 终末鲵尾均重FBW (g) 76.92±4.31a 88.13±1.82b 90.15±3.11b 增重率WGR (%) 60.8±9.3a 84.5±2.9b 88.5±6.1b 平均日增重ADG (g/d) 0.32±0.05a 0.45±0.02b 0.47±0.04b 摄食量FI (g) 119.73±11.36a 138.79±3.57b 137.29±10.36ab 饲料效率FE (%) 145.3±8.3a 174.5±7.2b 185.1±6.1b 表 4 MLE和DNJ对大鲵胃功能的影响
Table 4 Effects of MLE and DNJ on gastric function of Andrias davidianus (U/mg)
项目Item 组别Group 对照组Control MLE组 DNJ组 胃蛋白酶Pepsin 14.6±0.6a 23.0±1.9b 15.9±0.4a H+-K+-ATPase 4.14±0.14a 4.65±0.12b 4.25±0.15a 碳酸酐酶CA 191±9a 212±12b 208±8b 表 5 MLE和DNJ对大鲵肠道消化吸收功能的影响
Table 5 Effects of MLE and DNJ on intestinal digestion and absorption function of Andrias davidianus (U/mg)
项目Item 组别Group 对照组Control MLE组 DNJ组 胰蛋白酶Trypsin 155±5a 263±6c 247±9b 脂肪酶Lipase 742±48a 858±35b 835±48b 淀粉酶Amylase 0.212±0.008b 0.168±0.007a 0.159±0.007a Na+-K+-ATPase 3.16±0.13a 3.59±0.09b 3.14±0.12a 表 6 MLE和DNJ对大鲵肠黏膜通透性影响的比较
Table 6 Effects of MLE and DNJ on intestinal permeability of Andrias davidianus
项目Item 组别Group 对照组Control MLE组 DNJ组 内毒素ET (EU/mL) 64.3±1.6c 51.7±2.6a 61.9±1.9b D-乳酸D-LA (μmol/L) 241±14b 183±16a 209±23ab 表 7 MLE与DNJ对大鲵肠道形态结构的影响
Table 7 Effects of MLE and DNJ on intestinal morphology and structure of Andrias davidianus
项目Item 组别Group 对照组Control MLE组 DNJ组 绒毛数量
Villus number12.1±0.9a 14.0±1.3b 13.5±0.5b 绒毛高度
Villus height (μm)350.3±70.2a 470.3±52.4b 319.7±27.4a 空腔率*
Cavity rate (%)22.4±3.2c 16.3±2.8a 19.8±3.6b 注: *空腔率(%)=肠道横切空腔面积/肠道横切面积×100Note: *Cavity rate(%)=Scavity of intestine/Sintestine×100 表 8 MLE与DNJ对大鲵肠道抗氧化能力的影响
Table 8 Effects of MLE and DNJ on intestinal antioxidant of Andrias davidianus
项目Item 组别Group 对照组Control MLE组 DNJ组 总抗氧化能力T-AOC (U/mg) 4.28±0.09a 4.72±0.09b 4.45±0.11a 总超氧化物歧化酶T-SOD (U/mg) 48.6±1.2 52.9±1.5 50.6±2.8 丙二醛MDA (nmol/mg) 2.76±0.09b 2.15±0.10a 2.38±0.20a 表 9 肠道菌群Alpha多样性指数
Table 9 Alpha diversity indices of samples
样品Simple Alpha多样性指数 ACE Chao1 香农指数Shannon 辛普森指数Simpson 覆盖率Coverage (%) 对照组Control 189.8 191.4 2.63 0.201 99.98 MLE组 204.2 205.3 2.82 0.152 99.98 DNJ组 228.1 231.2 2.48 0.244 99.95 P-valve 0.014 0.017 0.254 0.377 99.90 注: 每组数值分别为每组三个样品的均值Note: The values are the mean values of three samples in each group -
[1] 王慧, 白禹, 杨文佳, 等. 大鲵抗菌肽家族基因对弗氏柠檬酸杆菌侵染的表达调控 [J]. 西南农业学报, 2019, 32(9): 2233-2237. Wang H, Bai Y, Yang W J, et al. Expression regulation of Andrias davidianus antimicrobial peptide genes induced by Citrobacter freundii [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(9): 2233-2237.
[2] Mary V S, Jibu T. Polyphenolic constituents in mulberry leaf extract (M. latifolia L. cv. BC259) and its antidiabetic effect in streptozotocin induced diabetic rats [J]. Pakistan Journal of Pharmaceutical Sciences, 2019, 32(1): 69-74.
[3] He X, Li H, Gao R, et al. Mulberry leaf aqueous extract ameliorates blood glucose and enhances energy expenditure in obese C57BL/6J mice [J]. Journal of Functional Foods, 2019(63): 103505.
[4] Yu X M, An X, Lu H, et al. Hypoglycemic effects of mulberry leaf extracts on diabetic mice [J]. Journal of Hygiene Research, 2018, 47(3): 432-436.
[5] Chang C H, Chang Y T, Tseng T H, et al. Mulberry leaf extract inhibit hepatocellular carcinoma cell proliferation via depressing IL-6 and TNF-α derived from adipocyte [J]. Journal of Food and Drug Analysis, 2018, 26(3): 1024-1032. doi: 10.1016/j.jfda.2017.12.007
[6] Ling W, Gang C, Jian S P, et al. Antioxidant and xanthine oxidase inhibitory properties and LC-MS/MS identification of compounds of ethanolic extract from Mulberry leaves [J]. Acta Scientiarum Polonorum. Technologia Alimentaria, 2018, 17(4): 313-319.
[7] 雷春龙, 李娟, 吴永胜, 等. 桑枝叶提取物对蛋鸡生产性能、血清免疫指标与抗氧化能力的影响 [J]. 中国畜牧杂志, 2019, 55(8): 118-122. Lei C L, Li J, Wu Y S, et al. Effects of mulberry branch and leaf extract on growth performance, serum immune indexes and antioxidant capacity of laying hens [J]. Chinese Journal of Animal Science, 2019, 55(8): 118-122.
[8] 宋琼莉, 周泉勇, 韦启鹏, 等. 桑叶提取物对矮脚黄鸡生长性能、屠宰性能及肉品质的影响 [J]. 动物营养学报, 2018, 30(1): 191-201. Song Q L, Zhou Q Y, Wei Q P, et al. Effects of mulberry leaf extract on growth performance, slaughter performance and meat quality of yellow dwarf chickens [J]. Chinese Journal of Animal Nutrition, 2018, 30(1): 191-201.
[9] 范京辉, 张永华, 楼立峰, 等. 桑叶及其提取物对AA肉鸡生长、养分消化与胴体品质的影响 [J]. 杭州农业与科技, 2012(5): 29-32. Fan J H, Zhang Y H, Lou L F, et al. Effects of mulberry leaf and its extracts on growth nutrient digestion and carcass quality of AA broiler chickens [J]. Hangzhou Agricultural Science and Technology, 2012(5): 29-32.
[10] 王咏梅, 陈冰, 曹俊明, 等. 桑叶黄酮对凡纳滨对虾肠道黏膜形态和肠道菌群的影响 [J]. 动物营养学报, 2020, 32(4): 1817-1825. Wang Y M, Chen B, Cao J M, et al. Effects of mulberry leaf flavonoids on intestinal mucosal morphology and intestinal flora of Litopenaeus vannamei [J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1817-1825.
[11] 陈冰, 杨继华, 曹俊明, 等. 桑叶黄酮对吉富罗非鱼肌肉抗氧化指标及营养组成的影响 [J]. 淡水渔业, 2018, 48(3): 90-95. Chen B, Yang J H, Cao J M, et al. Effects of dietary mulberry leaf flavonoids on muscle antioxidant indices and nutritional compositions of GIFT, Oreochromis niloticus [J]. Freshwater Fisheries, 2018, 48(3): 90-95.
[12] Zhao X, Li L, Luo Q, et al. Effects of mulberry (Morus alba L.) leaf polysaccharides on growth performance, diarrhea, blood parameters, and gut microbiota of early-weanling pigs [J]. Livestock Science, 2015(177): 88-94.
[13] 罗秋兰. 桑叶多糖对断奶仔猪生长性能和免疫功能的影响研究 [D]. 广州: 华南农业大学, 2012: 35. Luo Q L. Effect of mulberry leaf polysaccharide on growth performance and immune function of weaned piglets [D]. Guangzhou: South China Agricultural University, 2012: 35.
[14] Hu T G, Peng W, Shen W Z, et al. Effect of 1-deoxynojirimycin isolated from mulberry leaves on glucose metabolism and gut microbiota in a streptozotocin-induced diabetic mouse model [J]. Journal of Natural Products, 2019, 82(8): 2189-2200. doi: 10.1021/acs.jnatprod.9b00205
[15] Zheng J, Zhu L, Hu B, et al. 1-Deoxynojirimycin improves high fat diet-induced nonalcoholic steatohepatitis by restoring gut dysbiosis [J]. The Journal of Nutritional Biochemistry, 2019(71): 16.
[16] Li Z, Chen X, Chen Y, et al. Effects of dietary mulberry leaf extract on the growth, gastrointestinal, hepatic functions of Chinese giant salamander (Andrias davidianus) [J]. Aquaculture Research, 2020, 51(6): 2613-2623. doi: 10.1111/are.14639
[17] 吴萍, 厉宝林, 李龙, 等. 日粮中添加桑叶粉对黄羽肉鸡生长性能、屠宰性能和肉品质的影响 [J]. 中国家禽, 2007, 29(7): 13-15. Wu P, Li B L, Li L, et al. Effect of dietary mulberry powder on growth performance, slaughter performance and meat quality of yellow-feather broilers [J]. China Poultry, 2007, 29(7): 13-15.
[18] 李婉涛, 王义翠, 徐秋良, 等. 杜仲和桑叶提取物对育肥猪生长性能及猪肉品质的影响 [J]. 黑龙江畜牧兽医, 2018(10): 157-160. Li W T, Wang Y C, Xu Q L, et al. Effect of eucommia ulmoicles oliv and mulberry leaf extract on growth performance and pork quality of fattening pigs [J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(10): 157-160.
[19] 杨继华, 陈冰, 黄燕华, 等. 饲料中添加桑叶黄酮对吉富罗非鱼生长性能、体成分、抗氧化指标及抗亚硝酸盐应激能力的影响 [J]. 动物营养学报, 2017, 29(9): 3403-3412. Yang J H, Chen B, Huang Y H, et al. Effects of dietary mulberry leaf flavonoids on growth performance, body composition, antioxidant indices and resistance to nitrite exposure of genetic improvement of farmed Tilapia (Oreochromis niloticus) [J]. Chinese Journal of Animal Nutrition, 2017, 29(9): 3403-3412.
[20] Shin J M, Munson K, Vagin O, et al. The gastric HK-ATPase: structure, function, and inhibition [J]. Pflügers Archiv European Journal of Physiology, 2009, 457(3): 609.
[21] Unwin R J, Shirely D G, Capasso G. Urinary acidification and distal renal tubular acidosis [J]. Journal of Nephrology, 2002, 15(Suppl 5): S142-150.
[22] 杨春涛. 热带假丝酵母与桑叶黄酮对犊牛生长和胃肠道发育的影响 [D]. 北京: 中国农业科学院, 2016: 26-27. Yang C T. Effects of candida tropicalis and mulberry leaf flavonoids on growth and gastrointestinal development in calves [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016: 26-27.
[23] 彭思博, 陈秀梅, 孔雨昕, 等. γ-氨基丁酸对乌鳢生长性能、肠道消化酶和抗氧化酶活性的影响 [J]. 饲料工业, 2020, 41(14): 40-45. Peng S B, Chen X M, Kong Y X, et al. Effects of γ-aminobutyric acid on the growth performance, activities of digestive enzymes and antioxidant enzymes in the intestinal tract of snakehead [J]. Feed Industry, 2020, 41(14): 40-45.
[24] 王永昌. 桑叶粉对鹅饲用价值的研究 [D]. 广州: 华南农业大学, 2016: 43-46. Wang Y C. Study on the feeding values of mulberry leaf powder in geese diets [D]. Guangzhou: South China Agricultural University, 2016: 43-46.
[25] Asano N, Kizu H, Oseki K, et al. N-alkylated nitrogen-in-the-ring sugars: conformational basis of inhibition of glycosidases and HIV-1 replication [J]. Journal of Medicinal Chemistry, 1995, 38(13): 2349-2356. doi: 10.1021/jm00013a012
[26] Nuraniye E, Emrah D. Determination of 1-Deoxynojirimycin by a developed and validated HPLC-FLD method and assessment of In-vitro antioxidant, α-Amylase and α-Glucosidase inhibitory activity in mulberry varieties from Turkey [J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2019(53): 234-242.
[27] Zhang S, Zhou Q, Li Y, et al. MitoQ modulates lipopolysaccharide-induced intestinal barrier dysfunction via regulating Nrf2 signaling [J]. Mediators of Inflammation, 2020(44): 1-9.
[28] 陈科全, 叶元土, 蔡春芳, 等. 饲料氧化鱼油引起草鱼肠道结构损伤、通透性增加 [J]. 水生生物学报, 2016, 40(4): 804-813. Chen K Q, Ye Y T, Cai C F, et al. Effects of dietary oxidized fish oil on the intestinal structure and permeability of grass carp (Ctenopharyngodon idellus) [J]. Acta Hydrobiologica Sinica, 2016, 40(4): 804-813.
[29] 陈建. 黄酮类成分Apigenin影响肠吸收屏障网络及其提高雷洛昔芬生物利用度的研究 [D]. 镇江: 江苏大学, 2008: 80. Chen J. Intestinal absorption barricade network and the effect of apigenin influencing bioavailability of Raloxifene [D]. Zhenjiang: Jiangsu University, 2008: 80.
[30] Liu C Y, Zhu R Y, Liu H X, et al. Aqueous extract of mori folium exerts bone protective effect through regulation of calcium and redox homeostasis via PTH/VDR/CaBP and AGEs/RAGE/Nox4/NF-κB signaling in diabetic rats [J]. Frontiers in Pharmacology, 2018(9): 1239.
[31] Xuehua P, Shuangdi L, Xiaodan S, et al. 1-Deoxynojirimycin (DNJ) ameliorates indomethacin-induced gastric ulcer in mice by affecting NF-kappaB signaling pathway [J]. Frontiers in Pharmacology, 2018(9): 372.
[32] Mahmood T, Anwar F, Afzal N, et al. Influence of ripening stages and drying methods on polyphenolic content and antioxidant activities of mulberry fruits [J]. Journal of Food Measurement & Characterization, 2017(1): 1-9.
[33] Wang B, Yang C T, Diao Q Y, et al. The influence of mulberry leaf flavonoids and Candida tropicalis on antioxidant function and gastrointestinal development of preweaning calves challenged with Escherichia coli O141: K99 [J]. Journal of Dairy Science, 2018, 101(7): 6098-6108. doi: 10.3168/jds.2017-13957
[34] 袁清霞. 桑叶多糖分离纯化、结构分析及生物活性研究 [D]. 南京: 南京农业大学, 2016: 113-126. Yuan Q X. Isolation, purification, structure and bioactivity of polysaccharides from mulberry (Morus alba L.) leaves [D]. Nanjing: Nanjing Agricultural University, 2016: 113-126.
[35] Cenci S, Weitzmann M N, Roggia C, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-α [J]. Journal of Clinical Investigation, 2000, 106(10): 1229-1237. doi: 10.1172/JCI11066
[36] Waugh D J J, Wilson C. The interleukin-8 pathway in cancer [J]. Clinical Cancer Research an Official Journal of the American Association for Cancer Research, 2008, 14(21): 6735-6741. doi: 10.1158/1078-0432.CCR-07-4843
[37] Qingpu L, Xuan L, Cunyu L, et al. 1-Deoxynojirimycin alleviates liver injury and improves hepatic glucose metabolism in db/db mice [J]. Molecules (Basel, Switzerland)
, 2016, 21(3): 279. doi: 10.3390/molecules21030279 [38] 李小兵. 桑叶多糖对长期大负荷运动训练小鼠免疫功能的影响 [J]. 中国实验方剂学杂志, 2012, 18(24): 269-272. Li X B. Effect of mulberry leaves polysaccharide on immune function in mice with long-term heavy training [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2012, 18(24): 269-272.
[39] Leclercqa S, Sébastien M, Patrice D C C A, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): E4485-E4493. doi: 10.1073/pnas.1415174111
[40] 许超. 养殖大鲵肠道菌群结构及肠道细菌药敏性研究 [D]. 重庆: 西南大学, 2017: 49. Xu C. The study of intestinal bacterial community structure and antibiotics susceptibility of intestinal bacterial strains from the farming giant salamander [D]. Chongqing: Southwest University, 2017: 49.
[41] 陈涟昊, 张霞, 孙世芳, 等. 桑叶多糖调节小鼠肠道菌群失调的研究 [J]. 现代药物与临床, 2015, 30(6): 633-636. Chen L H, Zhang X, Sun S F, et al. Regulation of Morus alba polysaccharides on disturbance of intestinal flora in mice [J]. Drugs & Clinic, 2015, 30(6): 633-636.
[42] Chen Y, Ni J J, Li H W. Effect of green tea and mulberry leaf powders on the gut microbiota of chicken [J]. BMC Veterinary Research, 2019, 15(1): S142-S150. doi: 10.1186/s12917-019-1899-4
[43] Jacoline G, Alexander U, Ivelina S, et al. Romboutsia hominis sp. nov., the first human gut-derived representative of the genus Romboutsia, isolated from ileostoma effluent [J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(11): 3479-3486. doi: 10.1099/ijsem.0.003012
[44] Pamela A, Ibrahima T S, Niokhor D, et al. Description and genomic characterization of Massiliimalia massiliensis gen. nov., sp. nov., and Massiliimalia timonensis gen. nov., sp. nov., two new members of the family Ruminococcaceae isolated from the human gut [J]. Antonie van Leeuwenhoek, 2019, 112(6): 905-918. doi: 10.1007/s10482-018-01223-x